

Operations

- The **12 Month Moving Average Long-Term Injury Frequency Rate** continued to improve **dropping 15% to 3.1** from 3.6 at the end of the prior Quarter.
- Quarterly production of 81,567oz.
- Quarterly Sales of 60.9koz at an average price of A\$2,256/oz for total revenue of A\$137.5m with 27.5koz of bullion on hand (\$73.0m at \$2,654/oz).
- Cash flow from operations of A\$85m for the September Quarter.
- Cash and bullion increased by A\$16m to A\$225m at the end of the Quarter, an 8% increase.
- **Cash cost** before royalties for the Quarter of A\$1,072/oz.
- Quarterly AISC of A\$1,400/oz.
- Guidance for FY21 maintained with production of 355,000 380,000oz for an AISC of A\$1,230 1,300/oz as above LOM average stripping ratios continue.

Growth Projects and Discovery

- Acquisition of the **Ben Hur Mineral Resource 5.8Mt @ 1.6 g/t Au for 290koz** which has significant potential to add further life to the Duketon Operations. Confirmation and extensional drilling is already underway with a view to establishing updated Reserves in the new year.
- The assessment phase of the **McPhillamys Open Pit Development Application** reached another milestone with the Amendment Report and Responses to Submissions submitted to the Department of Planning, Industry and Environment (DPIE) in the first week of September 2020.
- Drilling was completed at the **Garden Well Underground Project** and confirms a wide, robust high-grade mineralised zone beneath the pit. Work on the PFS is expected to be completed in December Quarter.
- Regional exploration is progressing well with some specific targets at **Betelgeuse** and **Matts Bore** on western side of the Duketon Greenstone Belt being in the early stage of testing.

Regis Resources Managing Director, Jim Beyer, said: "During the September Quarter Regis has made a number of very positive steps progressing our Value Growth strategy. At the same time the quarter has been more challenging operationally with some short term impacts affecting our overall production for the quarter. Despite this, the business continued to improve safety and build its cash reserves.

Rosemont underground continued to increase its production levels and while still building in capacity and confidence, we expect to see its contribution to overall gold production continue to lift. With development to the higher-grade Main zone progressing we see this as a key part of delivering a production rate lift in the latter part of the year.

The Garden Well Underground Project continues to shape up as another potentially exciting addition to our internal production growth as we are nearing completion of the PFS.

The acquisition of Ben Hur during the quarter and the associated ground is a welcome addition to our portfolio of value growth opportunities and we have already commenced work to confirm and grow the reserve potential.

Added to this, the team continued to progress the McPhillamys Gold Project in NSW with another key step being passed with the Responses to Submissions associated with the lodged Development Application completed and submitted during the September Quarter. The NSW DPIE is now progressing its project assessment and has already undertaken a number of community meetings as part of this process.

While very early days, we are very pleased to see our increased exploration efforts starting to deliver on our Value Growth strategy, with potential life extending resource targets being identified and tested.

Overall, the September quarter saw good progress on our Value Growth projects and while the slower start to our production year does create early pressure, we continue to consider our FY21 production guidance of between 355,000 to 380,000oz as appropriate albeit as previously noted with a stronger production weighting to the second half of the financial year.

Regis' Crisis Management Team has continued to manage our ongoing response to COVID-19 which has been coordinated in cooperation with our contractors.

The Company is maintaining a range of measures across its business consistent with advice from State and Federal health authorities. These measures help ensure the health and welfare of our employees and their respective communities and include the following:

- Implementation of systems and procedures for health monitoring which includes health checks prior to check-in for travel to site;
- Social distancing protocols across the business;
- Ongoing audit and verification of site management for dealing with potential COVID-19 cases;
- Mental health awareness and support for both employees and their families;
- Recommended use of face masks while travelling on planes and in light vehicles;
- Continuing with protocols that limit the potential impacts in the local communities in which we operate;
- Maintenance of adequate inventories with major contractors and suppliers; and
- Establishment of a Trigger Action and Response Plan in the event of an outbreak of COVID-19 and subsequent community transmission.

To date there have been no confirmed cases of COVID-19 across the business.

Regis continues to assist communities in Western Australia to deal with the ongoing impacts of COVID-19 and has maintained its participation in the FIFO DETECT research program.

Despite the eased restrictions in Western Australia, the situation interstate remains dynamic and Regis is maintaining a watching brief. Regis continues to have regular and frequent communications with mining industry representative bodies and government about actual and potential changes to requirements and is responding accordingly.

Management continues to undertake operational scenario planning to assess possible outcomes which in turn assists in developing tactics to mitigate possible detrimental impacts on the Company.

OPERATIONS

Health, Safety and Environment

The 12-month moving average lost time injury frequency rate to the end of the Quarter was 3.1, down ~15% from 3.6 at the end of the prior Quarter. Regis is pleased to see a continuing reducing trend of injuries occurring across the Company as initiatives continue to prevent harm to our people.

There have been no environmental non compliances or significant incidents over the Quarter.

Duketon Northern Operations (DNO)

Moolart Well

Production from Moolart Well was 20,307 ounces during the September Quarter which was consistent with the June Quarter production of 20,743 ounces. Ore tonnes milled were 790kt down from 830kt in the June Quarter. Overall ounce production reduced due to a mill outage for a liner change and mechanical issues impacting oxygen production resulted in lower recovery which have now been addressed.

Duketon Southern Operations (DSO)

Rosemont

Production from Rosemont was in line with the prior quarter at 23,296oz as contribution from the underground continues to increase as planned. Some grade variability in this early stage is being experienced as the less well-defined areas of the South and Central zones are opened up. However, our understanding of the orebodies and detailed geological modelling capability is improving with experience. The priority to develop into the higher grade Main zone reserves and commence production remains and is progressing in accordance with plans. Overall development for the quarter was ~2.1km with 144kt of ore mined from development and stopes.

Garden Well

Production from Garden Well at 37,963oz was lower this quarter. Three key factors impacted Garden Well production performance; reduced ore tonnes milled due to mill shut for reline; a series of slips in Erlistoun that delayed scheduled access to high grade ore and the consequential rescheduling of lower grade Tooheys Well ore into the mill which resulted in slightly lower grades and recoveries. Of a positive note is the commissioning of oxygen supply facility to boost recoveries in the leach circuit.

		FY20	FY20	FY20	FY20	FY 21 September Qua		Quarter
		Q1	Q2	Q3	Q4	FIZIC	september	Quarter
	Unit	Total	Total	Total	Total	DNO	DSO	TOTAL
Ore mined	Mbcm	1.07	0.99	1.07	1.03	0.35	0.70	1.05
Waste mined	Mbcm	7.01	6.36	6.28	6.71	2.85	4.84	7.69
Stripping ratio	Waste: Ore	6.6	6.4	5.9	6.5	8.2	6.9	7.4
Ore mined	Mt	2.56	2.38	2.53	2.51	0.63	1.95	2.58
Ore milled	Mt	2.31	2.31	2.22	2.53	0.79	1.62	2.41
Head grade	g/t	1.26	1.30	1.29	1.16	0.89	1.28	1.15
Recovery	%	93.6%	94.3%	93.6%	92.6%	90.0%	91.8%	91.4%
Gold production	oz	87,633	90,849	86,300	87,260	20,307	61,260	81,567

Table 1: Historical operating physicals with September 2021 Quarter results

Operating Costs

Duketon cash costs before royalties for the Quarter were A\$1,072/oz (Jun 20: A\$1,000/oz). This reflects an increase in costs due largely to higher drill and blast costs across DSO as operations have adjusted activity in order to mitigate the impacts of the wall slip at Erlistoun and at Moolart Well as a result of greater quantities of caprock and laterite than planned for the quarter was encountered.

Moolart Well AISC decreased from A\$1,519/oz in the June Quarter to A\$1,392/oz in the September Quarter a reflection of a scheduled increase in Growth Capital work for the reporting period.

Despite the lower Garden Well ounce production its AISC decreased from \$1,387/oz in the June Quarter to \$1,269 in the September Quarter driven by a significantly lower strip ratio through that period.

Rosemont's AISC increased from \$1,165/oz in the June Quarter to \$1,559/oz in the September Quarter driven by an increased strip ratio and higher unit costs for the underground as it continues to ramp-up towards Life of Mine average grades.

Growth Capital for the September Quarter was \$22.4 million which primarily related to mine development at Moolart Well, Baneygo and the Rosemont Underground.

September Quarter operating results are summarised in Table 2 below:

Details	Unit	Moolart Well	Garden Well	Rosemont	Total
Ore Mined	Mbcm	0.35	0.47	0.23	1.05
Waste Mined	Mbcm	2.85	2.52	2.32	7.69
Stripping Ratio	Waste:Ore	8.2	5.3	10.2	7.4
Ore Mined	Mt	0.63	1.25	0.69	2.58
Ore Milled	Mt	0.79	1.13	0.48	2.41
Head Grade	g/t	0.89	1.15	1.58	1.15
Recovery	%	90.0%	90.4	94.2	91.4
Gold Production	OZ	20,307	37,963	23,296	81,567
Mining	\$M	11.7	26.0	24.3	62.0
Milling	\$M	8.2	13.1	8.1	29.3
Administration	\$M	1.9	2.4	1.6	5.9
Ore Inventory Adjustments	\$M	1.0	(5.7)	(5.2)	(9.8)
Total Cash Costs	\$M	22.9	35.7	28.8	87.4
Royalties	\$M	2.0	4.0	2.3	8.3
Capital Works	\$M	3.2	8.3	5.1	16.5
Finance Lease Repayments	\$M	0.2	0.2	0.1	0.5
Corporate	\$M	-	-	-	1.4
All in Sustaining Costs	\$M	28.3	48.2	36.3	114.2
All in Sustaining Costs	\$/oz	1,392	1,269	1,559	1,400

1 AISC calculated on a per ounce of production basis 2 Totals may not add due to rounding

Table 2: Physicals and costs data by site for the September Quarter

CORPORATE

Financial Results and Dividend

In August 2020, Regis announced a record net profit after tax of \$199.5 million for FY2020. Regis also declared a fully franked final dividend of 8 cents per share (\$40.7 million) in August 2020 taking total FY2020 dividends to 16 cents per share (\$81.3 million) which represents a payout ratio of \sim 41% of net profit after tax.

Cash Position and Gold Sales

The Duketon Gold Operations generated operating cash flow of A\$84.7 million in the September Quarter down from the A\$108.9 million recorded in the June Quarter. During the September Quarter, Regis sold 60,938 ounces of gold at an average price of A\$2,256 per ounce with a total of 27,506 ounces of gold on hand at the end of the Quarter which was subsequently sold in October 2020.

At the end of the September Quarter Regis had A\$224.9 million in cash and bullion representing an increase of 8% from A\$209.3 million as at the end of June 2020.

This result, illustrated in Figure 1, was achieved after expenditure on the following significant items:

- A\$30.3 million on capitalised mining costs;
- A\$14.2 million on income tax payments;
- A\$15.1 million on exploration and feasibility projects;
- A\$6.5 million on other capital expenditure and
- A\$3.1 million on other costs including corporate.

Figure 1: Waterfall graph illustrating key changes in cash and gold on hand in the September Quarter

Spot Deferred Hedging

As previously reported the Company is working to reduce its long standing hedge position and has been delivering into its lowest priced hedges over the last 12 months. In the September Quarter the Company delivered into 20,000 ounces of hedging.

At the end of the September Quarter the hedge position was 379,494 ounces at an average delivery price of A\$1,615 per ounce.

The rate of delivering into the lowest priced contracts will continue to be assessed for adjustment. Any changes to this rate will consider several factors including prevailing gold price outlooks, internal cash demands, capital expenditure requirements, dividends and any changes to Company life of mine production plans.

Garden Well Underground PFS

Diamond drilling at the southern end of the Garden Well open pit mine concluded with resource estimation and mine design work well advanced. A maiden Mineral Resource and Ore Reserve estimate for Garden Well South will be concluded with the PFS in the December Quarter.

Figure 2: Garden Well long section looking west with high grade intercepts in the north and area of Underground Scoping Study at Garden Well South.

Drilling has re-commenced beneath the northern end of the pit to test the continuity of significant gold mineralisation including 9m @ 8.7g/t Au and 9m @ 5.3g/t Au identified in earlier programmes. Three diamond holes were drilled during the quarter for 1,366m. Assays are pending.

