



# Quarterly Report September 2020

# HIGHLIGHTS

# Exploration

#### Thursday's Gossan Copper-Gold Prospect (Stavely Project, Western Victoria)

- > The Cayley Lode continued to deliver strong results including the following assays:
  - o 4.9m at 2.14% Cu, 0.33g/t Au and 9.8g/t Ag from 347m down-hole in SMD094;
  - o 10m at 2.33% Cu, 0.45g/t Au and 20g/t Ag from 224m down-hole in SMD095;
  - 15m at 3.59% Cu, 2.73g/t Au and 18g/t Ag including 1m at 2.41% Cu, 24.6g/t Au and 16.5g/t Ag from 222m in SMD096; and
  - 4.8m at 3.56% Cu, 0.46g/t Au and 29g/t Ag from 255.8m down-hole in SMD097.
- A very broad zone of copper mineralisation including a significant shallow intercept of 18m at 1.11% Cu was intersected in the interpreted near-surface position of the parallel Copper Lode Splay (CLS) in drill hole SMD093:
  - 299.7m at 0.40% Cu from 35m down-hole, including:
    - 64m at 0.68% Cu from 35m, including:
      - 18m at 1.11% Cu from 36m in the interpreted Copper Lode Splay
    - 30.1m at 1.44% Cu, 0.21g/t Au and 4.4g/t Ag from 304.6m in the Cayley Lode, including:
      - 4m at 3.17% Cu, 0.26g/t Au and 7.5g/t Ag
- This is consistent with Stavely Minerals' interpretation that drilling targeting the Cayley Lode would begin to encounter the parallel CLS at shallow depths as it progressively advances to the west.
- There are currently four diamond rigs conducting the resource drill-out at the Cayley Lode and, subject to gaining access to the southern paddock, a maiden JORC Mineral Resource is targeted for the end of the first quarter of 2021.



#### ASX Code: SVY

Shares on issue: 261M Market capitalisation: \$188M Cash: \$31.34M (30 Sept 2020) ABN 33 119 826 907

#### Directors

Chris Cairns Jennifer Murphy Peter Ironside Amanda Sparks

#### Head Office

168 Stirling Hwy Nedlands, Western Australia 6009 T: +61 8 9287 7630 E: info@stavely.com.au W: stavely.com.au



# Corporate

- Stavely Minerals had a total of \$31.34M cash on hand at the end of the September 2020 Quarter.
- During the Quarter, the Company:
  - successfully secured an allocation of \$1.75m tax credits for distribution to eligible investors through the Federal Government's Junior Minerals Exploration Incentive ("JMEI") scheme for the 2020/2021 income year;
  - executed of a Letter of Intent (LoI) to divest its Mathinna/ Alberton and Lefroy Goldfields tenements in Tasmania, as well as its Fosterville East tenement in Victoria, to Nubian Resources Ltd (TSX-V:NRB)('Nubian') for A\$2.5 million in Nubian Shares and cash; and
  - completed an \$27.8M capital raising. The capital raising was underpinned by a Share Placement, which was significantly oversubscribed, of approximately 41.67 million shares at 60 cents per share to sophisticated and institutional investors to raise \$25 million before costs, and a Share Purchase Plan which raised approximately \$2.8M also at 60 cents per share.



## **OVERVIEW**

During the Quarter, Stage 3 restrictions as a response to the COVID-19 situation were introduced for regional Victoria, including the Stavely Project area. The Company has been able to continue its field-based drilling operations through-out the lock-down. The nature of the drilling process – drill core processing, logging and sampling – can be done in a manner consistent with the principles of social distancing recommended by Government authorities. All Stavely Minerals' personnel in the field are also using additional PPE (face masks/coverings) consistent with Government guidelines.

Stavely Minerals has benefited from its long-standing policy of hiring its field-based workforce from Victoria, and specifically preferencing employees from its regional locality in the State's west.

For the months of July and August, the number of drill rigs at site were reduced to minimise disturbance of the paddocks during the wet season. In September, an additional two drill rigs returned to site to continue with the ongoing resource drilling programme at the shallow high-grade copper-gold discovery - the Cayley Lode at the Thursday's Gossan prospect.

The resource drilling was concentrated on the south-eastern end of this (now) 1.5km long discovery zone, with in-fill and step-out drilling based on a roughly 40m x 40m drilling grid. From mid-October the focus will shift to four drill rigs on the northwest extension of the shallow Cayley Lode.

The Cayley Lode continues to deliver consistently good widths of high-grade copper, gold and silver mineralisation with some excellent new high-grade results returned during the Quarter from the south-eastern end in holes SMD094, 95, 96 and 97.

It was expected that, as the collars of drill holes testing the Cayley Lode mineralisation at increasing depths migrate further west, the upper portions of these drill holes should start to intercept the inferred near-surface position of the Copper Lode Splay. Drill hole SMD093 appears to have done exactly that. Within a very broad interval of nearly 300m at 0.40% copper from 36m, the hole has encountered the parallel Copper Lode Splay and returned 18m at 1.11% copper from 36m downhole. An interesting feature of the shallower intercepts in both the Copper Lode Splay and the Cayley Lode is that, sometimes the copper and gold results are offset – typically with the gold zone being above the copper zone. Likely, that is a function of the copper being more amenable to redistribution within the weathering profile.

Drill hole SMD093 also intercepted the target Cayley Lode at depth under the LAS and returned 30.1m at 1.44% copper, 0.21g/t gold and 4.4g/t silver from 304.6m down-hole with a higher-grade interval of 3.17% copper, 0.26g/t gold and 7.5g/t silver near the top of the larger interval.

The resource drill-out at the Cayley Lode is progressing well and, subject to gaining access to the southern paddock, a maiden JORC Mineral Resource is targeted for late in the first quarter of 2021. The delay is a function of the expected strike extent of mineralisation having been extended to between 1-1.2km and the timing of gaining access to the southern paddock.

