Big Lake Uranium: Targeting Sandstone Hosted Uranium in the Cooper Basin, South Australia

16 October 2019

6

ALLIGATOR ENERGY

BIG LAKE Uranium

Disclaimer and CP

Disclaimer

This presentation contains projections and forward looking information that involve various risks and uncertainties regarding future events. Such forward-looking information can include without limitation statements based on current expectations involving a number of risks and uncertainties and are not guarantees of future performance of the Company. These risks and uncertainties could cause actual results and the Company's plans and objectives to differ materially from those expressed in the forward-looking information. Actual results and future events could differ materially from anticipated in such information. These and all subsequent written and oral forward-looking information are based on estimates and opinions of management on the dates they are made and expressly qualified in their entirety by this notice. The Company assumes no obligation to update forward-looking information should circumstances or management's estimates or opinions change.

Competent Person's Statement – Nickel Cobalt

Information in this report is based on current and historic Exploration Results compiled by Mr Andrew Vigar who is a Fellow of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Vigar is a non executive director of Alligator Energy Limited, and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Vigar consents to the inclusion in this release of the matters based on his information in the form and context in which it appears.

Competent Person's Statement – Uranium

Information in this report is based on current and historic Exploration Results compiled by Mr Andrew Peter Moorhouse who is a Member of the Australasian Institute of Geoscientists. Mr Moorhouse is an employee of Alligator Energy Limited, and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Moorhouse consents to the inclusion in this release of the matters based on his information in the form and context in which it appears.

AGE to farm in and acquire Big Lake Uranium in South Australia

Targeting projects with economics that can continue through low price cycles

- Big Lake Uranium (BLU) Pty. Ltd. is a private Australian company targeting sandstone hosted uranium in the Moomba Gas
 Fields, South Australia.
- The region has similarities with roll-front uranium occurrences above / near hydrocarbon fields in Wyoming, Texas, Kazakhstan.
- BLU are exploring for the next Beverley/Four Mile ISR equivalent
- Alligator Energy Ltd (ASX: AGE) are a listed exploration company with an experienced uranium team, exploring for large, high grade economic deposits in the Alligator Rivers Uranium Province (ARUP).
- AGE currently hold multiple exploration licences within the ARUP covering highly prospective geology and structures based on the Ranger / Jabiluka orebody formation principles.

SA jurisdiction – existing uranium deposits and production, Government and public familiarity, regulator experience and uranium concentrate logistics

Shallow sandstone hosted deposits - In Situ Recovery (ISR) – deposit style is amenable to rapid and low cost exploration and exploitation

Uranium endowment in region – crustal scale heat anomaly – uranium rich basements – uranium present within drainage channels – host to world class ISR deposits

Concept model – *Source*: U rich basement rocks – *transport*: systems allowing fluids from uranium bearing basement rocks into sandstone basins – *trap*: hydrocarbons (gas) providing reductant for uranium deposition – similar aspects to Kazak, Texas and Wyoming uranium fields

Uranium present in Cooper basin – oil and gas well gamma logging showing presence of uranium – one previous explorer found anomalous uranium but failed to test the palaeochannel model

Additional key drivers

ISR deposits are proven sustainable uranium producers

Over 50% of the worlds uranium production is from ISR operations – they continue to be profitable through low uranium price cycles (Source WNA website)

In 2018 production was as follows:

Method	tonnes U	%
In situ leach (ISL)	29,248	55%
Underground & open pit (except Olympic Dam)	20,745	39%
By-product	3505	7%

AGE has been exploring for high grade large deposits in Arnhem Land for the same reason – **aim is to find projects with economics that can continue through low price cycles** – e.g. Ranger style - hence ISR exploration is a natural fit

The largest global uranium players have either acquired or are searching for / interested in new ISR uranium regions

Exploration activities achievable nearly all year in the SA Cooper basin area

AGE experienced exploration, development, marketing and production team

South Australian jurisdiction

South Australia is host to 80% of the country's uranium and the worlds largest deposit

Host to three of Australia's four producing mines

Port Adelaide, one of only two ports in Australia authorised for uranium export

Fertile basement rocks -Olympic Dam is the worlds largest uranium deposit

Host to world-class sandstone hosted uranium deposits (eg Four Mile)

Shallow sandstone deposits – ease of exploration

A well understood uranium model untested in this area

Diagrammatic section (not to scale) of sandstone (yellow unit) hosted uranium system, showing process of infiltration of oxidised groundwater's and formation of roll-front and tabular styles of uranium deposits. The potential role of mobile reductants is also shown

Oxidised groundwater carries soluble uranium, which infiltrates aquifers and meet with reduced horizons. Such horizons contain hydrocarbon, pyrite and lignitic material, which aid in the precipitation of uranium oxide, forming roll-front and tabular uranium deposits.