McPhillamys Gold Project

The McPhillamys Gold Project in New South Wales (Figure 3) is one of Australia's largest undeveloped open pit gold projects with an Ore Reserve of 61Mt @ 1.0 g/t Au for 2.02 Moz. It is the highest priority growth project in the Company and Regis is very pleased with progress.

The assessment phase of the McPhillamys Development Application reached another milestone with the Amendment Report and Responses to Submissions (RTS) submitted to the Department of Planning, Industry and Environment (DPIE) for assessment in the first week of September 2020.

This completes the third of five major phases in the assessment and approval process. The fourth phase sees DPIE assess the Development Application and make its recommendation to the Independent Planning Commission (IPC).

The IPC will then be tasked with conducting a public hearing and making a determination within a potential timeframe of 12 weeks. As a result of COVID-19 restrictions the IPC public hearing can, if required be held using video communications.

Regis recognises and respects that the final decision by the government is still to be made and while the process is still underway a decision on the Development Application could be made in the first half of 2021. Should this occur and based on current plans, the Company foresees potential for commissioning to occur in the second half of 2022. As noted, this is highly dependent on the timing of a successful application approval.

Figure 3: A computer generated McPhillamys Gold Project site layout looking north after completion of mining and rehabilitation

During the quarter a Project Manager was appointed, and a Project execution team is in the very early stages of being assembled. Regis is continuing to progress the Project into the detailed design phase in all areas including mining, processing, water and power supply. Tender documents in each of these areas are being developed to ensure that if a favourable decision is received from the IPC in the first half of 2021, the Project will be as close to 'shovel ready' as practical.

As part of this process, Regis is assessing the timing for ordering early long lead items such as the ball mill, crusher and large electrical transformers. A decision to commit early will be assessed on a risk/reward basis in the context of satisfactory progress through the approvals process.

Ben Hur Project

In September Regis acquired the Ben Hur Gold Project and associated tenements package covering 50km². Ben Hur has a 2012 JORC Compliant Resource of 5.8Mt @ 1.6 g/t Au for 290koz. This deposit is approximately 30km south of Garden Well and is an ideal ore source expected to provide valuable oxide open pit material with potential future underground resource potential.

The Ben Hur gold mineralisation is associated with a sheared dolerite unit, consistent with the Company's Rosemont and Baneygo deposits further north on the same structure. Significant high grade intercepts occur over a strike length of 2km and mineralisation is open along strike and down dip (Figure 4).

Historic significant high-grade intersections include:

- 12m @ 5.4 g/t Au from 106m
- 2m @ 9.1 g/t Au from 102m
- 6m @ 9.5 g/t Au from 144m
- 6m @ 11.3 g/t Au from 72m
- 2m @ 12.8 g/t Au from 26m
- 15m @ 10.0 g/t Au from 24m
- 5m @ 6.9 g/t Au from 25m

Regis is undertaking a significant drilling campaign during the December quarter to infill the existing resource to provide sufficient data for a maiden reserve and extend the drilling at depth and along strike to increase the resource base.

,883,500N 438,000E 6.884.000N 6.884,500N 6.885.500N 437.500E 6.885.000N South North 2km **Ben Hur Project** 500RI 12.6 20m @ 7.7 14m @ 5.3 7m @ 7.9 18m @ 1.4 11m @ 7.0 2 Q 500 11m @ metres 20m @ 5.0 4m @ 9.5 15m @ 5.3 LEGEND >50 gram-metres 41m @ 3.1 41m @ 1.7 12m @ 2.1 20m @ 5.0 20-50 gram-metres Mineralised g/t Au interval 10-20 gram-metres <10 gram-metres REGIS 437,500E 6,885,000N 883,500N 438,000E 6,884,000N 6.884.500N 6.885.500N

Figure 4: Ben Hur Project long-section highlighting the better intercepts from within the resource

ADVANCING DUKETON EXPLORATION

Regis continued intensive regional exploration drilling activities across the Duketon Greenstone Belt (DGB). During the September Quarter 10,974 surface samples were collected and 53,745 metres of drilling was completed on priority target areas. All drill assay results received during the Quarter and considered material are presented in Appendix 1.

The continued focus in new discovery exploration is reflected in Table 3 with an increase in surface lag sampling to generate new gold targets and a shift to deeper RC drilling to follow up shallow AC drill anomalies. Regional AC and RC drilling focused on the north western prospects at Betelgeuse and Matts Bore targeting potential new open-pit oxide resources. These locations are shown in Figure 5 along with their proximity to existing operations.

Deep exploration drilling for depth extensions to existing gold resources continued at Rosemont, Baneygo, Garden Well and Gloster.

Exploration surface and drill samples are analysed for gold, pathfinder, and lithochemical elements. Interpretation of assay results in shallow AC drilling and surface samples continues to provide very encouraging results and are being used to generate vectors towards large gold deposits under cover.

	Drill Metres	Sep-19	Dec-19	Mar-20	Jun-20	Sep-20
	AC	701	505	3,237	1,887	0
Resource	RC	10,538	7,165	11,545	10,859	17,929
Definition	DD/RCD	6,475	6,772	11,537	7,581	6,981
	Total	17,714	14,442	26,319	20,327	24,910
	AC	27,713	18,077	34,527	39,813	13,887
Fundanation	RC	2,708	6,786	354	2,541	6,258
Exploration	DD/RCD	1,741	1,912	564	6,810	8,690
	Total	32,162	26,775	35,445	49,164	28,835
Lag Samples		4,092	3,369	10,458	1,395	10,974

Table 3: Historic exploration activity in both Resource Definition and Exploration activity

Figure 5: Summary of exploration activities across the Duketon Greenstone Belt. Prospects in red drilled during the September Quarter.

Betelgeuse and Matt's Bore: Very early days

AC and RC drilling continues at Betelgeuse and further north at Matt's Bore testing this new mineralised trend for economic gold mineralisation on a broad line spacing. Betelgeuse is the first prospect tested along the contact of the late stage sedimentary basin and mafic-ultramafic units at the edge of the Duketon Greenstone Belt (Figure 6). Assays are pending for key drill holes. Drilling will continue along the entire 30km strike length of basin sediments testing for economic gold mineralisation.

A single diamond drill hole was completed to 523m to confirm the lithology, determine the dip of stratigraphy and orientation of potentially gold bearing structures at Betelgeuse. Up to 1% sulphides are disseminated throughout the core and several intervals of +5% quartz-carbonate+/-sulphide veins were intersected. Scheelite, a mineral commonly associated with gold deposits, was also identified in these veins under ultraviolet light. The diamond hole returned low level gold assays associated with narrow quartz veins. The results confirm the presence of a gold mineralised system.

Testing along this trend has confirmed a 10km wide, 30km long late stage basin consisting of polymictic sediments that have alteration and veining representative of a hydrothermal gold system. Systematic drilling across the entire 30km strike length of prospective geology will continue in search for a large oxide gold deposit.

Figure 6. Extensive drilling for new oxide resources at Betelgeuse and Matt's Bore.

Gloster: Pursuing New Underground Resources

The Gloster gold deposit is hosted in a package of intermediate volcanics and intrusives. The gold mineralised system is structurally complex, consisting of steeply dipping shears and multiple flat lying mineralised vein sets beneath the existing pit. Mineralised zones are characterised by several metres of quartz-carbonate-sulphide veins with visible gold.

Drilling continued at Gloster to 50m x 50m spacing to increase confidence on the mineralised structures to determine the potential for an underground resource and test the remaining strike length for mineralised extensions to existing lodes. Tightly spaced (20m on section) diamond drilling was completed beneath the pit to confirm mineralisation continuity and the geological model. Assays are pending.

Significant results for RC drilling beneath the open pit received during the September Quarter show multiple mineralised intercepts per hole and confirm the mineralised system extends in fresh rock, 500m below the pit. Significant diamond drill results received during the September Quarter are listed below and shown in Figure 7:

- 4 metres @ 4.0 g/t gold from 61 m RRLGLRC463
- 1 metres @ 32.6 g/t gold from 65 m
- 2 metres @ 13.1 g/t gold from 88 m
- 5 metres @ 5.5 g/t gold from 254 m
- 1 metres @ 23.4 g/t gold from 213 m
- 1 metres @ 45.7 g/t gold from 364 m
- 1 metres @ 19.7 g/t gold from 289 m
- 5 metres @ 3.5 g/t gold from 260 m

RRLGLRC463 RRLGLRC468 RRLGLRC471 RRLGLRC478 RRLGLRC481 RRLGLRC484 RRLGLRC485 RRLGLRC487

Drill hole and sample details for all holes are included in Appendix 1 to this report. Gloster intercepts above calculated using a 2.0 g/t gold lower cut, no upper cut, maximum 2m internal dilution. All diamond drill assays determined on half core (NQ2) samples by fire assay.

Figure 7. Gloster cross section with anomalous high grade intercepts with potential for UG development

Rosemont: Testing Depth Extent

Deep diamond drilling continued at Rosemont to explore the high grade shoots which extend at depth beneath existing underground infrastructure. During the Quarter 8,557m of RC/DD drilling was completed to test down plunge extensions of high-grade gold mineralisation outside the current underground resource domains.

Deep drilling has confirmed the quartz dolerite persists to a depth of 1km below surface. Drill results below Main Pit did not intersect anomalous gold, however the drill spacing was over 320m along strike and therefore potential remains for high grade shoots to be identified in the quartz dolerite at depth. Drill results below and down plunge of South Pit are very encouraging with anomalous gold intersections representing new high grade shoots suitable for underground development. These high grade intersections will be further drill tested in the December Quarter to determine the size of each high grade shoot.

Figure 8. Rosemont Long Section showing quartz dolerite intercepts 1,000m below surface and the indication of multiple new high grade shoots below Rosemont South.

The geology at Rosemont has gold hosted in a steeply dipping north trending guartz-dolerite unit intruding into a mafic-ultramafic sequence. Figure 8 illustrates the initial drill hole intercepts with economic gold grades up to 400m down plunge of the southern underground workings which include:

- 5.9 metres @ 6.9 g/t Au from 517.7 m
- 3.6 metres @ 4.5 g/t Au from 544.8 m

RRLRMDD049

RRLRMDD049

Baneygo: Drilling for Underground Resources

Drilling continued at Baneygo (similar in geology to the Rosemont Gold deposit) targeting down plunge and strike extensions to gold mineralisation beneath oxide Resources. Infill drilling continued to reduce drill spacing beneath central zone to 40m x 40m with the aim of defining a potential underground Resource. A total of 6 DD holes and 8 RC holes were drilled for 5,787m beneath the Central Pit. Results to date continue to show encouraging assay results (Figure 9).

RC and DD to date has provided sufficient data to generate a preliminary lithological and mineralisation model. Mineralised shoots 300m beneath the pit consist of multiple en-echelon vein sets that have a limited height and strike length, and would need an intensive infill drilling campaign to determine the economics of this mineralisation. There is potential for developing the mineralisation that extends 100m below the northern end of the pit and this will be pursued from in pit prior to open cut mine completion.

Figure 9. High grade intercepts indicate potential for an UG resource at depth

RRLBYDD014

RRLBYDD016

RRLBYDD017

RRLBYDD019

RRLBYRC736

RRLBYRC744

RRLBYRC747

RRLBYRC748

RRLBYRC749

RRLBYRCD001

RRLBYRCD001

Significant RC drill results received during the September Quarter include:

- 0.8 metres @ 35.9 g/t Au from 455.4 m RRLBYDD013
- 2.7 metres @ 6.1 g/t Au from 442 m
- 1.4 metres @ 19.4 g/t Au from 411 m
- 0.3 metres @ 187 g/t Au from 340.7 m
- 0.6 metres @ 43.3 g/t Au from 399.7 m
- 2 metres @ 51.4 g/t Au from 196 m
- 1 metres @ 53.7 g/t Au from 422 m
- 1 metres @ 16.2 g/t Au from 413 m
- 4 metres @ 8.2 g/t Au from 120 m
- 3 metres @ 6.0 g/t Au from 423 m
- 4 metres @ 13.6 g/t Au from 424 m
- 4.9 metres @ 5.1 g/t Au from 430.7 m

Drill hole and sample details for all holes are included in Appendix 1 to this report. Baneygo intercepts above calculated using a 2.0 g/t gold lower cut, no upper cut, maximum 2m internal dilution.

COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results is based on and fairly represents information and supporting documentation that has been compiled by Ms Tara French who is a member of the Australian Institute of Geoscientists. Ms French has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which she is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms French is a full-time employee of Regis Resources Ltd and consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

The information in this report that relates to the Company's Mineral Resources and Ore Reserves is extracted from the ASX announcement released on 24 August 2020 entitled "Group Mineral Resources and Ore Reserves as at 31 March 2020 and Organic Growth Update". Competent Person's consent was obtained for the announcement.

The reports are available to view on the ASX website and on the Company's website at <u>www.regisresources.com.au</u>. The Company confirms it is not aware of any new information or data that materially affects the information included in the original market announcement, and, in the case of estimates of Mineral Resources and Ore Reserves, that all market assumptions and technical assumptions underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

The Competent Person's consents remain in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent.

FORWARD LOOKING STATEMENTS

This ASX announcement may contain forward looking statements that are subject to risk factors associated with gold exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, Reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

Forward-looking statements, including projections, forecasts and estimates, are provided as a general guide only and should not be relied on as an indication or guarantee of future performance and involve known and unknown risks, uncertainties and other factors, many of which are outside the control of Regis Resources Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward looking statements or other forecast.

CORPORATE DIRECTORY

Regis Resources Ltd (ACN 009 174 761) Registered Office Second Floor, 516 Hay Street Subiaco, WA Australia 6008 Tel +618 9442 2200

 Website
 www.regisresources.com

 Email
 enquiries@regisresources.com

Directors

Mr James Mactier (Non-Executive Chairman) Mr Jim Beyer (Managing Director) Mrs Fiona Morgan (Non-Executive Director) Mr Steve Scudamore (Non-Executive Director) Mrs Lynda Burnett (Non-Executive Director) Mr Russell Barwick (Non-Executive Director)

Company Secretary Mr Jon Latto

Share Registry

Computershare Ltd GPO Box D182 Perth WA 6840 Shareholder Enquiries: 1300 557 010 (local) +613 9415 4000 (international)

ASX Listed Securities (as at 30 September 2020)

Security	Code	No. Quoted
Ordinary Shares	RRL	510,178,033

APPENDIX 1 JORC Code, 2012 Edition – Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Gold Projects BaneygoThe Baneygo gold deposit was sampled using Reverse Circulation (RC) and Diamond drill holes on a nominal 80m or 40m north by 40m east grid spacings angled -57° to -63° to ~245° or -075°. PQ, HQ, and NQ2 Diamond drill (DD) core samples were collected to confirm vein orientations. The mineralised quartz dolerite strikes 344° and is subvertical, therefore drilling was directed from the east or west where access could be gained around infrastructure such as pits and waste dumps.Garden Well The Garden Well gold deposit was sampled using PQ, HQ, and NQ2 Diamond drill (DD) holes on a nominal 20m east by 40m or 80m north grid spacing angled -62° to -69° towards 264° to 279° azimuth designed to drill perpendicular to the strike of mineralisation.
		Gloster The Gloster gold deposit was sampled using RC drill holes and HQ and NQ2 Diamond drill (DD) drill holes. DD holes were drilled on a nominal 100m north east spacing along strike by 40m across strike angled at -50° to -90° towards 066° or ~245° azimuth designed to drill perpendicular to the strike of mineralisation Rosemont The Rosemont gold deposit was sampled using RC and PQ, HQ and NQ2 diamond drill (DD) holes. Drilling continued to test the depth extension of the mineralised quartz dolerite. Holes were drilled on a nominal 360m north spacing along strike and 160m down dip angled at -60° to -81° towards ~066° or ~240° azimuth designed to drill as close as possible to perpendicular to the strike of mineralisation, where access could be gained around infrastructure such as pits and waste dumps.
		Other Regional Prospects: The Regional Prospects were sampled using Air Core (AC) drill holes on various grid spacings angled -60° towards varying azimuths designed to drill as close as possible to perpendicular to the strike of mineralisation.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	All Gold Projects AC, RC, DD Regis drill hole collar locations were picked up by an independent registered consulting surveyor or site-based authorised surveyors using Trimble RTK GPS. Downhole surveying was measured by using either a Reflex EZ-Shot Downhole Survey Instrument or North Seeking Gyro based tool where magnetic host rock would affect azimuth readings. The surveys were completed every 30m down each drill hole.
		Diamond drill core is aligned and measured by tape, comparing back to down hole core blocks consistent with industry practice. Regis drill hole sampling had certified standards and blanks inserted at every 20 th and 25 th sample (DD only) or every 25 th sample (RC and AC) to assess the accuracy and methodology of the external laboratories. Field duplicates (RC and AC only) were inserted every 20 th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15 th sample to assess the precision of the laboratory as well

Criteria	JORC Code explanation	Commentary
		as the repeatability and variability of the gold mineralisation. Results of the QAQC sampling were considered acceptable.
		Regional Prospects AC Regis drill hole collar locations were picked up by handheld GPS. Hole azimuths were measured at the collar using a Suunto sighting compass.
5		Regis drill hole sampling had certified standards and blanks inserted every 50 th sample (RC and AC) to assess the accuracy and methodology of the external laboratories, and field duplicates were inserted every 50 th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15 th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Results of the QAQC sampling were considered acceptable.
2	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has	All Gold Projects RC Drilling For the Regis RC drilling 1m samples were obtained by cone splitter (2.5kg – 3.0kg) and were utilised for lithology logging and assaying. The drilling samples were dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge.
	been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more	All Gold Projects DD Diamond drilling completed to industry standard using varying sample lengths (0.19 to 1.25m through the gold mineralized zones) based on geological intervals, which are then dried, crushed and pulverised to get 85% passing 75 μ m and were all Fire Assayed using a 50g charge (Bureau Veritas). Outside mineralized areas 1m samples to 4m composite samples were collected.
	explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Regional Prospects AC For AC drilling 1m spear samples were composited to 4m intervals to obtain a 2.5kg – 3.0kg sample. The drilling samples were dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge (Bureau Veritas). Anomalous results from 4m AC drill composites were spear sampled at 1m intervals. These drill samples were dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core	All Gold Projects/Prospects RC and AC drilling RC drilling completed with a 139mm or 143mm diameter face sampling hammer. AC drilling was completed with an 89mm diameter AC blade bit.
	diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	All Gold Projects DD Surface diamond drilling carried out by using PQ, or HQ3 (triple tube) and HQ2, NQ, or NQ2 (standard tube) techniques. Core is routinely orientated by REFLEX ACT III tool.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	All Gold Projects/Prospects RC and AC drilling RC and AC recovery was visually assessed, with recovery being excellent except in some wet intervals which are recorded on logs. Wet RC samples within the mineralised zones (>1 g/t) were recorded as follows: 4% of samples at the Baneygo Gold Project; 1.1% of samples at the Gloster Gold Project; 0.2% of samples at the Rosemont Gold Project; and 3.4% of samples at the Betelgeuse

Criteria	a JORC Code explanation	Commentary
		Gold Prospect. Wet AC samples within the mineralised zones (>1 g/t) were recorded as follows: 6.7% of samples at the Betelgeuse Gold Prospect.
		All Gold Projects DD DD core was measured and compared to the drilled intervals, and recorded as a percentage recovery. Average recovery of 99% was recorded through the mineralised zones (>1 g/t) at Baneygo, Garden Well, Gloster and Rosemont; average recovery of 95% was recorded through the mineralised zones (>1 g/t) at Betelgeuse.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	All Gold Projects/Prospects RC and AC drilling AC and RC samples were visually checked for recovery, moisture and contamination. The drilling contractor utilised a cone splitter to provide uniform sample size, and these were cleaned routinely (cleaned at the end of each rod and more frequently in wet conditions). A booster was also used in conjunction with the RC drill rig to ensure dry samples are achieved.
		All Gold Projects DD The target mineralised zones are located in competent fresh rock, where the DD method provided high recovery.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential	All Gold Projects/Prospects RC and AC drilling Sample recoveries for RC and AC drilling are visually estimated to be medium to high. No significant bias is expected in the mineralised zone, although no recovery and grade correlation study was completed.
	loss/gain of fine/coarse material.	All Gold Projects DD The DD drill sample recovery in the transitional and fresh rock zones is very high, and no significant bias is expected. Recoveries in the oxidised rock were lower.
	g Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral	All Gold Projects/Prospects RC and AC drilling Lithology, alteration, veining, mineralisation and, on some holes, magnetic susceptibility were logged from the RC and AC chips and saved in the database. Chips from every interval are also placed in chip trays and stored in a designated building at site for future reference.
65	Resource estimation, mining	All Gold Projects DD
	studies and metallurgical studies.	Lithology, alteration, veining, mineralisation and geotechnical information were logged from the DD core and saved in the database. Half cores from every interval are also retained in the core trays and stored in a designated building at
		site for future reference.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	All logging is qualitative except for magnetic susceptibility and geotechnical measurements. Wet and dry photographs were completed on the core.
	The total length and percentage of the relevant intersections logged.	All drill holes are logged in full.
Sub- sampli technic and so prepar	ques all core taken. ample	Gold Projects DD Core was half cut with an almonte diamond core saw with the same half always sampled and the surplus retained in the core trays. Gloster mineralised zone was visually assessed and whole core was sampled, the remainder of the drill core was half cut with an almonte diamond core saw with the same half always sampled and the surplus retained in the core trays

Criteria	JORC Code explanation	Commentary
	lf non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	All Gold Projects/Prospects RC and AC drilling RC and AC drilling utilised a cyclone and cone splitter to consistently produce 0.5kg to 3.0kg dry samples.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples are dried, crushed to 10mm, and then pulverised to 85% passing 75μm. This is considered acceptable.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All Gold Projects AC and RC Field duplicates (AC, RC) were taken at the rig every 20th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed roughly every 15th sample to assess the repeatability and variability of the gold mineralisation.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field	Regional Prospects AC Field duplicates were taken at the rig from a second chute on the cone splitter allowing for the duplicate and main sample to be the same size and sampling technique. Field duplicates are taken every 50th sample. Laboratory duplicates (sample preparation split) were also completed roughly every 15th sample.
	duplicate/second-half sampling.	All Gold Projects DD Field duplicates on diamond core, i.e. other half of cut core, have not been routinely assayed.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes (1.0kg to 3kg) are considered to be a sufficient size to accurately represent the gold mineralisation based on the mineralisation style (hypogene associated with shearing, and supergene enrichment), the width and continuity of the intersections, the sampling methodology, the coarse gold variability and the assay ranges for the gold.
		Field duplicates have routinely been collected to ensure monitoring of the sub- sampling quality. Acceptable precision and accuracy are noted in the field duplicates albeit the precision is marginally acceptable and consistent with coarse gold deposits.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and	All Gold Projects AC and RC All gold assaying was completed by external commercial laboratories (Bureau Veritas) using a 50g charge for fire assay analysis with AAS finish. This technique is industry standard for gold and considered appropriate.
tests	whether the technique is considered partial or total.	All Gold Projects DD All gold assaying was completed by commercial laboratories (Bureau Veritas) using a 50g charge for fire assay analysis with AAS finish. This technique is industry standard for gold and considered appropriate.
		Regional Prospects AC All gold assaying was completed by commercial laboratories (Bureau Veritas) using a 50g charge for fire assay analysis for 4m composite AC samples. 1m AC re-samples are assayed by a commercial laboratory (Bureau Veritas) using a 50g charge for fire assay analysis with AAS finish.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis	Apart from magnetic susceptibility in targeted zones, no other geophysical measurements were routinely made.