'First cut' Mineral Resource block models and geostatistical evaluation is in-progress with promising early indications. There is possibly around 40 drill holes to be completed prior to the initial Mineral Resource estimate. The objective is to get a large proportion of the shallow resource into the Indicated Resource category so that a subsequent Scoping Study will have a reasonable basis for reporting Production Targets and financials.

In addition to the resource definition drilling, the Company has commenced various ancillary programmes including metallurgical test-work, environmental monitoring and groundwater monitoring that will provide critical information to the various stages of future development studies.





Figure 1. Western Victoria Project location plan.





Figure 2. Ravenswood Project location plan.





Figure 3. Mathinna Project location plan.





Figure 4. Central Victoria – tenement location plan.



# **EXPLORATION**

#### Stavely Project (RL2017)

#### Thursday's Gossan Prospect

- Diamond drill holes SMD096 to SMD101 (Figure 5 to 6) were completed. Drill holes SMD102, SMD103 and SMD104 were in progress at the end of the Quarter;
- An intensive resource drill-out was underway on the south-eastern end of this (now) 1.5km long discovery zone, with in-fill and step-out drilling based on a roughly 40m x 40m drilling grid.
- Assay results were received for drill holes SMD093, SMD094, SMD095, SMD096 and SMD097.

Significant intercepts for all drill holes received as at the end of the Quarter are presented in the Cayley Lode Intercept Table.

Results received during the Quarter from the Cayley Lode included:

#### SMD093

Diamond drill hole SMD093 intercepted a very broad zone of low-grade copper mineralisation (Figure 5) with:

- 299.7m at 0.40% Cu from 35m down-hole including
  - 64m at 0.68% Cu from 35m, including
    - 18m at 1.11% Cu from 36m in the interpreted CLS
  - 30.1m at 1.44% Cu, 0.21g/t Au and 4.4g/t Ag from 304.6m in the Cayley Lode, including
    - 4m at 3.17% Cu, 0.26g/t Au and 7.5g/t Ag from 306m

The CLS had been intercepted at depth in some earlier diamond drilling including (Figure 6):

- 6m at 6.73% Cu, 0.84g/t Au and 15g/t Ag from 538m down-hole in SMD032 (see ASX announcement 18 December 2018), and
- 10m at 2.43% Cu, 0.30g/t Au and 11g/t Ag from 583m down-hole in SMD044 (see ASX announcement 12 March 2019)

The CLS has also been inferred to approach surface as noted in a coherent zone of copper  $\pm$  gold  $\pm$  silver intercepts in shallow historical air-core drilling conducted to define the extents of the chalcocite-enriched blanket Mineral Resource drilling (see ASX announcement 9 March 2017 and Figure 7) including:

- o 12m at 1.08% Cu and 0.24g/t Au (no Ag assay) from 30m down-hole in TGAC004
- o 9m at 1.76g/t Au (no Ag assay) from 26m and 6m at 1.1% Cu from 62m in TGAC013





Figure 5. SMD093 drill section.



Figure 6. Schematic cross-section of the Thursday's Gossan prospect. Note that the current Cayley Lode Mineral Resource drilling is focused only on the mineralisation located above the LAS on the UCF.



Diamond drill hole SMD094 (Figure 8) intersected:

- o 53m at 0.39% Cu in the chalcocite-enriched blanket from 50m down-hole
- 4.9m at 2.14% Cu, 0.33g/t Au and 9.8g/t Ag in the Cayley Lode under the LAS from 347m down-hole

Diamond drill holes SMD095, SMD096 and SMD097 were all drilled from similar collar locations but were drilled at different azimuths in an attempt to drill a 'fan' of holes under the railway to define the Cayley Lode as it continues at depth to the south.

Diamond drill hole SMD095 (Figure 8) intersected:

- 50m at 0.40% Cu in the chalcocite-enriched blanket from 28m down-hole;
- 10m at 2.33% Cu, 0.45g/t Au and 20g/t Ag in the Cayley Lode above the LAS from 224m down-hole.

Diamond drill hole SMD096 (Figure 8) intersected:

- 25m at 0.52% Cu in the chalcocite-enriched blanket from 33m down-hole;
- 15m at 3.26% Cu, 0.62g/t Au and 16g/t Ag in the Cayley Lode above the LAS from 220m down-hole.

Additionally, in duplicate sampling as part of Stavely Minerals' ongoing QA/QC programme, the same interval in SMD096 returned significantly higher gold grades including:

- o 15m at 3.59% Cu, 2.73g/t Au and 18g/t Ag from 220m down-hole, including:
  - 1m at 2.41% Cu, 24.6g/t Au and 16.5g/t Ag from 222m, indicating that there is likely to be some nuggetty particulate gold in the system.

Diamond drill-hole SMD097 (Figure 8) intersected:

- o 18m at 0.63% Cu in the chalcocite-enriched blanket from 38m down-hole; and
- 4.8m at 3.56% Cu, 0.46g/t Au and 29g/t Ag in the Cayley Lode above the LAS from 255.8m down-hole.

The intercepts in SMD096 and SMD097 appear to have been truncated by the LAS and may have originally been of greater width.





Figure 7. Thursday's Gossan chalcocite-enriched Mineral Resources outline in dashed yellow and the two parallel near-surface zones of higher-grade copper±gold±silver (some drill holes assayed for Cu+Au+Ag, some for only Cu+Au and some for Cu only).





Figure 8. SMD094-97 drill section.

The intention of the current Mineral Resource drill programme is to delineate high-grade, nearsurface copper-gold-silver mineralisation over a significant strike extent in the Cayley Lode that would complement the existing large Inferred Mineral Resource in a shallow chalcocite-enriched blanket of 28 million tonnes at 0.4% copper (gold and silver not estimated) at Thursday's Gossan (see Stavely Minerals Limited 2018 Annual Report).

Once the near-surface potential is confirmed and some similar regional targets are tested, drilling will shift towards confirming the depth potential of the high-grade copper-gold-silver mineralisation on a number of mineralised structures including the Cayley Lode, the North-South Structure (NSS) and the CLS (Figure 6).