- Targeting tabular sandstone hosted U bodies overlying dome structures and oil & gas reservoirs
- Specific focus on the margins of the hydrocarbon basin where U rich rocks are closer to surface (Jaireth *et al*, 2008)

Primary U source - Big Lake Granodiorite

26°

Uranium endowment – Major Palaeodrainage system

Uranium rich detritus present in paleochannels

Mechanical transport of U-rich detritus in paleochannels suggested in Geoscience Australia study by Skirrow (2009)

Merrimelia Fm and Tirrawarra Sandstone comprised of rock fragments from Mt. Painter and the Benagerie Ridge (up to 39ppm U in drill cuttings from gas well Moomba 27)

Provenance map indicating suggested rock fragment domains and pathways of clast transport (modified from Chaney et al.,

Ridges Control sedimentation and large scale U migration

South Australian sandstone U deposits spatially linked to structural ridges

Physical control on paleotopography, drainage patterns and sedimentation

Control on major paleochannels systems that host all known U deposits (e.g. Yarramba Palaeochannel)

Concept model - Murteree Ridge Basement High

Understanding basement palaeo-topography critical for exploration

The Cooper Basin is bound by two northeast paleo-topographic and structural highs, Murteree and GMI

Recent structural re-activation interpreted for Murteree with faults propagating to surface

Proprietary Isopach Model Informs Area Selection

<u>Tenement selection</u> <u>optimised to cover all</u> <u>major channels & basin</u> <u>irregularities modelled</u> <u>from petroleum well</u> <u>data</u>

Key Learnings

- Asymmetric basin thickening towards the Muteree ridge (basement high, recent reactivation)
- Major palaeochannels that parallel structures (eg Big Lake Channel)
- Two local depocenters (eg Grenache and Lycosa)
- Informs a preliminary fluid flow model (surface migration pathways)

Concept model - Anomalies Typical of 'Distal' Oxidised Tails

Existing gamma anomalies typical of roll front uranium oxidised tails

Target down hydraulic gradient from known gamma anomalies. Depths ranges from 30 to 75m

Uranium in Cooper basin - Historic Drilling

Presence of uranium confirmed within the system

Limited uranium exploration. In 2009 TC Development Corp commenced initial uranium exploration in joint venture with Crescent Gold (CRE). This included RAB drilling of over 100 holes, which delineated small zones of low level anomalism outside of channels at Big Lake 20 and Big Lake 28. Best results returned included:

BIG LAKE #20 PROSPECT (ASX 25/05/2009: Crescent Gold, "Discovery opens up new uranium province in Cooper Basin") 1 metre @ 300 ppm U3O8 from 92 metres 2 metres @ 270 ppm U3O8 from 87 metres

BIG LAKE #28 PROSPECT (ASX 25/05/2009: Crescent Gold, "Discovery opens up new uranium province in Cooper Basin") Radiometric peak of 250 ppm eU308

Follow up core drilling was then completed with one hole into each of the anomalous zones, which showed the mineralisation to be hosted in <u>clays</u>, and returned a peak value of 1625ppm U3O8 over <u>7.5cm</u>. (ASX 05/05/2010: Crescent Gold, " Core drilling confirms uranium mineralisation at Sturt")

TC Development drilling was in and around existing oil and gas wells, mainly on the basement high peaks. No work was done to identify down dip sandstone hosted potential within channels – Model remains untested, however uranium confirmed to be present in the system!

South Australian jurisdiction

Simple access with good infrastructure

Access to the region is already established with Moomba servicing the Oil and Gas industry. Two major roads provide access from the South and East into Moomba.

Track access to the majority of the tenement is already possible with a good network established by pastoral, oil and gas and historic exploration companies.