Criteria	JORC Code explanation	Commentary
	including instrument make and model, reading times, calibrations factors applied and their derivation, etc	
	Nature of quality control	All Gold Projects AC and RC
	procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been	Certified Reference Material (CRM or standards) and blanks were inserted even 25th sample to assess the assaying accuracy of the external laboratories. Field duplicates (RC, AC) were inserted every 20th sample to assess the repeatability from the field and variability of the gold mineralisation. Laboratory duplicate were also completed approximately every 15th sample to assess the precision of assaying.
65	established.	All Gold Projects DD
		Certified Reference Material (CRM or standards) and blanks were inserted every 20 th and 25 th sample to assess the assaying accuracy of the external laboratories Field duplicates on diamond core, i.e. other half of cut core, have not beer routinely assayed. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of assaying.
		Regional Prospects AC and RC Certified Reference Material (CRM or standards) and blanks were inserted every 50 th sample (samples ending in 25 and 75) to assess the assaying accuracy of the external laboratories. Field duplicates were taken every 50 th sample (samples ending in 00 and 50) to assess the repeatability from the field and variability of the gold mineralisation. Laboratory duplicates (sample preparation split) were also completed roughly every 15th sample.
		All Sample Results
		Evaluation of both the Regis submitted standards, and the internal laboratory quality control data, indicates assaying to be accurate and without significant drift for significant time periods. Excluding obvious errors, the vast majority of the CRM assaying report shows no consistent positive or negative overall mean bias. Duplicate assays show high levels of correlation and no apparent bias between the duplicate pairs. Field duplicate samples show marginally acceptable levels of correlation and no relative bias.
		Results of the QAQC sampling were considered acceptable for the gold deposits and regional prospects. Substantial focus has been given to ensuring sampling procedures met industry best practise to ensure acceptable levels of accuracy and precision were achieved in a coarse gold environment.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No independent personnel have visually inspected the significant intersections in RC chips or diamond drill core. Numerous highly qualified and experienced company personnel from exploration and mine production positions have visually inspected the significant intersections in AC chips, RC chips and diamond drill core.
	The use of twinned holes.	No twinning of holes was completed in the current quarter.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All geological and field data is entered into Logchief commercial software only allowing data to be entered using the Regis geological code system and sample protocol. Logchief data is validated and uploaded directly to the Datashed database.
	Discuss any adjustment to assay data.	For the purpose of resource estimation any samples not assayed (i.e. destroyed in processing, listed not received) have had the assay value converted to a -9 in

Criteria	JORC Code explanation	Commentary
		the database. Any samples assayed below detection limit (0.01 ppm Au) have been converted to 0.005 ppm (half detection limit) in the database.
Location of	Accuracy and quality of	All Gold Projects
data points	surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Regis drill hole collar locations were picked up by site-based authorized surveyors, or using Trimble RTK GPS, calibrated to a base station (expected accuracy of 20mm).
\bigcirc		Downhole surveying was measured by using either a Reflex EZ-Shot Downhole Survey Instrument or North Seeking Gyro based tool where magnetic host rock would affect azimuth readings.
		The surveys were completed every 30m down each drill hole.
15)		Regional Prospects
		Regis drill hole collar locations were picked up by handheld GPS. Hole azimuths were measured at the collar using a Suunto sighting compass.
	Specification of the grid	All Gold Projects
	system used.	The grid system is AMG Zone 51 (AGD 84) for surveying pickups. Modelling at the Rosemont, Baneygo and Gloster Area is completed using a local grid, with conversion of digital data from AMG to local completed using GIS Software macros. Modelling at all other prospects is completed in AMG Zone 51 (AGD84).
105		Regional Prospects
		The grid system set in the handheld GPS unit is MGA Zone 51 (GDA 94). Hole azimuths were measured at the collar using a Suunto sighting compass.
		All location data is reported in accordance with DMP reporting guidelines in MGA Zone 51 (GDA 94). Grid conversions are performed in RRLs Datashed database.
<u>1</u> 0	Quality and adequacy of topographic control.	The topographic surface for all projects were derived from a combination of the primary drill hole pickups and the pre-existing photogrammetric contouring.
Data	Data spacing for reporting of	All Gold Projects
spacing and distribution	Exploration Results.	Baneygo The Baneygo gold deposit was sampled on a nominal 80m to 40m north by 40m east grid spacings
		Garden Well The Garden Well gold deposit was sampled on a nominal spacing 50m - 100m along strike by 100m down dip.
		Gloster The Gloster gold deposit was sampled on a nominal spacing 100m along strike by 20-100m across strike.
		Rosemont The Rosemont gold deposit was sampled on a nominal spacing 300-400m along strike and 160m across strike.
		Regional Prospects
		Regional Prospects are generally drilled on a broad line spacing 800m to 1600m with drill holes spacing from 200m to 400m depending on the style of mineralisation and width of target. Drill hole spacing is halved where infill drilling is required around anomalous gold targets.

Criteria	JORC Code explanation	Commentary
	Whether the data spacing	All Gold Projects
	and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The planned data spacing and distribution is sufficient to demonstrate spatia and grade continuity of the mineralised domains to support the definition of Inferred and Indicated Mineral Resources under the 2012 JORC code once a other modifying factors have been addressed.
	Whether sample compositing has been applied.	All Gold Projects No sample compositing has been applied in the field within the mineralised zones.
		Regional Prospects
		All first pass AC drill samples were collected at 1m samples and composited to 4m intervals.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling on all projects is orientated to best suit the mineralisation to be closely perpendicular to both the strike and dip of the mineralisation. Intercepts are close to true-width in most cases. In the case of Rosemont and the Baneygo Area drill programs, the orientation of mineralisation is sub vertical, as such the current drilling is designed to assist in refining ore geometry and therefore a more accurate estimate of true thickness. Drill orientation at Rosemont and the Baneygo Area was adjusted as required to facilitate drilling around historica mine site infrastructure, and in some instances drill holes are at a high angle to the dip of mineralisation.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is not believed that drilling orientation has introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	Samples are securely sealed and stored onsite, until delivery to Perth laboratories via contract freight Transport. Chain of custody consignment note and sample submission forms are sent with the samples. Sample submission forms are also emailed to the laboratory and are used to keep track of the sample batches.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits on sampling techniques and data have been completed.

APPENDIX 1 Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Section 2 contains relevant data on projects and prospects discussed in the main body text of the March 2020 Quarterly Report, or those included below and considered to be material.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 Baneygo Area M38/344 – Reg Holders, Regis Resources Ltd & Duketon Resources Pty Ltd; granted 23 April 1993; 2% Franco Nevada Royalty; no Native Title claims Garden Well The Garden Well gold deposit is located on M38/1249, M38/1250, M38/283. Current registered holders of the tenements are: M38/1249 Regis Resources Ltd; M38/1250 and M38/283 Regis Resources Ltd and Duketon resources Pty Ltd (100% subsidiary of Regis Resources Ltd); 2% Royalty to Franco Nevada. Normal Western Australian state royalties apply. There are no registered Native Title Claims. Gloster The Gloster prospect is located on M38/1268. Current registered holders are M38/1268 – Regis Resources Ltd; 2% Royalty to William Robert Richmond. Normal Western Australian state royalties apply. There are no registered native title claims Rosemont The Rosemont project is located on M38/237, M38/250 & M38/343. Current registered holders of the tenements are Regis Resources Ltd & Duketon Resources Pty Ltd (100% subsidiary of Regis Resources Ltd). Normal Western Australian state royalties apply plus there is a 2% Royalty to Franco Nevada. There are no registered Native Title Claims. Betelgeuse Prospect (Risden Well Project Area) The Betelgeuse Prospect is located on E38/1537, E38/2714 & E38/2717. Current registered holders of the tenements are Regis Resources Ltd. Normal Western Australian state royalties apply plus there is a 2% Royalty to Franco Nevada. There are no registered Native Title Claims. Matts Bore Prospect (North West Project Area) The Matts Bore Prospect is located on E38/1537, E38/1800, E38/2834 & M38/1252. Regis Resources Ltd is the current registered holder of E38/1537, E38/1800, E38/2834. Duketon Mining Limited is the current registered holder of M38/1252, however Regis Resources Ltd has the rights to gold and all minerals other than nickel. Normal Western Australian state royalties apply plus there is a 2% Royalty to Franco Ne

	Criteria	JORC Code explanation	Commentary
	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Baneygo/Rosemont Area Shallow drilling (less than 100m vertical depth) was completed by Aurora, Ashton and Johnsons Well Mining in the 1990's.
			Garden Well Minor amounts of drilling were completed by Ashton and Johnsons Well Mining although it was mainly shallow and not extensive enough to properly define the mineralisation.
			Gloster Gloster was discovered in 1902, with no modern exploration work completed until Hillmin Gold Mines Pty Ltd and Aurotech NL conducted mapping, RC drilling, DD and RAB in the mid 1980's, culminating in Resource Estimates and feasibility studies. Leader Resources NL, Maiden Gold NL and Johnsons Well Mining conducted RC, DD and RAB drilling in the 1990s to infill and extend the resource.
-			Betelgeuse Prospect (Risden Well Project Area) The Betelgeuse Prospect has no historical drilling.
			Matt's Bore Exploration for gold and base metals was carried out at the Matt's Bore Prospect during the 1980s-90s by Carpentaria Pty Ltd, North Broken Hill Pty Ltd and Wiluna Mines Ltd explored. Johnsons Well Mining explored for gold with shallow AC drilling in the 2000s, following this, Duketon Mining conducted soil sampling, AC, RC and Diamond drilling and identified two gold targets at Terminator and Matt's Bore.
	Geology	Deposit type, geological setting and style of mineralisation.	Baneygo/Rosemont Area Gold is hosted in a steeply east dipping 345° trending quartz- dolerite unit intruding an ultramafic sequence. Gold mineralisation is associated with quartz-albite-sericite-carbonate-sulphide alteration and is restricted to the quartz dolerite unit which is generally \approx 80m wide, but does boudinage along strike and widths vary from a few metres to 120m. Weathering depths vary from 20m to 80m vertical depth.
			Garden Well Gold is hosted in a moderate east to steeply dipping shear zone trending N-S. Gold mineralisation within ultramafic is associated with quartz, fuchsite, sericite, carbonate, sulphides. Gold mineralisation within chert, shale and BIF is associated with brecciated zones including elevated sulphides and quartz veins.
			Gloster Gold is hosted in multiple stacked vein sets dipping shallowly to the north east. Host rocks include intermediate volcaniclastic units and diorite intrusives. Gold mineralisation is associated with quartz- carbonate-sulphide veins with micaceous selvages.
			Betelgeuse Prospect (Risden Well Project Area) The Betelgeuse Prospect is in the early exploration phase. Gold mineralisation is associated with quartz veins, sulphides and carbonate alteration. Host lithologies include late basin sediments and polymictic conglomerates.

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Drill hole information including collar location and drill direction are documented in Appendix 1 and the body of the announcement.
	easting and northing of the drill hole collar	
D	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
5	dip and azimuth of the hole	
D	down hole length and interception depth	
Ð	hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Rosemont, Baneygo, Garden Well, Gloster Reported intercepts include a minimum of 2.0 g/t Au value over a minimum distance of 0.1m with a maximum 2m consecutive internal waste, unless stated otherwise. No upper cuts have been applied.
6	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All other Gold Projects and Prospects reported intercepts include a minimum of 0.5 g/t Au value over a minimum distance of 1m with a maximum 2m consecutive internal waste. No upper cuts have been applied. Appendix 1 All assay results above 1 g/t gold are reported.
52	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisati	These relationships are particularly important in the reporting of Exploration Results.	Baneygo The Baneygo gold deposit was drilled at -57° to -63° to ~245° or - 075°. The mineralised quartz dolerite strikes 344° and is subvertical.
on widths and intercept	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Some intercepts reported are close to true width, steep angled holes are not true width where the mineralisation is sub vertical.
lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Garden Well The Garden Well gold deposit was drilled at -62° to -69° towards 264° to 279° azimuth designed to drill perpendicular to the strike of mineralisation. The mineralised zone is moderately east dipping, and the intercepts reported are close to true width.
		Gloster The Gloster gold deposit was drilled at -50° to -90° towards 066° or ~245° designed to drill perpendicular to the strike of mineralisation. The mineralised zone is shallowly north-east dipping. The intercepts reported are close to true width. Vertical holes were drilled in pit.