Other structures that have the potential to host well-developed copper-gold mineralisation may be inferred from a recently completed seismic survey.

During the next Quarter, the Company plans to drill two x ~1,500m diamond drill holes to test the two interpreted porphyry targets (see ASX announcement 15 July 2020).



The programme is scheduled to commence in November to drill the ~500m large-diameter precollars, then break for Christmas and recommence after the New Year with medium-diameter drill core to the planned final depths of ~1,500m with expected completion in February-March 2021.

#### **Mount Stavely Prospect**

One diamond drill hole, MSD003, was completed at the Mount Stavely prospect. The hole was drilled to target a flexure in the ultramafic north of Mount Stavely. The hole intersected sediments and ultramafic with only trace pyrite. No visible copper sulphides were noted.



Figure 9. MSD003 Drill collar location.



# Black Range Joint Venture Project (EL5425)

No on-ground exploration was conducted at the Black Range Project during the September Quarter.

#### Yarram Park Project (EL5478)

No exploration was conducted at the Yarram Park Project during the September Quarter.

#### Ararat Project (RL2020)

No exploration was conducted at the Ararat Project during the September Quarter.

#### **Ravenswood Project** (EPM26041, EPM26152, EPM26303 & EPM26304)

No exploration was conducted at the Ravenswood Project during the September Quarter.

# **Tasmania and Central Victoria** (EL19/2018, EL4/2019, EL6/2019, EL2/2015, EL3/2015, RL1/2011, EL006668)

No exploration was conducted at the Tasmania and Central Victoria Projects during the September Quarter.

### **Planned Exploration**

#### Stavely Project (RL2017)

During the next quarter, the resource drill-out at the Cayley Lode at Thursday's Gossan will continue. The intention of the current programme is to delineate high-grade, near-surface copper-gold-silver mineralisation over a significant strike extent in the Cayley Lode that would complement the existing large Inferred Mineral Resource of 28 million tonne at 0.4% copper (gold and silver not estimated) at Thursday's Gossan (see Stavely Minerals Limited 2018 Annual Report).

Four drill rigs will be conducting the resource drill out on a roughly 40m by 40m drill pattern on the northern extension of the Cayley Lode.

Two additional drill rigs will be deployed to drill two x  $\sim$ 1,500m diamond drill holes to test the two interpreted porphyry targets.

### CORPORATE

Stavely Minerals had a total of \$31.34M cash on hand at the end of the September 2020 Quarter.

During the Quarter:

the Company was successful in its application for participation in the Federal Government's Junior Minerals Exploration Incentive ("JMEI") scheme for the 2020/2021 income year. The Company has received an allocation of up to \$1,750,000 in tax credits which can be distributed to eligible investors. The scheme is voluntary and companies must apply each year to participate. This is the third year in succession that Stavely Minerals has been successful in receiving an allocation of JMEI credits. Stavely's JMEI for 2018/2019 of \$1.576 million resulted in an average credit of 5.7 cents per share to each eligible investor in that year. The JMEI for 2019/2020 of \$1.35 million resulted in a credit of 6.88 cents per share to each eligible investor for that year.



a Letter of Intent (LoI) was executed to divest the Company's Mathinna/Alberton and Lefroy Goldfields tenements, as well as its Fosterville East tenement in Victoria, to Nubian Resources Ltd (TSX-V: NBR) ('Nubian') for A\$2.5 million in Nubian shares and cash.

The transaction is consistent with Stavely Minerals' focus on the ongoing resource drill-out at the Cayley Lode discovery and broader exploration campaign at its 100%-owned Stavely Copper-Gold Project in western Victoria.

The terms of the LoI are as follows:

- Nubian to pay a non-refundable deposit of A\$100,000;
- A 60-day exclusivity period to complete final due diligence and execute a definitive agreement;
- Upon execution of the definitive agreement and all conditions met, Nubian will issue to Stavely Minerals a number of Nubian shares equivalent in value to A\$2.4 million based on the 5-trading day volume-weighted average price (VWAP) prior to the execution date, subject to a minimum issue of 5,050,000 Nubian shares being issued.

The consideration for the purchase is based on 100% ownership of the tenements. Stavely Minerals is in Joint Venture with Bestlevel Holdings Pty Ltd (Bestlevel), with Stavely Minerals currently holding a 75% interest and having rights to earn a further 10% to 85% before the Joint Venture becomes a standard contribute or dilute arrangement.

Bestlevel is participating in the sale agreement by selling Bestlevel to Nubian to achieve the 100% sale basis. The value of the Bestlevel contribution of a 25% interest in the three Mathinna JV tenements equates to A\$406,000 of Nubian shares to be issued to Bestlevel or its beneficial owners.

As is usual for a transaction of this nature, it is expected that the issued Nubian shares will have an escrow period mandated by the Canadian market authorities.

the Company completed a successful capital raising of \$27.8 million. The capital raising was underpinned by a Share Placement of approximately 41.67 million shares at 60 cents per share to sophisticated and institutional investors to raise \$25 million before costs and a Share Purchase Plan of approximately 4.6 million shares at 60 cents per share which raised approximately \$2.8 million.

The Placement, which was significantly over subscribed, was undertaken in two tranches, the first tranche of 28 million shares was issued in July 2020 and the second tranche, which was approved by shareholders at the General Meeting held on 31 August 2020, was issued in September 2020.

The funds raised from the Placement and Share Purchase Plan are to be used to:

- Complete the shallow (0-200m) Mineral Resource drill-out at the Cayley Lode;
- Identify additional lodes;
- Drill test the deeper porphyry targets;
- Progress a Phase 1 Open Pit Scoping Study; and
- Provide additional working capital.