BLU Tenement Outline

One exploration license **EL6367** "Big Lake" granted for 2yrs, expiring 21/07/2021 and covers an area of **818km**², near the SA, NSW QLD border.

Exploration program for rapid testing

A well defined cost effective simple exploration program with a clear outcome

Delineate palaeochannels

- Reprocessing open-file 3D seismic to determine best detail and location of paleochannel (Q4 2019)
- Targeted airborne EM ground passive seismic (Q1 2020)

Drill test concept

Air core drilling of the defined channels, estimated 40 holes for 2500 metres (Q2 2020)

Outcome: Testing of BLU project to uranium discovery level

The project may be a candidate for the recently announced South Australian Government Accelerated Discovery Incentive. Alligator will seek any opportunities available to assist with the exploration once full details of the scheme are announced.

Proposed deal

A low entry cost with ability to acquire 100% of a new uranium exploration project

AGE Big Lake Uranium purchase proposal:

Upon Agreement signing - \$10k in cash to vendors of BLU and 3,000,000 AGE shares placed to Taylor Collison as facilitation shares based on their support of a follow-on financing.

AGE have two years from granting of tenement (July 2021) to spend a minimum of \$220k to advance the project.

Upon completing minimum spend, and at its sole option, AGE will issue 30,000,000 shares in AGE to BLU to complete the full purchase.

If AGE discover a JORC inferred resource of 25 million lbs U3O8 at 1000ppm U or greater on the tenement within 8 years, then AGE will issue a further 30,000,000 shares to BLU.

Future share issues subject to shareholder approval at 2019 AGM, and any future share consolidation principles.

Sixth successive annual increase in nuclear power generation

Nuclear Electricity Production 3000 West & Central Europe South America 2500 North America East Europe & Russia 2000 Asia Africa 1500 1000 500 0

Acceleration in construction in Asia, Eastern Europe and Russia

During 5 years, between 2016 and 2020 there are due to be:

- 46 new reactors online

 14 in 2016 & 2017
 13 in 2018 & 2019 so far
 19 in remaining 2019 and 2020
- Based on 20 different designs
- Built in 11 countries
- 2 are newcomer countries
- 9 of the 20 designs being built for the first time

In total these 46 reactors add 15% to global nuclear capacity

First increase in capacity projection in past eight years

Uranium Production & Consumption in 2018

Scenarios for uranium supply-demand

The oversupply in the past years is alleviated by idling of mines and reducing utilization of operating mines.

Near term:

Supplies and reactor requirements are at a comparable level, but rely on inventory drawdown.

Long term:

Restarting idled mines + other unspecified supplies are needed to fill the supply-demand gap.

Greg Hall – CEO Mike Meintjes – Company Secretary

1.4103

+617 3852-4712 gh@alligatorenergy.com.au mm@alligatorenergy.com.au

www.alligatorenergy.com.au

ALLIGATOR ENERGY

S

Cautionary Statement

- The Exploration Results by TC Development have not been reported in accordance with the JORC Code 2012;
- A Competent Person has not done sufficient work to disclose the exploration results in accordance with the JORC Code 2012;
- It is possible that following further evaluation and/or exploration work that the confidence in the prior reported exploration results may be reduced when reported under the JORC Code 2012;
- Nothing has come to the attention of the acquirer that causes it to question the accuracy or reliability of the former owner's exploration results; but
- The acquirer has not independently validated the former owner's exploration results and therefore is not to be regarded as reporting, adopting or endorsing those results.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Historic samples were collected by TC development staff during 2008 and 2009 as outlined below; Samples were manually taken from the open mud and cuttings return stream over 1 m intervals. Representative sub-samples (approximately 0.5kg) were manually cut from the primary samples laid out on synthetic sheeting to drain, bagged in calico bags, labelled and stacked into plastic tubs for safe transport and storage. Duplicate samples were taken over target zones for assay submission. The top 30m of the hole was not generally sampled. Estimated U308 determinations from calibrated downhole gamma logging was used to assess mineralisation grade and respective sample intervals. For error control retention samples were crated and stored at Moomba in sealed sea-containers Samples for assay were dispatched to Genalysis for sample preparation and analysis using a multi-acid digest multi –element ICP OES or ICP MS analysis.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Historic drilling for results referenced are primarily rotary mud holes and two holes with short HQ diamond tails. (BLD084 and BLD085) The drilling was undertaken by John Nitschke Drilling using a Edson 3000W multi-purpose drill rig. – (Modified to JND specifications) with supporting water trucks and equipment.

Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond coring has provided good and uncontaminated samples of mineralised zones for detailed geological and mineralogical analysis. Recovery from rotary mud sampling is reported as poor due to the nature of unconsolidated sedimentary drilling.
	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All Core and rotary drilling was logged by TC development staff onsite during the initial drill programs during 2008 and 2009 primarily logging clay and sand horizons of the Namba and Eyre formations. Logging is quantitative in nature through whole metre rotary samples and more finite with core for which some photographs are known within historic reports.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Manually split samples were taken from rotary mud drilling while core samples were half split. Pressed powder XRF was used by TC development through Genalysis (now Intertek) and is seen as a useful technique for the rapid analysis of trace to minor quantities of single elements using quick matrix correction that ensures high daily throughput and fast turnaround. Preparation: the sample is pulverised, mixed with a binder and pressed into a briquette which removes the need for digestion and facilitates the analysis of elements present in refractory minerals. Control of grinding parameters reduces errors due to particle size and mineralogical effects.

Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Assays were selected based on estimated U3O8 determinations from calibrated downhole gamma logging conducted by Borehole Wireline Pty Ltd.
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the 	 Logging was done immediately on completion of each hole using company owned and operated Geo-vista logging tools and equipment.
	analysis including instrument make and model, reading times calibrations factors applied and their derivation, etc.	 Pressed-Powder XRF analysis is deemed an appropriate analysis method for low level sedimentary hosted uranium.
	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	No QAQC is known to be recorded.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	• N/A
	• The use of twinned holes.	
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	
	Discuss any adjustment to assay data.	
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Drill hole collars conducted by TC development are located by GPS with a typical accuracy of +/-5m.
	Specification of the grid system used.	
	Quality and adequacy of topographic control.	
Data spacing and distribution	Data spacing for reporting of Exploration Results.	• N/A
	Whether the data spacing and distribution is sufficient to	
	establish the degree of geological and grade continuity	
	appropriate for the Mineral Resource and Ore Reserve	
	estimation procedure(s) and classifications applied.	
	Whether sample compositing has been applied.	

	Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	•	TC development samples are of an exploration nature and follow up gamma anomalies in and around historic Oil and Gas wells.
	Sample security	•	The measures taken to ensure sample security.	•	Unknown
1	Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	•	None

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 One exploration license EL6367 "Big Lake" granted for 2yrs, expiring 21/07/2021 and covers an area of 818km², in northeast SA, near the SA, NSW QLD border. Partly covered by the Strzelecki reserve on the western side in which oil and gas exploration is ongoing and mineral exploration permissible. Alligator Energy Ltd (AGE) has entered into a Farm-in Agreement with Big Lake Uranium Pty Ltd (BLU) as outlined within this presentation.

Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Significant historic Oil and Gas exploration has been conducted within the Cooper Basin and remains ongoing. Limited downhole gamma logging has been conducted in accordance with this exploration by companies including Santos.
		 Only one phase of historic uranium exploration is known, conducted by TC development between 2008-2013. Review of this work has been conducted by AGE and BLU referenced in this presentation with known results and sampling methods outlined here.
Geology	Deposit type, geological setting and style of mineralisation.	• Targeting tabular sandstone hosted REDOX and roll-front U bodies overlying dome structures and oil & gas reservoirs amenable to ISR.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Known drill holes across EL6367 conducted by TC development for the purpose of uranium exploration can be found below in Appendix 1