Criteria	JORC Code explanation	Commentary
		Rosemont The Rosemont gold deposit was drilled at -60° to -81° towards ~066° or ~240° and designed to intersect the mineralised quartz dolerite at significant depths. Intercepts reported intersected the quartz dolerite at a moderate 51 degree angle and are not true width.
D		Regional Prospects The Regional Prospects were drilled at -60° towards varying azimuths designed to drill as close as possible to perpendicular to the strike of mineralisation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	A list of all holes drilled during the quarter and assay results above 1 g/t have been reported. Assay results below 1 g/t are not considered material and are reported as such.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other material exploration data to report.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Gold Projects Infill drilling will occur where appropriate, and extensional drilling will be conducted along strike and at depth beneath existing deposits where gold mineralisation may be of sufficient grade and thickness for underground development. Regional Prospects Drilling of high priority regional prospects will continue in 2020. Follow up drilling will be conducted where anomalous results are
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	identified in first pass drill testing. See diagrams in main text

APPENDIX 1 – Exploration Results

			Betelgeuse Co					From	То	n >1.0 ppm Au Interval	Au
	Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	(m)	(m)	(m)	pp:
F	RRLBTGAC001	6932404	416740	520	-60	270	77			cant Intercept	
F	RRLBTGAC002	6932397	416899	520	-60	270	86		No signifi	cant Intercept	
F	RRLBTGAC003	6932395	417054	520	-60	270	88		No signifi	cant Intercept	
F	RRLBTGAC004	6932393	417212	520	-60	270	107	76	80	4	1.1
F	RRLBTGAC005	6932818	416263	520	-60	273	95		No signifi	cant Intercept	
Þ	RRLBTGAC006	6932822	416422	520	-60	267	80		No signifi	cant Intercept	
F	RRLBTGAC007	6932821	416577	520	-60	273	110		No signifi	cant Intercept	
F	RRLBTGAC008	6932822	416737	520	-60	270	104		No signifi	cant Intercept	
F	RRLBTGAC009	6932816	416816	520	-60	270	102		No signifi	cant Intercept	
ſ	RRLBTGAC010	6932817	417051	520	-60	270	75		No signifi	cant Intercept	
f	RRLBTGAC011	6933028	416014	520	-60	265	10		No signifi	cant Intercept	
F	RRLBTGAC012	6933028	416018	520	-60	265	76		No signifi	cant Intercept	
F	RRLBTGAC013	6933030	416178	520	-60	263	75		No signifi	cant Intercept	
F	RRLBTGAC014	6933031	416344	520	-60	269	88		No signifi	cant Intercept	
Įf	RRLBTGAC015	6933030	416500	520	-60	268	105		No signifi	cant Intercept	
F	RRLBTGAC016	6933026	416651	520	-60	267	104		No signifi	cant Intercept	
F	RRLBTGAC017	6933033	416813	520	-60	274	103		No signifi	cant Intercept	
F	RRLBTGAC018	6933034	416978	520	-60	268	107			cant Intercept	
	RRLBTGAC019	6933037	416737	520	-60	276	102		-	cant Intercept	
	RRLBTGAC020	6933030	416888	520	-60	268	119			cant Intercept	
	RRLBTGAC021	6932814	416822	520	-60	269	92			cant Intercept	
	RRLBTGAC022	6932812	416975	520	-60	269	97		-	cant Intercept	
	RRLBTGAC023	6933240	415778	520	-60	272	73		-	cant Intercept	
-	RRLBTGAC024	6933231	415941	520	-60	266	73			cant Intercept	
	RRLBTGAC025	6933235	416104	520	-60	270	80			cant Intercept	
	RRLBTGAC026	6933230	416260	520	-60	271	78		-	cant Intercept	
	RRLBTGAC027	6933241	416420	520	-60	270	94			cant Intercept	
	RRLBTGAC028	6933234	416582	520	-60	269	95		-	cant Intercept	
-	RRLBTGAC029	6933246	416735	520	-60	263	90		-	cant Intercept	
H	RRLBTGAC030	6933241	416904	520	-60	266	99			cant Intercept	
Þ	RRLBTGAC031	6933241	417052	520	-60	271	95		9	cant Intercept	
-	RRLBTGAC032	6934032	414890	520	-60	264	94			cant Intercept	
	RRLBTGAC033	6934034	415541	520	-60	268	114			cant Intercept	
-	RRLBTGAC034	6934400	414496	520	-60	267	62			cant Intercept	
	RRLBTGAC035	6934408	415298	520	-60	267	95			cant Intercept	
_	RRLBTGAC036	6934783	413852	520	-60	270	103		-	cant Intercept	
-	RRLBTGAC037	6934787	414020	520	-60	264	109	104	107	3	1.
-	RRLBTGAC038	6934791	414184	520	-60	268	96			cant Intercept	
	RRLBTGAC039	6934797	414343	520	-60	271	74		9	cant Intercept	
⊢	RRLBTGAC040	6934800	414500	520	-60	269	94	92	94	2	1.
	RRLBTGAC041	6935228	413538	520	-60	266	108	-		cant Intercept	
-	RRLBTGAC042	6935222	414179	520	-60	268	110			cant Intercept	
_	RRLBTGAC043	6935441	413461	520	-60	271	67		-	cant Intercept	
	RRLBTGAC044	6935424	414096	520	-60	271	94		5	cant Intercept	
	RRLBTGAC045	6935630	413378	520	-60	269	71			cant Intercept	
	RRLBTGAC046	6935630	414030	520	-60	270	80		-	cant Intercept	
_	RRLBTGAC047	6935833	413355	520	-60	270	100			cant Intercept	
	RRLBTGAC048	6936030	413300	520	-60	270	98			cant Intercept	
_	RRLBTGAC049	6936035	413780	520	-60	270	62		-	cant Intercept	
-	RRLBTGAC050	6936225	413064	520	-60	270	112			cant Intercept	
⊢	RRLBTGAC051	6936231	413223	520	-60	270	112			cant Intercept	
_	RRLBTGAC052	6936231	413295	520	-60	270	96		-	cant Intercept	
-	RRLBTGAC052	6936231	413295	520	-60	270	105		-	cant Intercept	
	RRLBTGAC055	6936229	413538	520	-60	270	76			cant Intercept	
-	RRLBTGAC054	6936229		520		269			0	cant Intercept	
-			412985		-60	270	104		0		
	RRLBTGAC056	6936429	413136	520	-60		92			cant Intercept	
	RRLBTGAC057	6936433	413293	520	-60	271	68		0	cant Intercept	
Ľ	RRLBTGAC058	6936435	413260	520	-60	271	71		0	cant Intercept	
-	RRLBTGAC059	6936446	413226	520	-60	270	89		INO SIGNITI	cant Intercept	
-	RRLBTGAC060	6936429	413198	520	-60	270	74			cant Intercept	

Hole ID	Y	х	z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLBTGAC062	6936233	413494	520	-60	270	114	(111)		ant Intercept	phin
RRLBTGDD001	6935819	413725	530	-60	270	523	84	85	1	3.34
RRLBTGDD001	0955819	413723	220	-00	270	525	145.92	146.25	0.33	1.18
RRLBTGDD001							379.12	379.41	0.29	1.07
RRLBTGDD001							389	390	1	1.09
RRLBTGDD001							432	432.73	0.73	1.19
RRLBTGDD001							447.94	448.77	0.83	1.1
RRLBTGDD001							456.5	457.09	0.59	1.1
RRLBTGDD001							467.08	467.93	0.85	2.48
RRLBTGDD001							484	484.38	0.38	2.1
RRLBTGDD001	6026020	112200	E 20	60	270	240	506.81	507.19	0.38	1.56
RRLBTGRC001	6936030	413380	520	-60		240			ng Results	
RRLBTGRC002	6936035	413466	520	-60	270	204			ng Results	
RRLBTGRC003	6936031	413539	520	-60	270	12			ng Results	
RRLBTGRC004	6936036	413543	520	-60	270	204			ng Results	
RRLBTGRC005	6936030	413621	520	-60	270	204			ng Results	
RRLBTGRC006	6935829	413527	520	-60	270	200			ng Results	
RRLBTGRC007	6935830	413916	520	-60	270	204			ng Results	
RRLBTGRC008	6935633	413543	520	-60	270	204		Awaiti	ng Results	
RRLBTGRC009	6935625	413622	520	-60	270	204			ng Results	
RRLBTGRC010	6935639	413698	520	-60	270	204		Awaiti	ng Results	
RRLBTGRC011	6935628	413861	520	-60	270	204		Awaiti	ng Results	
Hole ID	Y	х	z	Dip	Azimuth	Total Depth (m)	From	То	Interval	Au
RRLBTGRC012	6935424	413603	520	-60	270	204	(m)	(m)	(m) ng Results	ppm
RRLBTGRC012	6935430	413003	520	-60	270	252			ng Results	
RRLBTGRC014	6935428	413863	520	-60	270	222			ng Results	
RRLBTGRC015	6935436	413706	520	-60	270	150			ng Results	
RRLBTGRC016	6935424	413907	520	-60	270	268			ng Results	
RRLBTGRC017	6935230	413701	520	-60	269	210			ng Results	
RRLBTGRC018	6935230	413780	520	-60	272	204			ng Results	
RRLBTGRC019	6935230	413861	520	-60	270	210			ng Results	
RRLBTGRC020	6935230	414020	520	-60	270	222			ng Results	
RRLBTGRC020	6935000	413900	520	-60	270	198			ng Results	
RRLBTGRC021	6935000	413300	520	-60	270	198			ng Results	
RRLBTGRC022	6934395	414653	520	-60	270	204			ng Results	
RRLBTGRC023		414033	520		270	204			-	
RRLBTGRC024	6934400	414822		-60		204			ng Results	
	6934403		520	-60	270				ng Results	
RRLBTGRC026	6934400	415137	520	-60	270	234			ng Results	
RRLBTGRC027	6934220	414900	520	-60	270	204			ng Results	
RRLBTGRC028	6934226	415100	520	-60	270	204			ng Results	
RRLBTGRC029	6934028	415061	520	-60	270	204			ng Results	
		Baneygo Col	lar Locatio	n					n >1.0 ppm Aı	1
Hole ID	Y	х	z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLBYDD010	6906100	432796	494	-61	263	498.53	425.5	426	0.5	1.91
RRLBYDD011	6906327	432302	497	-62	75	656.6	452.9	453.6	0.7	2.54
RRLBYDD011							461	462	1	1.67
RRLBYDD011							470.75	471.15	0.4	3.14
RRLBYDD011							482.7	483	0.3	5.33
RRLBYDD011							491.25	491.5	0.25	1.39
RRLBYDD011							508.9	510	1.1	4.13
RRLBYDD011							513.8	515.3	1.5	2.79
RRLBYDD011							533	534	1	1.31
RRLBYDD011 RRLBYDD011							543 581.8	544 582 1	1	1.01
RRLBYDD011 RRLBYDD011							581.8 584.4	582.1 585	0.3 0.6	2.22 1.02
RRLBYDD011							588	588.7	0.0	1.02
RRLBYDD013	6906907	432583	509	-63.16	248	576.3	190.3	190.75	0.45	2.92
RRLBYDD013	5500507	132303	505	55.10	270	570.5	396.13	396.45	0.43	1.94
RRLBYDD013							417.25	419.8	2.55	2.28
RRLBYDD013							424.45	428.78	4.33	2.08
RRLBYDD013							430.89	433.17	2.28	1.18
							455.39	457.76	2.37	11.98
RRLBYDD013							455.55		2.07	