## **ANNOUNCEMENTS**

Investors are directed to the following announcements (available at www.stavely.com.au) made by Stavely Minerals during the September 2020 Quarter for full details of the information summarised in the Quarterly Report.

| 04/08/2020 | - | Drilling and Operations Update - COVID-19                 |
|------------|---|-----------------------------------------------------------|
| 12/08/2020 | - | Share Purchase Plan Closed Raising \$2.8M                 |
| 25/08/2020 | - | Cayley Lode Continues to Deliver Outstanding Grades       |
| 31/08/2020 | - | Results of General Meeting                                |
| 07/09/2020 | - | 2 <sup>nd</sup> Tranche Placement and Cleansing Statement |

During and subsequent to the Quarter, Stavely Minerals participated in the following conferences and webinars:

- 22/08/2020 AMEC Investor Day August 2020 Perth
- 15/09/2020 RIU Resurgence Conference September 2020 Perth
- 14/10/2020 Arlington Group The Big Copper Wave October 2020 Webinar



# **Tenement Portfolio - Victoria**

| Area Name       | Tenement | Grant Date/<br>(Application Date) | Size (Km²) |
|-----------------|----------|-----------------------------------|------------|
| Black Range JV* | EL 5425  | 18 December 2012                  | 100        |
| Yarram Park     | EL 5478  | 26 July 2013                      | 26         |
| Ararat          | RL 2020  | 8 May 2020                        | 28         |
| Stavely         | RL 2017  | 8 May 2020                        | 81         |
| Stavely         | EL6870   | 30 October 2018                   | 1027       |

The tenements held by Stavely Minerals as at 30 September 2020 are as follows:

\* 51% held by Stavely Minerals Limited, 49% by Black Range Metals Pty Ltd, a fully owned subsidiary of Navarre Minerals Limited.

The tenements held by Stavely Tasmania Pty Ltd as at 30 September 2020 are as follows:

| Area Name | Tenement | Grant Date/<br>(Application Date) | Size (Km²) |
|-----------|----------|-----------------------------------|------------|
| Myola     | EL006668 | 6 March 2018                      | 83         |

# **Tenement Portfolio - Queensland**

The tenements held by Ukalunda Pty Ltd as at 30 September 2020 are as follows:

| Area Name        | Tenement | Grant Date/<br>(Application Date) | Size<br>(Km²) |
|------------------|----------|-----------------------------------|---------------|
| Ravenswood West  | EPM26041 | 24 May 2016                       | 145           |
| Ravenswood North | EPM26152 | 15 September 2016                 | 32            |
| Dreghorn         | EPM26303 | 23 March 2017                     | 30            |
| Kirk North       | EPM26304 | 23 March 2017                     | 18            |



## **Tenement Portfolio - Tasmania**

| Area Name | Tenement  | Grant Date/<br>(Application Date) | Size (Km²) |
|-----------|-----------|-----------------------------------|------------|
| Mathinna  | EL19/2018 | 20 July 2019                      | 1          |
| Mathinna  | EL4/2019  | 22 August 2019                    | 68         |
| Mathinna  | EL6/2019  | 27 January 2020                   | 40         |
| Mathinna  | EL2/2015  | 28 May 2015                       | 33         |
| Lefroy    | RL1/2011  | 23 April 2012                     | 1          |
| Lefroy    | EL3/2015  | 8 January 2015                    | 27         |
| Lefroy    | ELA6/2020 | (30 January 2020)                 | 0.05       |

The tenements held by Stavely Tasmania Pty Ltd as at 30 September 2020 are as follows:

#### Chris Cairns Managing Director and Executive Chairman

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Chris Cairns, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Cairns is a full-time employee of the Company. Mr Cairns is the Managing Director of Stavely Minerals Limited, is a substantial shareholder of the Company and is an option holder of the Company. Mr Cairns has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Cairns consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Authorised for lodgement by Chris Cairns, Managing Director and Executive Chairman.



|         |           |        | М       | GA 94 zone 54   |           |                    |                                 |
|---------|-----------|--------|---------|-----------------|-----------|--------------------|---------------------------------|
| Hole id | Hole Type | East   | North   | Dip/<br>Azimuth | RL<br>(m) | Total<br>Depth (m) | Comments                        |
| SMD050  | DD        | 642070 | 5836609 | -60/59.5        | 264       | 132.6              |                                 |
| SMD051  | DD        | 642160 | 5836476 | -60/59.5        | 264       | 220.9              |                                 |
| SMD052  | DD        | 642238 | 5836421 | -60/59.5        | 264       | 271.7              |                                 |
| SMD053  | DD        | 642302 | 5836355 | -60/59.5        | 264       | 273.6              |                                 |
| SMD054  | DD        | 642048 | 5836641 | -60/59.5        | 264       | 245.5              |                                 |
| SMD055  | DD        | 642032 | 5836595 | -60/59.5        | 264       | 169.9              | Hole failed prior to target dep |
| SMD056  | DD        | 642031 | 5836590 | -60/59.5        | 264       | 185.8              | Hole failed prior to target dep |
| SMD057  | DD        | 642386 | 5836309 | -60/59.5        | 264       | 242.2              |                                 |
| SMD058  | DD        | 642115 | 5836542 | -60/59.5        | 264       | 140.5              |                                 |
| SMD059  | DD        | 642122 | 5836461 | -60/59.5        | 264       | 317.8              |                                 |
| SMD060  | DD        | 642137 | 5836508 | -60/59.5        | 264       | 203.2              |                                 |
| SMD061  | DD        | 642276 | 5836435 | -60/59.5        | 264       | 219.5              |                                 |
| SMD062  | DD        | 642337 | 5836367 | -60/59.5        | 264       | 227.70             |                                 |
| SMD063  | DD        | 642063 | 5836585 | -60/59.5        | 264       | 162.7              |                                 |
| SMD064  | DD        | 642041 | 5836619 | -60/59.5        | 264       | 184.9              |                                 |
| SMD065  | DD        | 642427 | 5836356 | -60/239.5       | 264       | 350                |                                 |
| SMD066  | DD        | 641936 | 5836807 | -60/59.5        | 264       | 294                |                                 |
| SMD067  | DD        | 641884 | 5836880 | -60/59.5        | 264       | 236                |                                 |
| SMD068  | DD        | 642342 | 5836414 | -60/239.5       | 264       | 342                |                                 |
| SMD069  | DD        | 641725 | 5837063 | -60/59.5        | 264       | 130.7              |                                 |
| SMD070  | DD        | 642199 | 5836451 | -60/59.5        | 264       | 399.6              |                                 |
| SMD072  | DD        | 641585 | 5837196 | -60/59.5        | 264       | 100.9              |                                 |
| SMD073  | DD        | 641473 | 5837155 | -60/59.5        | 264       | 409.9              |                                 |
| SMD074  | DD        | 642162 | 5836437 | -60/59.5        | 264       | 302                |                                 |
| SMD076  | DD        | 642174 | 5836523 | -60/59.5        | 264       | 198.4              |                                 |
| SMD078  | DD        | 642237 | 5836464 | -60/59.5        | 264       | 274.9              |                                 |
| SMD079  | DD        | 642099 | 5836496 | -60/59.5        | 264       | 306.7              |                                 |
| SMD080  | DD        | 642196 | 5836406 | -60/59.5        | 264       | 309.3              |                                 |
| SMD082  | DD        | 642264 | 5836342 | -60/59.5        | 264       | 313.4              |                                 |
| SMD083  | DD        | 642599 | 5835995 | -60/49.5        | 264       | 433.1              |                                 |
| SMD084  | DD        | 642236 | 5836364 | -60/59.5        | 264       | 278.1              |                                 |
| SMD085  | DD        | 642444 | 5836022 | -60/49.5        | 264       | 522.3              |                                 |
| SMD086  | DD        | 642465 | 5836370 | -60/239.5       | 264       | 385.9              |                                 |
| SMD087  | DD        | 642060 | 5836522 | -60/59.5        | 264       | 268.3              |                                 |
| SMD088  | DD        | 642427 | 5836445 | -60/239.5       | 264       | 405.5              |                                 |
| SMD089  | DD        | 642502 | 5836384 | -60/239.5       | 262       | 502.1              |                                 |