Appendix 1 – Drilling collars within EL6367

Hole ID	Easting	Northing	Elevation	Dip	Azimuth	Maxdepth Type	
3L081	432507	6879585	32.57	-90	() 122Rotary - Mud	
3L075	434233	6880492	35.26	-90	() 122Rotary - Mud	
3L074	434189	6880482	34.92	-90	() 116Rotary - Mud	
3L069	435409	6880750	32.34	-90	C) 101Rotary - Mud	
3L068	435442	6880622	34.78	-90	() 113Rotary - Mud	
3L067	435216	6880439	0	-90	() 275	
3LD085	432320	6879355	33.73	-90	() 117.7Diamond Bit - Cori	ing
3LD084	435327	6880568	31.49	-90	() 97.4Diamond Bit - Corii	ing
3L083	432904	6879824	37.38	-90	() 128Rotary - Mud	
3L082	432799	6879687	36.56	-90	(128Rotary - Mud	
3L048	435188	6880277	0	-90	() 138Rotary - Mud	
3L080	432322	6879358	33.59	-90	() 116Rotary - Mud	
3L079	432205	6878987	32.66	-90	() 125Rotary - Mud	
3L078	435347	6880983	31.57	-90	(0 110Rotary - Mud	
3L077	435256	6880552	31.56	-90	() 119Rotary - Mud	
3L076	435139	6880641	31.55	-90	() 119Rotary - Mud	
3L043	431560	6877983	33.21	-90	(252Rotary - Mud	
3L073	434099	6880886	38.49	-90	(0 110Rotary - Mud	
3L072	434077	6880869	38.87	-90	(0 107Rotary - Mud	
3L071	435218	6881024	31.3	-90	(0 101Rotary - Mud	
3L070	435376	6880836	31.84	-90	(0 101Rotary - Mud	
3L039	434540	6880262	36.34	-90	() 150Rotary - Mud	
0034	400796	6858584	24.68	-90	(120Rotary - Mud	
0033	400974	6859193	24.61	-90	(120Rotary - Mud	
3L035	432848	6879267	40.19	-90	() 180Rotary - Mud	
3L034	432866	6879533	39.83	-90	() 180Rotary - Mud	
3L047	434952	6880276	32.8	-90	() 132Rotary - Mud	
3L045	431255	6878039	33.42	-90	() 252Rotary - Mud	
3L044	431901	6878298	32.7	-90	() 252Rotary - Mud	
0035	400440	6858764	34.36	-90	() 120Rotary - Mud	
3L042	434410	6880638	37.61	-90	() 222Rotary - Mud	
3L041	434558	6880672	37.45	-90	() 150Rotary - Mud	
3L040	434490	6880406	37.16	-90	() 150Rotary - Mud	
3L038	434413	6880217	35.91	-90	() 150Rotary - Mud	
3L037	432681	6879299	37.54	-90	() 180Rotary - Mud	
3L036	438579	6879331	36.33	-90	() 222Rotary - Mud	
3L033	431889	6878719	31.55	-90	() 222Rotary - Mud	
3L032	432094	6878897	31.5	-90	() 150Rotary - Mud	
3L001	434930	6880719	31	-90	() 180Rotary - Mud	
040	400708	6853419	23.81	-90	() 84Rotary - Mud	
8000	401128	6853440	28.67	-90	() 72Rotary - Mud	
0007	401000	6853572	25	-90	() 72Rotary - Mud	
0004	400721	6858766	26.29	-90	() 120Rotary - Mud	
0003	400827	6859022	24.41	-90	0) 120Rotary - Mud	

Appendix 1 – Drilling collars within EL6367 Cont.

Hole ID	Easting	Northing	Elevation	Dip	Azimuth	Maxdepth Type
D002	399434	6862689	26.99	-90	C) 192Rotary - Mud
D001	399298	6862510	26.53	-90	C) 168Rotary - Mud
BL064	435207	6880388	32.48	-90	C) 126Rotary - Mud
BL063	435077	6880742	32.64	-90	C) 114Rotary - Mud
D016	401033	6858917	24.29	-90	() 120Rotary - Mud
D015	400984	6859010	24.26	-90	C) 120Rotary - Mud
D012	400848	6858767	24.65	-90	() 202Rotary - Mud
D011	400886	6858934	24.59	-90	C) 136Rotary - Mud
D010	400893	6853427	24.69	-90	C) 72Rotary - Mud
D009	401031	6853306	26.77	-90	() 72Rotary - Mud
D006	400877	6858845	24.29	-90	C) 120Rotary - Mud
D005	400583	6858865	28.35	-90	() 120Rotary - Mud
BL007	434135	6880703	38.1	-90	() 132Rotary - Mud
BL006	435145	6880886	31.2	-90	() 150Rotary - Mud
BL003	435108	6880476	30.9	-90	() 222Rotary - Mud
BL002	434922	6880475	30.9	-90	() 150Rotary - Mud
D028	394161	6867341	29.5	-90	() 150Rotary - Mud
D024	409749	6862007	30.17	-90	() 60Rotary - Mud
D023	409544	6861950	28.55	-90	C) 198Rotary - Mud
D020	410610	6861604	30.9	-90	C) 96Rotary - Mud
D019	410487	6861670	36.17	-90	C) 78Rotary - Mud
D018	410502	6861425	31.2	-90	C) 78Rotary - Mud
D017	400680	6859010	26.8	-90	C) 120Rotary - Mud
D014	401022	6858825	24.47	-90	C) 120Rotary - Mud
D013	400995	6858764	24.51	-90	C) 120Rotary - Mud
BL015	432882	6880131	36.6	-90	C) 144Rotary - Mud
BL014	432883	6879910	37.4	-90	C) 132Rotary - Mud
BL011	434157	6880327	36.1	-90	C) 150Rotary - Mud
BL010	433971	6880292	33.7	-90	C) 144Rotary - Mud
BL009	433901	6880447	34.4	-90	C) 150Rotary - Mud
BL008	433998	6880725	37.6	-90	C) 228Rotary - Mud
BL005	435322	6880898	33.5	-90	C) 150Rotary - Mud
BL004	435226	6880499	31.2	-90	C) 150Rotary - Mud
D032	401200	6859018	23.67	-90	C) 120Rotary - Mud
D031	401220	6858833	23.8	-90	() 120Rotary - Mud