								From	То		Au
	Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	(m)	(m)	Interval (m)	ppm
ľ	RRLBYDD013							482	486.53	4.53	1.78
ſ	RRLBYDD014	6906975	432552	509	-63	250	591.5	98	99	1	1.73
	RRLBYDD014							106.5	107.5	1	3.46
	RRLBYDD014							127.7	128.7	1	1.5
	RRLBYDD014							142.7	143	0.3	1.93
	RRLBYDD014							430.85	444.65	13.8	2.3
\geq	Hole ID	Y	х	z	Dip	Azimuth	Total Depth (m)	From	То	Interval	Au
1	Ľ				•			(m)	(m)	(m)	ppm
	RRLBYDD014							459.2	459.6	0.4	6.26
	RRLBYDD014 RRLBYDD014							464 481	465 482	1 1	1.17 1.26
-	RRLBYDD014							481	482	1	1.20
ł	RRLBYDD015	6907046	432539	508	-63	255	567.4	215.12	217.24	2.12	3.61
	RRLBYDD015							456.2	457.17	0.97	1.49
-	RRLBYDD015							468	469.46	1.46	1.93
	RRLBYDD015							473.12	473.51	0.39	6.62
_	RRLBYDD015							505.27	506.8	1.53	1.68
1	RRLBYDD015							509.95	511	1.05	1.14
1	RRLBYDD016	6906652	432636	506	-65	254	609.53	331	332	1	11.3
T	RRLBYDD016							397.7	398	0.3	4.34
Ϊ	RRLBYDD016							404.2	405.1	0.9	1.61
\mathcal{I}	RRLBYDD016 RRLBYDD016							411 416.78	412.4 417.24	1.4 0.46	19.41 1.01
	RRLBYDD016							410.78	417.24	1	1.39
	RRLBYDD016							471	472	1	1.02
	RRLBYDD016							485.4	485.85	0.45	2.83
	RRLBYDD016							545.54	546.05	0.51	7.58
ſ	RRLBYDD017	6906657	432633	508	-58	238.7	477.46	103.85	104.1	0.25	2.22
	RRLBYDD017							326	327	1	1.14
	RRLBYDD017							332	334	2	1.19
	RRLBYDD017							340.7	341	0.3	187
	RRLBYDD017							344.7	345	0.3	1.47
-	RRLBYDD017 RRLBYDD017							357 361.91	357.25 362.11	0.25 0.2	1.75 3.29
1	RRLBYDD017							367	368	1	1.05
T	RRLBYDD017							391.7	392.8	1.1	3.89
-	RRLBYDD017							401.8	402	0.2	1.07
X	RRLBYDD017							407.2	407.5	0.3	1.66
/[RRLBYDD017							458	458.45	0.45	9.76
	RRLBYDD018	6906793	432626	508	-62	242	636.6	135	136	1	1.04
	RRLBYDD018							338.3	338.6	0.3	2.74
-	RRLBYDD018							403.3	404	0.7	1.77
	RRLBYDD018 RRLBYDD018							448.1 461	450 462	1.9 1	1.91 3.38
1	RRLBYDD018							486.9	487.67	0.77	1.42
1	RRLBYDD018							496	496.65	0.65	1.07
	RRLBYDD018							503.05	503.37	0.32	1.05
	RRLBYDD018							509	509.45	0.45	1.1
	RRLBYDD018							525.6	527.45	1.85	1.34
	RRLBYDD018							547	548	1	1.31
	RRLBYDD019	6906606	432670	503	-63	255	579.1	188.69	189.07	0.38	1.95
1	RRLBYDD019							201.7	202.14	0.44	1.24
1	RRLBYDD019 RRLBYDD019							391.54 399.7	392.15 400.9	0.61 1.2	2.51 22.61
Ť	RRLBYDD019							399.7 419	400.9 420	1.2	1.74
	RRLBYDD019							438.81	439.15	0.34	2.68
H	RRLBYDD019							442.47	444.33	1.86	3.59
	RRLBYDD019							464	465	1	1.94
	RRLBYDD019							474	474.95	0.95	5.69
L	RRLBYDD019							481.97	482.27	0.3	5.5
ſ	RRLBYDD020	6906609	432668	503	-63	232	548.4	394	394.34	0.34	19
	RRLBYDD020							400	401	1	1.81
	RRLBYDD020							406	406.9	0.9	1.66
	RRLBYDD020							413	414	1	4.26
	RRLBYDD020							442 457 35	446.9 457 7	4.9	1.15
┢	RRLBYDD020	C00C444	122640	502	<u> </u>	240	270	457.35	457.7	0.35	2.53
	RRLBYRC735 RRLBYRC736	6906441 6907065	432648 432380	502 499	-60 -60	249 255	270 282	56 193	60 198	4	1.32
	RRLBYRC736	0901000	432380	499	-00	200	202	193 245	198 246	5 1	21.13 1.72

APPENDIX 1 – Exploration Results

H	Hole ID	Y	х	z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLBY	RC736							263	264	1	4.05
RRLBY		6906677	432577	505	-64	255	486	300	301	1	1.72
RRLBY	RC737							320	322	2	1.3
RRLBY								329	332	3	1.68
RRLBY								350	351	1	1.5
RRLBY								362	363	1	5.18
RRLBY								402	410	8	1.9
RRLBY								465	466	1	2.17
RRLBY		6906699	432635	507	-60	255	498	390	391	1	1.41
RRLBY		0900099	432033	507	-00	255	490	435	438		
										3	1.97
RRLBY								465	470	5	2.1
RRLBY								476	477	1	4.59
RRLBY		6906602	432646	503	-60	255	318			cant Intercept	
RRLBY	RC741	6906294	432335	497	-55	75	300	227	230	3	4.3
RRLBY	RC741							235	236	1	1.02
RRLBY	RC741							240	241	1	1.06
RRLBY	RC741							245	246	1	1.6
RRLBY	RC741							256	264	8	1.2
RRLBY		6906230	432360	496	-60	75	276	247	248	1	1.2
RRLBY		0000200	.02000				270	258	259	1	3.3
RRLBY		6006196	422200	405	60	75	260				
		6906186	432386	495	-60	75	360	308	309	1	6
RRLBY		6906147	432386	494	-60	75	426	377	378	1	1.03
RRLBY								416	423	7	9.3
RRLBY	RC745	6906112	432397	494	-60	75	413	339	340	1	1.8
RRLBY	RC745							409	410	1	1.54
RRLBY	RC746	6906074	432400	494	-60	75	385		No signifi	cant Intercept	
RRLBY	RC747	6906658	432175	497	-57	73	456	330	331	1	4.18
RRLBY			.021/0					345	346	1	1.12
RRLBY								351	352	1	1.0
RRLBY								360	361		1.8
									386	1	
RRLBY								385		1	2.1
RRLBY								405	409	4	1.8
RRLBY								413	414	1	16.
RRLBY								422	425	3	1.5
RRLBY								433	440	7	1.56
RRLBY	RC747							453	454	1	2.0
RRLBY	RC748	6906708	432661	506	-63	255	523	108	112	4	1.24
RRLBY	RC748							120	124	4	8.16
RRLBY	RC748							417	420	3	1.4
RRLBY								424	425	1	1.08
RRLBY								434	435	1	1.04
RRLBY								444	445	1	4.42
RRLBY								449	450	1	1.7
RRLBY								516	517	1	3.24
		6006005	122571	FOO	E7	2 ⊑ 4	A7A				
RRLBY		6906895	432571	508	-57	254	474	64 108	68	4	1.2
RRLBY								108	112	4	1.0
RRLBY								309	310	1	3.9
RRLBY								318	319	1	1.14
RRLBY								386	387	1	1.1
RRLBY								408	409	1	1.2
RRLBY								415	416	1	1.3
RRLBY	RC749							419	420	1	4.2
RRLBY	RC749							423	426	3	5.9
RRLBY	RC749							437	439	2	1.9
RRLBY	RC749							442	450	8	1.2
	RCD001	6906173	432345	494	-61	75	569.6	424	428	4	13.6
	RCD001							430.73	435.62	4.89	5.1
	RCD001							474	476	2	1.34
	RCD001							479	482	3	1.5
	RCD001 RCD001							505	482 506	5 1	1.50
		c00c27.	422205	400		75	F (7)				
	RCD740	6906374	432305	498	-54	75	567.3	343	344	1	2.8
RRLBY	RCD745	6906112	432396	498	-60	75	549.2			ing Results	
			Garden Well C	ollar Locat	ion				Intersectio	on >1.0 ppm Au	
		.,		-		A	Table (1.4.)	From	То	Interval	Au
1	Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	(m)	(m)	(m)	ppn
00:07	00475	6040000	407051	400	<u></u>	201	504 -	. ,			
RRLGD		6913028	437351	498	-62	264	594.7		Await	ing Results	
RRIGD	DD176	6912651	437329	494	-69	279	585.6	I	Await	ing Results	

			Gloster Coll	ar Location	า				Intersectio	n >1.0 ppm Aı	1
	Hole ID	Y	Х	z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
	RRLGLDD022	6950820	408924	553	-51.5	246	492.4		Awaiti	ng Results	
	RRLGLDD023	6950821	408927	553	-70	246	576.61			ng Results	
	RRLGLDD024	6950805	408502	485	-53	83	483.27			ng Results	
	RRLGLDD025	6950821	408927	553	-60.5	246	522.6			ng Results	
	RRLGLDD026	6950907	408869	553	-52	246	522.1			ng Results	
-	RRLGLDD027	6950908	408871	554	-68	246	615.5			ng Results	
	RRLGLRC457 RRLGLRC457	6950592	408782	455	-66	248	218	4 40	5 41	1 1	1.2 1.76
	RRLGLRC458	6950602	408824	452	-77	248	314	5	6	1	1.74
	RRLGLRC458 RRLGLRC458							16 42	17 43	1 1	1.1 1.33
	RRLGLRC458							46	48	2	2.2
	RRLGLRC458							87	88	1	1.71
-	RRLGLRC458							119	120	1	1.04
	RRLGLRC458							251	252	1	1.43
1	RRLGLRC459	6950602	408824	452	-69	248	296	5	6	1	1.26
	RRLGLRC459							27	28	1	1.02
F	RRLGLRC460	6950704	408791	453	-60	249	12		Awaiti	ng Results	
	RRLGLRC461	6950704	408791	453	-78	248	12	6	9	3	2.25
1 5	RRLGLRC462	6950702	408788	452	-78	248	158	5	6	1	1.58
	RRLGLRC462							36	37	1	4.05
	RRLGLRC462 RRLGLRC462							48 76	49 77	1	1.19 1.19
	RRLGLRC462							91	94	1 3	2.89
	RRLGLRC462							146	148	2	4.16
	RRLGLRC463	6950703	408790	452	-61	248	224	7	8	1	1.91
	RRLGLRC463	0000700	100700		01	2.0		20	21	1	5.91
T	RRLGLRC463							52	53	1	3.52
1	RRLGLRC463							56	57	1	1.67
	RRLGLRC463							61	65	4	4.01
	RRLGLRC463							70	71	1	1.47
	RRLGLRC463							102	103	1	5.58
10.00	RRLGLRC463 RRLGLRC463							114 116	115 117	1 1	1.03 1.12
	RRLGLRC463							125	127	2	1.12
	RRLGLRC463							152	154	2	1.14
	RRLGLRC464	6950575	409133	550	-60	247	308	150	151	1	1.46
1	RRLGLRC464							188	189	1	3.27
	RRLGLRC464							194	195	1	1.2
İ.	RRLGLRC464							249	250	1	1.81
4	RRLGLRC464							253	254	1	1.25
	RRLGLRC465	6950497	409201	549	-60	246	297	117	118	1	11.4
	RRLGLRC465							176	179	3	1.86
	RRLGLRC465 RRLGLRC465							191 227	192 228	1	5.38 1 05
-	RRLGLRC465							227	228 234	1 1	1.95 1.16
	RRLGLRC465							235	234	1	1.10
	RRLGLRC465							242	243	1	1.2
	RRLGLRC465							256	258	2	2.32
F	RRLGLRC466	6950519	409252	550	-60	247	332	222	224	2	1.13
	RRLGLRC466							235	239	4	2.09
	RRLGLRC466							247	250	3	2.09
	RRLGLRC466							257	258	1	1.16
	RRLGLRC466							261	262	1	4.79
	RRLGLRC466 RRLGLRC466							271 305	272 307	1 2	1.08 1.08
-	RRLGLRC467	6950749	408688	460	-85	270	392	7	8	1	2.9
	RRLGLRC467	0550745	-00000	400	05	270	552	26	27	1	3.12
	RRLGLRC467							38	40	2	1.35
	RRLGLRC467							52	56	4	1.63
1	RRLGLRC467							60	61	1	1.59
	RRLGLRC467							70	71	1	1.3
	RRLGLRC467							81	82	1	2.06
	RRLGLRC467							94 101	95 105	1	8
	RRLGLRC467							101 114	105 115	4	1.32
	RRLGLRC467							114 122	115 123	1	2.16 1.37