#### **Quarterly Report September 2020**



| SMD090   | DD       | 642068 | 5836563 | -60/59.5  | 262 | 213.8       |                                                                                                   |
|----------|----------|--------|---------|-----------|-----|-------------|---------------------------------------------------------------------------------------------------|
| SMD091   | DD       | 642374 | 5836383 | -60/59.5  | 262 | 191         |                                                                                                   |
| SMD092   | DD       | 642346 | 5836411 | -60/59.5  | 262 | 222         |                                                                                                   |
| SMD093   | DD       | 642153 | 5836294 | -60/59.5  | 262 | 515.1       |                                                                                                   |
| SMD093W1 | DD       | 642153 | 5836294 | -60/57.4  | 262 | 339.1       | SMD093W1 is wedged off<br>SMD093 in order to recover lo<br>core through the Cayley Lode<br>SMD093 |
| SMD094   | DD       | 642205 | 5836237 | -60/59.5  | 262 | 608.3       |                                                                                                   |
| SMD094W1 | DD       | 642205 | 5836237 | -60/57.0  | 262 | 281.1       | SMD094W1 is wedged off<br>SMD094 in order to recover lo<br>core through the Cayley Lode<br>SMD093 |
| SMD095   | DD       | 642205 | 5836237 | -60/59.5  | 262 | 304.6       |                                                                                                   |
| SMD096   | DD       | 642319 | 5836284 | -60/71.5  | 262 | 287.7       |                                                                                                   |
| SMD097   | DD       | 642319 | 5836284 | -60/88.5  | 262 | 298.6       |                                                                                                   |
| SMD098   | DD       | 642102 | 5836364 | -60/59.5  | 262 | 449.1       |                                                                                                   |
| SMD099   | DD       | 642063 | 5836352 | -60/59.5  | 262 | 531         |                                                                                                   |
| SMD100   | DD       | 642396 | 5836495 | -60/239   | 259 | 451.8       |                                                                                                   |
| SMD101   | DD       | 642044 | 5836427 | -70/59    | 260 | 379.7       |                                                                                                   |
| SMD102   | DD       | 642471 | 5836355 | -60/223   | 260 | In progress | As at the end of the Quarte                                                                       |
| SMD103   | DD       | 642196 | 5836425 | -60/59    | 261 | In Progress | As at the end of the Quarte                                                                       |
| SMD104   | DD       | 642225 | 5836386 | -60/59    | 261 | In Progress | As at the end of the Quarte                                                                       |
| SMS001D  | Sonic/DD | 642197 | 5836489 | -60/59.5  | 264 | 212         | Failed to test target - drilled to of Cayley Lode                                                 |
| SMS002AD | Sonic/DD | 642275 | 5836478 | -60/59.5  | 264 | 105.4       | Failed to test target - drilled to of Cayley Lode                                                 |
| SMS003   | Sonic    | 642207 | 5836523 | -60/59.5  | 264 | 97          | Failed to test target - drilled to of Cayley Lode                                                 |
| SMS004   | Sonic    | 642150 | 5836555 | -60/59.5  | 264 | 131.5       | Failed to test target - drilled to<br>of Cayley Lode                                              |
| SMS005   | Sonic    | 642125 | 5836587 | -60/59.5  | 264 | 85.5        |                                                                                                   |
| SMS006   | Sonic    | 642102 | 5836620 | -60/59.5  | 264 | 76          |                                                                                                   |
| SMS007   | Sonic    | 642085 | 5836654 | -60/59.5  | 264 | 64          |                                                                                                   |
| SMS008   | Sonic    | 642055 | 5836680 | -60/59.5  | 264 | 64          |                                                                                                   |
| SMS009   | Sonic    | 642011 | 5836730 | -60/59.5  | 264 | 54          | Abandoned                                                                                         |
| SMS009A  | Sonic    | 642011 | 5836730 | -60/59.5  | 264 | 80          | Re-drill of SMS009A                                                                               |
| SMS010   | Sonic    | 642083 | 5836614 | -60/59.5  | 264 | 83          |                                                                                                   |
| SMS011   | Sonic    | 642106 | 5836581 | -60/59.5  | 264 | 88          |                                                                                                   |
| SMS012   | Sonic    | 642193 | 5836530 | -60/239.5 | 261 | 80          |                                                                                                   |
| SMS013   | Sonic    | 642212 | 5836497 | -60/234.5 | 262 | 58          |                                                                                                   |