Appendix 1 – Drilling collars within EL6367 Cont.

Hole ID	Easting	Northing	Elevation	Dip	Azimuth	Maxdep	th	Туре
D030	394140	6867549	38.38	-90		0	150	Rotary - Mud
D029	394013	6867437	28.74	-90		0	150	Rotary - Mud
D027	394237	6867459	28.55	-90		0	204	Rotary - Mud
D026	392262	6866845	25.1	-90		0	126	SRotary - Mud
D025	392370	6866951	25.75	-90		0	150	Rotary - Mud
BL027	431298	6879103	31.3	-90		0	150	Rotary - Mud
D022	409600	6861860	27.9	-90		0	60	Rotary - Mud
D021	409630	6862084	27.56	-90		0	126	SRotary - Mud
BL023	432258	6879507	32.2	-90		0	150	Rotary - Mud
BL022	432483	6879497	33.8	-90		0	222	Rotary - Mud
BL019	432093	6879074	31.8	-90		0	150	Rotary - Mud
BL018	432637	6880141	33.6	-90		0	150	Rotary - Mud
BL017	432675	6880285	32.8	-90		0	150	Rotary - Mud
BL016	432862	6880297	35.1	-90		0	222	Rotary - Mud
BL013	432492	6879786	33.4	-90		0	150	Rotary - Mud
BL012	434146	6880526	37.2	-90		0	150	Rotary - Mud
BL031	432292	6878699	32.8	-90		0	150	Rotary - Mud
BL030	432077	6878476	31.7	-90		0	150	Rotary - Mud
BL029	431692	6878861	32.1	-90		0	150	Rotary - Mud
BL028	431103	6878947	32.3	-90		0	222	Rotary - Mud
BL026	431317	6879302	31.5	-90		0	150	Rotary - Mud
BL025	431710	6879094	32.1	-90		0	150	Rotary - Mud
BL024	432063	6879296	31.9	-90		0	150	Rotary - Mud
BL021	432494	6879320	34.9	-90		0	150	Rotary - Mud
BL020	432289	6879095	32.8	-90		0	150	Rotary - Mud
TCBL_006	434107	6880825	0	-90		0	96	Aircore (see also RCA)
TCBL_005	434117	6880810	0	-90		0	20	Aircore (see also RCA)
TCBL_004	434004	6880800	0	-90		0	93	Aircore (see also RCA)
TCBL_003	435318	6880560	0	-90		0	93	Aircore (see also RCA)
TCBL_002	435297	6880464	0	-90		0	78	BAircore (see also RCA)
TCBL_001	434839	6880817	0	-90		0	60	Aircore (see also RCA)
TCBL_008	434257	6880268	0	-90		0	79	Aircore (see also RCA)
BL057	433910	6880669	38.03	-90		0	126	Rotary - Mud
BL056	435156	6880799	33.03	-90		0	114	Rotary - Mud
BL053	434085	6880847	38.42	-90		0	114	Rotary - Mud