	Hole ID	Y	х	z	Dip	Azimuth	Total Depth (m)	From	То	Interval	Au
ŀ					I.			(m)	(m)	(m)	ppm
	RRLGLRC467 RRLGLRC467							147 176	148 178	1 2	3.24 4.82
	RRLGLRC467							202	203	1	4.82
	RRLGLRC467							328	329	1	2.01
F	RRLGLRC468	6950749	408687	460	-65	260	284	30	31	1	1.56
	RRLGLRC468						-	35	41	6	1.86
	RRLGLRC468							55	60	5	2.22
1	RRLGLRC468							64	67	3	11.98
	RRLGLRC468							71	72	1	1.27
+	RRLGLRC468							82	83	1	1.29
	RRLGLRC468							87	88	1	1.78
	RRLGLRC468 RRLGLRC468							104 148	106 149	2 1	4.47 2.68
1	RRLGLRC469	6950720	408691	460	-65	247	156		149		1.06
	RRLGLRC469	0950720	408091	400	-05	247	120	18 45	19 50	1 5	1.53
1	RRLGLRC469							59	60	1	1.26
	RRLGLRC469							79	80	1	11.3
-	RRLGLRC469							93	94	1	5.44
	RRLGLRC469							97	98	1	1.88
4	RRLGLRC469							110	111	1	1.38
R	RRLGLRC470	6950729	408735	455	-76	250	228	11	12	1	1.41
/]	RRLGLRC470							34	35	1	1.73
1	RRLGLRC470							38	39	1	4.5
	RRLGLRC470							54	55	1	1.55
	RRLGLRC470							58	62	4	2.29
	RRLGLRC470							80	81 89	1 1	1.37
	RRLGLRC470 RRLGLRC470							88 93	89 94	1	1.12 1.97
	RRLGLRC470							101	103	2	1.74
	RRLGLRC470							127	130	3	1.14
11.	RRLGLRC470							151	152	1	2.83
	RRLGLRC470							204	205	1	1.34
	RRLGLRC470							213	214	1	1.7
-	RRLGLRC471	6950731	408739	455	-76	67	138	23	25	2	5.96
-	RRLGLRC471							60	61	1	2.26
	RRLGLRC471							70	72	2	2.5
1	RRLGLRC471							75	78	3	1.92
ł	RRLGLRC471							88	90	2	13.07
Π	RRLGLRC471 RRLGLRC471							108 113	109 114	1 1	5.12 1.51
	RRLGLRC471	6950369	409167	549	-60	246	210		34	1	1.31
	RRLGLRC472	6920369	409167	549	-60	240	210	33 119	34 120	1	1.33 3.09
	RRLGLRC472							140	142	2	1.7
16	RRLGLRC473	6950461	409128	550	-58	244	234	56	57	1	1.62
4	RRLGLRC473	0550401	405120	550	50	244	234	105	106	1	3.45
1	RRLGLRC473							110	111	1	4.25
	RRLGLRC473							114	126	12	1.2
	RRLGLRC473							148	150	2	4.57
	RRLGLRC473							153	157	4	3.72
	RRLGLRC473							184	187	3	1.33
	RRLGLRC474	6950543	409064	550	-60	245	234	91	92	1	1.25
7	RRLGLRC474							174	175	1	1.01
	RRLGLRC474							225	227	2	1.65
	BRLGLRC474	6050000	400000	E 40	~~~	246	240	232	234	2	1.3
1	RRLGLRC475	6950390	409200	548	-60	246	240	34	35 157	1	1.17
Ц	RRLGLRC475 RRLGLRC475							148 167	157 168	9 1	1.24 2.26
ŀ		6050411	400350	E 40	60	240	282				
	RRLGLRC476 RRLGLRC476	6950411	409250	549	-60	246	202	93 149	94 155	1 6	1.58 1.35
	RRLGLRC476							149	133	1	1.33
	RRLGLRC476							200	201	1	3.2
ŀ	RRLGLRC477	6950982	408816	520	-58	250	384	133	134	1	2.84
	RRLGLRC477	3000002				200		164	165	1	1.05
	RRLGLRC477							205	206	1	1.15
	RRLGLRC477							209	210	1	1.17
	RRLGLRC477							287	288	1	2.1
	RRLGLRC477							317	318	1	2.8
	RRLGLRC477							332	333	1	1.23
	RRLGLRC477							362	363	1	3.14

Quarterly Report to 30 September 2020 APPENDIX 1 – Exploration Results

Hole ID	Y	x	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLGLRC478	6950446	409304	549	-60	246	330	232	233	1	1.06
RRLGLRC478							234	235	1	1.33
RRLGLRC478							254	259	5	5.45
RRLGLRC478							262	265	3	1.24
RRLGLRC479	6951019	408859	520	-60	245	504	185 295	186 296	1	1.35
RRLGLRC479 RRLGLRC479							335	336	1 1	1.3 1.06
RRLGLRC479							360	361	1	2.37
RRLGLRC479							364	366	2	3.05
RRLGLRC479							389	390	1	3.7
RRLGLRC479							399	401	2	1.35
RRLGLRC480	6950603	409189	551	-60	246	330	224	225	1	1.74
RRLGLRC480							233	234	1	1.48
RRLGLRC480 RRLGLRC480							243 248	244 249	1 1	2.02 4.8
RRLGLRC480							258	259	1	2.39
RRLGLRC480							304	307	3	2.1
RRLGLRC481	6951103	408733	520	-70	262	414	14	15	1	2.18
RRLGLRC481							212	214	2	12.43
RRLGLRC481							218	224	6	1.73
RRLGLRC481							242	244	2	1.97
RRLGLRC481 RRLGLRC481							270 281	272 285	2 4	2.6
RRLGLRC481							281	285	4 2	1.85 1.64
RRLGLRC481							304	305	1	1.56
RRLGLRC481							363	365	2	5.09
RRLGLRC481							403	404	1	1.12
RRLGLRC482	6951072	408570	552	-60	247	318	198	199	1	6.9
RRLGLRC482							233	236	3	1.26
RRLGLRC482							267	268	1	1.22
RRLGLRC482							280	281	1	1.14
RRLGLRC482 RRLGLRC482							283 287	284 288	1 1	1.04 1.54
RRLGLRC482	6951201	408682	553	-60	247	444	207	200	1	1.65
RRLGLRC483	0551201	400002	555	00	247		25	27	2	1.35
RRLGLRC483							416	417	1	1.33
RRLGLRC484	6951093	408629	552	-66	247	402	218	219	1	1.13
RRLGLRC484							233	235	2	1.47
RRLGLRC484							269	270	1	1.98
RRLGLRC484							313	314	1	1.32
RRLGLRC484 RRLGLRC484							331 364	332 366	1 2	1.71 23.65
RRLGLRC484							382	383	1	6.18
RRLGLRC485	6950748	409031	551	-58	250	510	289	290	1	19.7
RRLGLRC485							308	309	1	5.24
RRLGLRC485							319	322	3	4.09
RRLGLRC485							347	348	1	1.62
RRLGLRC485							374	376	2	3.68
RRLGLRC486	6951090	408622	552	-60	247	384	26	27	1	1.02
RRLGLRC486 RRLGLRC486							30 197	31 198	1 1	2.86 1.59
RRLGLRC486							215	216	1	1.59
RRLGLRC486							293	294	1	1.72
RRLGLRC486							306	307	1	1.66
RRLGLRC486							310	311	1	3.23
RRLGLRC487	6950727	408965	552	-60	250	576	84	85	1	1.22
RRLGLRC487							209	210	1	1.66
RRLGLRC487 RRLGLRC487							216 223	217 224	1 1	1.17 2.07
RRLGLRC487							225	224	1	1.5
RRLGLRC487							260	265	5	3.46
RRLGLRC487							274	275	1	2.22
RRLGLRC487							281	282	1	4.7
RRLGLRC487							289	290	1	1.17
RRLGLRC487							312	313	1	1.33
RRLGLRC487							325 419	326 420	1 1	1.35 3.79
RRLGLRC487 RRLGLRC487							419 449	420 450	1	3.79 2.06
RRLGLRC487							449	458	1	1.94
									-	2.0

APPENDIX 1 – Exploration Results

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From	To	Interval	Au
				-		-	(m)	(m)	(m)	ppm
RRLGLRC488	6951137	408553	552	-60	247	318			ant Intercept	
RRLGLRC489	6951198	408682	553	-67	234	228	5	6	1	1.22
RRLGLRC490	6951118	408509	551	-60	247	270		No significa	ant Intercept	
RRLGLRC491	6951274	408598	553	-60	247	462		No significa	ant Intercept	
RRLGLRC492	6951069	408760	520	-80	250	450	2	3	1	2.85
RRLGLRC492							205	206	1	1.43
RRLGLRC492							215	216	1	13.9
RRLGLRC492							244	245	1	1.54
RRLGLRC492							252	253	1	1.2
RRLGLRC492							256	265	9	2.3
RRLGLRC492							269	270	1	2.21
RRLGLRC492							287	290	3	2.39
RRLGLRC492 RRLGLRC492							304 320	305 321	1	1.5 2.73
RRLGLRC492 RRLGLRC492							320 347	321 348	1	1.02
RRLGLRC492 RRLGLRC492							347 356	348 357	1 1	1.02
RRLGLRC492							361	362	1	1.18
RRLGLRC492							372	373	1	3.44
RRLGLRC492							393	396	3	3.82
RRLGLRC492							441	443	2	2.85
RRLGLRC493	6951290	408642	553	-60	247	523	100	101	1	2.44
RRLGLRC493							123	124	1	1.07
RRLGLRC494	6951100	408739	520	-68	247	216			g Results	-
RRLGLRC495	6951018	408861	520	-70	243	426			g Results	
RRLGLRC496	6951198	408686	553	-80	247	522			g Results	
RRLGLRC497	6950790	408673	460	-60	246	78			g Results	
RRLGLRC498	6950790	408673	460	-90	0	84			g Results	
	6950771					60				
RRLGLRC499 RRLGLRC500	6950771	408631 408635	460 460	-52 -90	246 0	66			g Results g Results	
9									0	
RRLGLRC501	6950759	408677	460	-50	66	84			g Results	
RRLGLRC502	6950758	408676	460	-77	66	84			g Results	
RRLGLRC503	6950753	408662	460	-68	246	84			g Results	
RRLGLRC504	6950743	408694	460	-73	66	90			g Results	
RRLGLRC505	6950741	408686	460	-72	246	78			g Results	
RRLGLRC506	6950722	408642	460	-56	230	36		Awaitin	g Results	
RRLGLRC507	6950735	408653	460	-60	230	60		Awaitin	g Results	
RRLGLRC508	6950719	408700	460	-75	246	150		Awaitin	g Results	
RRLGLRC509	6950678	408678	460	-58	248	60		Awaitin	g Results	
RRLGLRC510	6950692	408710	460	-65	246	90		Awaitin	g Results	
RRLGLRC511	6950660	408704	460	-62	249	60		Awaitin	g Results	
RRLGLRC512	6950670	408721	460	-60	245	72		Awaitin	g Results	
RRLGLRC513	6950619	408714	461	-60	248	42		Awaitin	g Results	
RRLGLRC514	6950604	408811	453	-66	247	60			g Results	
		=							-	