| Thursday's C |              | -        |         |                 |     |                    |         |       |       |             |         |       |     |
|--------------|--------------|----------|---------|-----------------|-----|--------------------|---------|-------|-------|-------------|---------|-------|-----|
|              |              | MGA 94 z | one 54  |                 |     |                    | Interce | pt    |       |             |         |       |     |
| Hole id      | Hole<br>Type | East     | North   | Dip/<br>Azimuth | RL  | Total<br>Depth (m) | From    | То    | Width | Cu          | Au      | Ag    | Ni  |
|              |              |          |         |                 | (m) |                    | (m)     | (m)   | (m)   | (%)         | (g/t)   | (g/t) | (%  |
| SMD050       | DD           | 642070   | 5836609 | -60/59.5        | 264 | 132.6              | 62      | 94    | 32    | 5.88        | 1.00    | 58    |     |
|              |              |          |         |                 |     | Incl.              | 82      | 94    | 12    | 14.3        | 2.26    | 145   |     |
|              |              |          |         |                 |     | and                | 85      | 87    | 2     | 40          | 3.00    | 517   |     |
|              |              |          |         |                 |     |                    | 96.7    | 101.1 | 4.4   |             |         |       | 3.9 |
| SMD051       | DD           | 642160   | 5836476 | -60/59.5        | 264 | 220.9              | 98.0    | 157.0 | 59    | 1.80        | 0.43    | 15.4  |     |
|              |              |          |         |                 |     | Incl.              | 106.6   | 115.1 | 8.5   | 4.38        | 0.87    | 32.7  |     |
|              |              |          |         |                 |     | and                | 134.0   | 137.0 | 3.0   | 5.66        | 0.29    | 4.60  |     |
|              |              |          |         |                 |     |                    | 177.0   | 185   | 8.0   | 9.69        | 0.40    | 16.8  |     |
|              |              |          |         |                 |     | Incl.              | 179.0   | 181.0 | 2.0   | 17.30       | 0.57    | 13.1  |     |
| SMD052       | DD           | 642238   | 5836421 | -60/59.5        | 264 | 271.7              | 25      | 92    | 67    | 0.38        | 0.10    | 2.5   |     |
|              |              |          |         |                 |     | Incl.              | 76      | 92    | 16    | 0.63        | 0.28    | 7.0   |     |
|              |              |          |         |                 |     | Incl.              | 77      | 84    | 7     | 0.98        | 0.23    | 12    |     |
| SMD053       | DD           | 642302   | 5836355 | -60/59.5        | 264 | 273.6              | 30      | 52    | 22    | 0.37        |         |       |     |
|              |              |          |         |                 |     |                    | 176     | 178   | 2     | 1.17        | 1.23    | 4.1   |     |
|              |              |          |         |                 |     |                    | 201     | 211.3 | 10.3  | 3.09        | 1.69    | 22.6  |     |
|              |              |          |         |                 |     | Incl.              | 202     | 207   | 5     | 5.81        | 3.20    | 43.6  |     |
|              |              |          |         |                 |     | and                | 203     | 204   | 1     | 8.42        | 1.77    | 97    |     |
|              |              |          |         |                 |     | and                | 204     | 205   | 1     | 2.91        | 8.69    | 23.9  |     |
| SMD054       | DD           | 642048   | 5836641 | -60/59.5        | 264 | 245.52             | 55      | 57    | 2     | 1.89        | 0.56    | 16    |     |
| 3MD034       |              | 042040   | 3630041 | -00/39.3        | 204 | 243.32             | 86      | 97    | 11    | 4.62        | 0.50    | 25    |     |
|              |              |          |         |                 |     | Incl               | 90      | 97    | 7     | 7.10        |         |       |     |
|              |              |          |         |                 |     | Incl.              |         |       |       |             | 0.72    | 39    |     |
|              |              |          |         |                 |     | Incl.              | 92      | 95    | 3     | 10.87       | 0.67    | 52    |     |
|              |              |          |         |                 |     |                    | 96      | 101   | 5     |             |         |       | 1.4 |
| SMD055       | DD           | 642032   | 5836595 | -60/59.5        | 264 | 169.9              | 24      | 29    | 5     | 1.00        | 0.32    | 7     |     |
|              |              |          |         |                 |     |                    | 78      | 83    | 5     | 1.37        | 0.17    | 8     |     |
|              |              |          |         |                 |     |                    | 156     | 157   | 1     | 1.18        | 0.72    | 8     |     |
|              |              |          |         |                 |     |                    | 162     | 163   | 1     | 3.64        | 0.60    | 43    |     |
| SMD056       | DD           | 642031   | 5836590 | -60/59.5        | 264 | 185.8              | 79      | 82    | 3     | 1.68        | 0.18    | 8     |     |
|              |              |          |         |                 |     |                    | 157     | 165.3 | 8.3   | 1.65        | 0.23    | 7.2   |     |
|              |              |          |         |                 |     | Incl.              | 157     | 160   | 3     | 3.75        | 0.25    | 10.2  |     |
| SMD057       | DD           | 642386   | 5836309 | -60/59.5        | 264 | 242.2              |         | 1     | No Si | gnificant R | lesults | 1     | 1   |
| SMD058       | DD           | 642115   | 5836542 | -60/59.5        | 264 | 140.5              | 19      | 48    | 29    | 0.37        |         |       |     |
|              |              |          |         |                 |     |                    | 68      | 91    | 23    | 1.34        | 0.26    | 3.5   |     |
|              |              |          |         |                 | 1   | Incl.              | 88      | 91    | 3     | 6.33        | 0.27    | 2.9   |     |



| , , , , , , , , , , , , , , , , , , , , | _        |                  |                    | Intercept Tab        |            |           |           |       |                    |             |         |       |          |  |
|-----------------------------------------|----------|------------------|--------------------|----------------------|------------|-----------|-----------|-------|--------------------|-------------|---------|-------|----------|--|
|                                         |          | MGA 94 z         | one 54             |                      |            |           | Intercept |       |                    |             |         |       |          |  |
| Hole id                                 | Hole     | East             | North              | Dip/                 | RL         | Total     | From      | То    | Width              | Cu          | Au      | Ag    | Ni       |  |
|                                         | Туре     |                  |                    | Azimuth              | (m)        | Depth (m) | (m)       | (m)   | (m)                | (%)         | (g/t)   | (g/t) | (%)      |  |
| SMD059                                  | DD       | 642122           | 5836461            | -60/59.5             | 264        | 317.8     | 21        | 22    | 1                  |             | 3.15    | 25    |          |  |
|                                         |          |                  |                    |                      |            |           | 197       | 202   | 5                  | 3.28        | 0.27    | 13    |          |  |
|                                         |          |                  |                    |                      |            |           | 235       | 253   | 18                 | 1.00        | 0.10    | 3     |          |  |
|                                         |          |                  |                    |                      |            | Incl.     | 245.8     | 252.6 | 6.8                | 1.85        | 0.17    | 6     |          |  |
| SMD060                                  | DD       | 642137           | 5836508            | -60/59.5             | 264        | 203.2     | 19.2      | 135.4 | 102.3 <sup>1</sup> | 0.68        |         |       |          |  |
|                                         |          |                  |                    |                      |            | Incl.     | 74        | 135.4 | 48.2 <sup>2</sup>  | 1.04        | 0.31    | 14    |          |  |
|                                         |          |                  |                    |                      |            | Incl.     | 74        | 86    | 12                 | 1.55        | 0.63    | 13    |          |  |
|                                         |          |                  |                    |                      |            | and       | 111       | 135.4 | 13.6 <sup>3</sup>  | 1.90        | 0.38    | 33    |          |  |
|                                         |          |                  |                    |                      |            | Incl.     | 129       | 135.1 | 6.10               | 3.55        | 0.73    | 41    |          |  |
|                                         |          |                  |                    |                      |            |           | 116.6     | 119   | 2.44               |             |         |       | 1.2      |  |
| SMD061                                  | DD       | 642276           | 586435             | -60/59.5             | 264        | 219.5     | 160.2     | 164.5 | 4.3                | 2.06        | 0.44    | 23    |          |  |
| SMD062                                  | DD       | 642337           | 5836367            | -60/59.5             | 264        | 227.70    | 128       | 131   | 3.0                | 2.43        | 0.25    | 11    |          |  |
|                                         |          |                  |                    |                      |            |           | 156       | 162   | 6.0                | 3.95        | 0.38    | 16    |          |  |
|                                         |          |                  |                    |                      |            | Incl.     | 160       | 162   | 2.0                | 7.46        | 0.61    | 31    |          |  |
|                                         |          |                  |                    |                      |            | and       | 160       | 161   | 1.0                | 10.5        | 0.86    | 35    |          |  |
| SMD063                                  | DD       | 642063           | 5836585            | -60/59.5             | 264        | 162.7     | 106       | 107   | 1.0                | 1.10        | 0.16    | 5.5   |          |  |
| SMD064                                  | DD       | 642041           | 5836619            | -60/59.5             | 264        | 184.9     | 121       | 129   | 8.0                | 5.12        | 1.48    | 34    |          |  |
|                                         |          |                  |                    |                      |            | Incl.     | 128       | 129   | 1.0                | 26.8        | 8.48    | 201   |          |  |
| SMD065                                  | DD       | 642427           | 5836356            | -60/239.5            | 264        | 350       |           |       | No Sig             | gnificant F | Results |       |          |  |
| SMD066                                  | DD       | 641936           | 5836807            | -60/59.5             | 264        | 294       |           |       | No Si              | gnificant F | Results |       |          |  |
| SMD067                                  | DD       | 641884           | 5836880            | -60/59.5             | 264        | 236       | 16        | 34    | 18.0               | 0.43        | 0.35    | 13    |          |  |
|                                         |          |                  |                    |                      |            | Incl.     | 25        | 27    | 2.0                | 1.21        | 0.27    | 27    |          |  |
|                                         |          |                  |                    |                      |            |           | 107       | 109   | 2.0                | 1.32        |         | 8     |          |  |
| SMD068                                  | DD       | 642342           | 5836414            | -60/239.5            | 264        | 342       | 50.3      | 102   | 51.7               | 0.39        |         |       |          |  |
|                                         |          |                  |                    |                      |            | Incl.     | 98        | 102   | 4                  | 1.75        | 0.31    | 16    |          |  |
|                                         |          |                  |                    |                      |            |           | 285       | 287   | 2                  | 0.26        | 0.65    | 1.8   |          |  |
| SMD069                                  | DD       | 641725           | 5837063            | -60/59.5             | 264        | 130.7     |           |       | No Si              | gnificant R | Results | l     |          |  |
| SMD070                                  | DD       | 641725           | 5836451            | -60/59.5             | 264        | 275.9     | 20        | 95    | 75.0               | 0.60        | 0.19    | 5     | <u> </u> |  |
| $\bigcirc$                              |          |                  |                    |                      |            | Incl.     | 65        | 84    | 19.0               | 1.48        | 0.40    | 15    | <u> </u> |  |
|                                         |          |                  |                    |                      |            | and       | 69.3      | 73    | 3.7                | 6.02        | 1.18    | 66    | <u> </u> |  |
|                                         |          |                  |                    |                      |            | and       | 71        | 72    | 1.0                | 9.23        | 2.67    | 125   |          |  |
| SMD072                                  | 00       | 644505           | E007400            | 60/50 F              | 004        | 100.9     |           |       |                    | gnificant F |         |       |          |  |
| SMD072<br>SMD073                        | DD<br>DD | 641585<br>641473 | 5837196<br>5837155 | -60/59.5<br>-60/59.5 | 264<br>264 | 409.9     | 149       | 153   | 4.0                | 1.31        | 0.31    | 6     | <u> </u> |  |
| GND075                                  |          | 041473           | 5057155            | 00/09.0              | 204        | -00.0     | 359       | 364   | 4.0<br>5.0         | 0.25        | 1.67    | 27    | <u> </u> |  |
|                                         |          |                  |                    |                      |            | Incl      |           |       |                    |             |         |       | <b> </b> |  |
|                                         |          |                  |                    |                      |            | Incl.     | 361.1     | 362   | 0.9                | 0.42        | 4.58    | 51    |          |  |