APPENDIX 1 – Exploration Results

Hole ID	Y	x	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLGLRC516	6950713	408748	455	-82	244	84		Awaiti	ing Results	
RRLGLRC517	6950685	408746	455	-52	247	60		Awaiti	ing Results	
RRLGLRC518	6950697	408773	453	-52	247	72		Awaiti	ing Results	
RRLGLRC519	6950642	408772	460	-90	0	30		Awaiti	ing Results	
RRLGLRC520	6950627	408728	461	-84	245	60			ing Results	
		Matts Bore Co	ollar Locati	on					on >1.0 ppm A	u
· .							From	То	Interval	Au
Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	(m)	(m)	(m)	ppr
RRLMBAC064	6945369	402440	500	-60	270	59		Awaiti	ing Results	
RRLMBAC065	6945365	402835	500	-60	270	52			ing Results	
RRLMBAC066	6945365	403240	500	-60	270	65			ing Results	
RRLMBAC067	6945365	403639	500	-60	270	104			ing Results	
RRLMBAC068	6945365	404040	540	-60	270	103			ing Results	
RRLMBAC069	6945365	404040	540	-60	270	60			ing Results	
RRLMBAC009	6945361	398839	540	-60	270	45			-	
									ing Results	
RRLMBAC071	6945367	399238	540	-60	270	34			ing Results	
RRLMBAC072	6945369	399637	540	-60	270	38			ing Results	
RRLMBAC073	6945365	400037	540	-60	270	86			ing Results	
RRLMBAC074	6945366	400434	540	-60	266	77			ing Results	
RRLMBAC075	6945363	401633	540	-60	273	76			ing Results	
RRLMBAC076	6945370	402026	540	-60	271	59			ing Results	
RRLMBAC077	6945367	404834	540	-60	272	92		Awaiti	ing Results	
RRLMBAC078	6946168	398442	540	-60	264	48		Awaiti	ing Results	
RRLMBAC079	6946165	398833	540	-60	270	44		Awaiti	ing Results	
RRLMBAC080	6946162	399233	540	-60	270	36		Awaiti	ing Results	
RRLMBAC081	6946165	399626	540	-60	268	73		Awaiti	ing Results	
RRLMBAC082	6946153	400042	540	-60	270	82		Awaiti	ing Results	
RRLMBAC083	6946176	400444	540	-60	266	82		Awaiti	ing Results	
RRLMBAC084	6946148	400832	540	-60	268	79			ing Results	
RRLMBAC085	6946153	401239	540	-60	269	89			ing Results	
RRLMBAC086	6946150	401641	540	-60	270	68			ing Results	
RRLMBAC087	6946156	402029	540	-60	268	82			ing Results	
RRLMBAC088	6946137	402439	540	-60	270	71			ing Results	
RRLMBAC089	6946146	402433	540	-60	270	65			ing Results	
RRLMBAC089	6946143	402847	540	-60	271	109			ing Results	
RRLMBAC090	6946135	403244	540	-60	271	71			-	
									ing Results	
RRLMBAC092	6945365	405244	540	-60	271	92			ing Results	
RRLMBAC093	6945367	405628	540	-60	270	65			ing Results	
RRLMBAC094	6945367	406038	540	-60	270	79			ing Results	
RRLMBAC095	6945368	406431	540	-60	271	89			ing Results	
RRLMBAC096	6945369	406840	540	-60	270	85			ing Results	
RRLMBAC097	6945362	407239	540	-60	274	81		Awaiti	ing Results	
RRLMBAC098	6945364	407638	540	-60	269	105		Awaiti	ing Results	
RRLMBAC099	6945362	408038	540	-60	270	80		Awaiti	ing Results	
RRLMBAC100	6944565	400040	540	-60	270	38		Awaiti	ing Results	
RRLMBAC101	6944565	400443	540	-60	271	36		Awaiti	ing Results	
RRLMBAC102	6944563	400836	540	-60	271	62		Awaiti	ing Results	
RRLMBAC103	6944562	401242	540	-60	272	84		Awaiti	ing Results	
RRLMBAC104	6944566	402437	540	-60	269	53			ing Results	
RRLMBAC105	6944567	402840	540	-60	269	54			ing Results	
RRLMBAC106	6944562	403235	540	-60	271	65			ing Results	
RRLMBAC107	6944564	403630	540	-60	269	87			ing Results	
RRLMBAC108	6944562	404041	540	-60	270	74			ing Results	
RRLMBAC108	6944567	404041	540	-60	270	81			ing Results	
RRLMBAC110	6944565	404831	540	-60	270	74			ing Results	
RRLMBAC111	6944559	405234	540	-60	270	107			ing Results	
RRLMBAC112	6944559	405629	540	-60	270	86			ing Results	
RRLMBAC113	6944564	406032	540	-60	270	80			ing Results	
RRLMBAC114	6944565	406433	540	-60	270	80			ing Results	
RRLMBAC115	6944562	406834	540	-60	270	85		Awaiti	ing Results	
RRLMBAC116	6944564	407225	540	-60	270	104		Awaiti	ing Results	
RRLMBAC117	6944565	407620	540	-60	270	77		Auroiti	ing Results	

Quarterly Report to 30 September 2020 APPENDIX 1 – Exploration Results

	Hole ID	Y	х	z	Dip	Azimuth	Total Depth (m)	From To Interval A (m) (m) (m) pp
RI	RLMBAC118	6944565	408033	540	-60	270	65	Awaiting Results
R	RLMBAC119	6943766	400048	540	-60	270	32	Awaiting Results
R	RLMBAC120	6943769	400436	540	-60	270	18	Awaiting Results
R	RLMBAC121	6943766	400831	540	-60	270	27	Awaiting Results
R	RLMBAC122	6943766	401234	540	-60	270	88	Awaiting Results
R	RLMBAC123	6943756	401648	540	-60	277	70	Awaiting Results
R	RLMBAC124	6943141	400022	540	-60	270	50	Awaiting Results
R	RLMBAC125	6943138	400437	540	-60	270	41	Awaiting Results
R	RLMBAC126	6943140	400835	540	-60	269	65	Awaiting Results
R	RLMBAC127	6943161	401235	540	-60	271	56	Awaiting Results
RI	RLMBAC128	6943160	401638	540	-60	271	111	Awaiting Results
-	RLMBAC129	6943162	402041	540	-60	269	67	Awaiting Results
	RLMBAC130	6943662	404854	540	-60	264	53	Awaiting Results
	RLMBAC131	6943657	405229	540	-60	270	52	Awaiting Results
_	RLMBAC132	6943631	405645	540	-60	270	56	Awaiting Results
	RLMBAC133	6943635	406033	540	-60	272	106	Awaiting Results
	<u>+</u>	6942970	400033	540	-60	272	53	-
	RLMBAC134							Awaiting Results
	RLMBAC135	6942966	404834	540	-60	263	31	Awaiting Results
\rightarrow	RLMBAC136	6942966	405241	540	-60	268	40	Awaiting Results
	RLMBAC137	6942965	405640	540	-60	269	65	Awaiting Results
1	RLMBAC138	6942959	406045	540	-60	270	61	Awaiting Results
	RLMBAC139	6942165	401640	540	-60	271	50	Awaiting Results
R	RLMBAC140	6942161	402041	540	-60	269	75	Awaiting Results
RI	RLMBAC141	6942184	402456	540	-60	269	101	Awaiting Results
R	RLMBAC142	6942164	402839	540	-60	269	69	Awaiting Results
R	RLMBAC143	6942163	403237	540	-60	269	67	Awaiting Results
R	RLMBAC144	6942155	403640	540	-60	271	77	Awaiting Results
R	RLMBAC145	6942162	404031	540	-60	266	75	Awaiting Results
RI	RLMBAC146	6942163	404428	540	-60	269	75	Awaiting Results
R	RLMBAC147	6942169	404836	540	-60	270	52	Awaiting Results
R	RLMBAC148	6942169	405237	540	-60	271	113	Awaiting Results
R	RLMBAC149	6942165	405638	540	-60	269	57	Awaiting Results
	RLMBAC150	6941361	402441	540	-60	270	47	Awaiting Results
	RLMBAC151	6941362	402842	540	-60	269	112	Awaiting Results
	RLMBAC152	6941342	403259	540	-60	273	120	Awaiting Results
	RLMBAC153	6941341	403638	540	-60	273	70	Awaiting Results
	RLMBAC154	6941341	404046	540	-60	275	62	Awaiting Results
	RLMBAC155	6941355	404447	540	-60	264	66	Awaiting Results
	RLMBAC155	6941355	404447	540	-60	204	105	
-	RLMBAC156	6941353	404857			271	83	Awaiting Results
				540	-60			Awaiting Results
	RLMBAC158	6941369	405620	540	-60	270	103	Awaiting Results
-	RLMBAC159	6940564	402452	540	-60	270	41	Awaiting Results
	RLMBAC160	6940560	402842	540	-60	270	48	Awaiting Results
_	RLMBAC161	6940566	403235	540	-60	273	73	Awaiting Results
	RLMBAC162	6940568	403636	540	-60	258	110	Awaiting Results
	RLMBAC163	6940657	404034	540	-60	268	74	Awaiting Results
R	RLMBAC164	6940657	404435	540	-60	278	81	Awaiting Results
RI	RLMBAC165	6940662	404809	540	-60	266	120	Awaiting Results
R	RLMBAC166	6940651	405216	540	-60	270	94	Awaiting Results
R	RLMBAC167	6940644	405639	540	-60	273	131	Awaiting Results
RI	RLMBAC168	6940647	406034	540	-60	269	77	Awaiting Results
RI	RLMBAC169	6940656	406414	540	-60	270	90	Awaiting Results
R	RLMBAC170	6940654	406841	540	-60	270	95	Awaiting Results
R	RLMBAC171	6940650	407248	540	-60	270	86	Awaiting Results
	RLMBAC172	6939761	402443	540	-60	270	60	Awaiting Results
	RLMBAC173	6939766	402846	540	-60	273	92	Awaiting Results
	RLMBAC174	6939770	403236	540	-60	275	68	Awaiting Results
	RLMBAC175	6939769	403634	540	-60	270	67	Awaiting Results
	ILLINIDACT/J	0333703	+03034	0+0	-00	270	07	Awaiting Nesults

APPENDIX 1 – Exploration Results

Uala ID	Hole ID Y X Z Dip Azimuth Total Depth (m)								From To Interval Au			
Hole ID	ł	^	2	Dip	Azimuth	Total Depth (m)	(m)	(m)	(m)	рр		
RRLRMDD044	6919925	428380	508	-70	74	714.01	No significant Intercept					
RRLRMDD045	6919622	429157	507	-57	272	650.3	542	544	2	2.1		
RRLRMDD045							547.38	548.55	1.17	2.2		
RRLRMDD045							551	552	1	1.1		
RRLRMDD045 RRLRMDD045							556 561	558 562	2 1	1.0 1.		
RRLRMDD045							563.7	564	0.3	1.4		
RRLRMDD046	6920272	428254	507	-64	48	625			ant Intercept			
RRLRMDD047	6919750	428443	514	-79	58	1113.9	No significant Intercept					
RRLRMDD048	6919626	429162	507	-75	254	1011.6	494	495	1	13		
RRLRMDD048							661	661.85	0.85	4.		
RRLRMDD048W1	6919626	429162	507	-75	254	1182.5		No signific	ant Intercept			
RRLRMDD048W2	6919626	429161	507	-75	254	902.1		-	ant Intercept			
RRLRMDD049	6918821	429491	502	-65	248	628.4	484.68	488.7	4.02	1.1		
RRLRMDD049							504	505	1	4.9		
RRLRMDD049							511.64	524	12.36	4.3		
RRLRMDD049							527	530	3	1.0		
RRLRMDD049							543.75	548.39	4.64	3.		
RRLRMDD049 RRLRMDD049							554 566	555 567	1 1	3.3 1.1		
RRLRMDD049	6920615	427650	505	-64	71	1167.7	300		ant Intercept	1.		
RRLRMDD050W1	6920613	427652	506	-64	71	1071.9	977.2	978.06	0.86	4		
RRLRMDD050W1	6920784	427556	504	-67	60	1135.6	977.2 978.06 0.86 4.7 No significant Intercept					
RRLRMDD051	6920431	427785	504	-62	72	1170.54	Awaiting Results					
RRLRMDD052W1	6920429	427786	504	-62	72	1029.6	Awaiting Results					
RRLRMDD053	6920429	427780	506	-02	56	720.6			ng Results			
RRLRMDD053A	6920154	428278	506	-78	56	720.0			ng Results			
RRLRMDD053W1	6920154	428278	506	-78	56	626.9			ng Results			
RRLRMDD053W1	6920154	428278	506	-78	56	807.5			ng Results			
RRLRMDD053W1A	6918553	429491	500	-73	226	587.1			ng Results			
RRLRMDD055	6920590	429491	510	-66	73	444.92			ng Results			
RRLRMDD055	6920390	428200	508	-00	64	444.92			ng Results			
RRLRMDD057	6920986	427972	508	-81	77	624.9			ng Results			
RRLRMDD058	6921187	427691	505	-60	72	479.7			ng Results			
RRLRMRC879	6921695	427424	505	-62	72	390			ant Intercept			
RRLRMRCD025	6920273	428261	500	-71	68	637	620	621	1	1.		
MAERINIACDOZS	Thompsons Bore Collar Location											
Hole ID	Y	X	Z	Dip	Azimuth	Total Depth (m)	From	То	n >1.0 ppm Au Interval	Α		
	6000000	1	5.00	-	0.05	• • •	(m)	(m)	(m)	рр		
RRLTBRC001	6939086	403354	560	-60	235	210	Awaiting Results					
RRLTBRC002	6939142	403338	559	-60	225	198	Awaiting Results					
RRLTBRC003	6939118	403324	560	-60	225	228	Awaiting Results					
RRLTBRC004	6939200	403194	559	-60	225	120	Awaiting Results					
RRLTBRC005	6939276	403118	560	-60	225	126		Awaiti	ng Results			