|         |      | MGA 94 z | one 54  |          |     |           | Interce | pt     |                  |             |         |       |          |
|---------|------|----------|---------|----------|-----|-----------|---------|--------|------------------|-------------|---------|-------|----------|
|         | Hole |          |         | Dip/     | RL  | Total     | From    | То     | Width            | Cu          | Au      | Ag    | Ni       |
| Hole id | Туре | East     | North   | Azimuth  | (m) | Depth (m) | (m)     | (m)    | (m)              | (%)         | (g/t)   | (g/t) | (%)      |
| SMD074  | DD   | 642162   | 5836437 | -60/59.5 | 264 | 302       | 25      | 59     | 34.0             | 0.32        |         |       |          |
|         |      |          |         |          |     |           | 176     | 183.6  | 7.6              | 1.36        | 0.24    | 7     |          |
|         |      |          |         |          |     |           | 193     | 197.7  | 4.3 <sup>5</sup> | 1.94        | 0.27    | 10    |          |
|         |      |          |         |          |     |           | 213     | 234.3  | 21.3             | 1.31        | 0.43    | 6     |          |
| SMD076  | DD   | 642174   | 5836523 | -60/59.5 | 264 | 198.4     | 128     | 144    | 16               | 1.01        | 0.24    | 6.5   |          |
|         |      |          |         |          |     | Incl.     | 139     | 144    | 5                | 2.42        | 0.55    | 14    |          |
| SMD078  | DD   | 642237   | 5836464 | -60/59.5 | 264 | 274.9     | 227.2   | 231    | 3.8              | 4.97        | 3.08    | 81    |          |
| SMD079  | DD   | 642099   | 5836496 | -60/59.5 | 264 | 306.7     | 24      | 41     | 17               | 0.31        |         |       |          |
|         |      |          |         |          |     |           | 86      | 87     | 1                | 1.29        | 0.41    | 9     |          |
|         |      |          |         |          |     |           | 141     | 144    | 3                | 1.38        | 0.15    | 5     |          |
|         |      |          |         |          |     |           | 153     | 154    | 1                | 1.16        | 0.31    | 8     |          |
|         |      |          |         |          |     |           | 159     | 161    | 2                | 0.64        | 1.82    | 8.4   |          |
|         |      |          |         |          |     |           | 207.9   | 211    | 3.1              | 3.16        | 0.70    | 30    |          |
| SMD080  | DD   | 642196   | 5836406 | -60/59.5 | 264 | 309.3     | 23      | 25     | 2                | 1.75        |         |       |          |
|         |      |          |         |          |     |           | 25      | 52     | 27               | 0.58        |         |       |          |
|         |      |          |         |          |     |           | 154     | 157.95 | 3.95             | 3.78        | 0.43    | 54    |          |
|         |      |          |         |          |     | Incl.     | 156     | 157.95 | 1.95             | 7.02        | 0.35    | 102   |          |
|         |      |          |         |          |     |           | 189     | 196    | 7                | 1.07        | 0.26    | 23    |          |
|         |      |          |         |          |     |           | 224.2   | 230.6  | 6.4              | 2.71        | 0.52    | 8.3   |          |
| SMD082  | DD   | 642264   | 5836342 | -60/59.5 | 264 | 313.4     | 32      | 117.3  | 85.3             | 0.82        |         |       |          |
|         |      |          |         |          |     | Incl.     | 99      | 117.3  | 18.3             | 2.56        | 0.16    | 9.4   |          |
|         |      |          |         |          |     | Incl.     | 104.5   | 116    | 11.5             | 3.76        | 0.23    | 14    |          |
|         |      |          |         |          |     |           | 243     | 247.8  | 4.8              | 2.42        | 0.31    | 25    |          |
| SMD083  | DD   | 642599   | 5835995 | -60/49.5 | 264 | 433.1     |         |        | No Się           | gnificant R | lesults |       | <u> </u> |
| SMD084  | DD   | 642236   | 5836364 | -60/59.5 | 264 | 278.1     | 43      | 72     | 29               | 0.44        |         |       |          |
|         |      |          |         |          |     |           | 132     | 201    | 69               | 1.00        | 0.18    | 5.4   |          |
|         |      |          |         |          |     | Incl.     | 157     | 201    | 44               | 1.43        | 0.26    | 7.3   | <u> </u> |
|         |      |          |         |          |     | Incl.     | 197     | 201    | 4                | 4.16        | 0.61    | 23    |          |
| SMD085  | DD   | 642444   | 5836022 | -60/49.5 | 264 | 522.3     | 339     | 362    | 23               | 1.07        | 0.11    |       |          |
|         |      |          |         |          |     | Incl.     | 357     | 361    | 4                | 4.44        | 0.26    | 7.9   |          |
|         |      |          |         |          |     | Incl.     | 358     | 359    | 1                | 9.44        | 0.22    | 6.4   |          |



| Thursday's G | 1    |          |         |           |     |           | r       |                  |            |             |            |                   |     |
|--------------|------|----------|---------|-----------|-----|-----------|---------|------------------|------------|-------------|------------|-------------------|-----|
|              |      | MGA 94 2 | one 54  |           |     |           | Interce | pt               |            |             |            |                   |     |
| Hole id      | Hole | East     | North   | Dip/      | RL  | Total     | From    | То               | Width      | Cu          | Au         | Ag                | Ni  |
|              | Туре | Lasi     | North   | Azimuth   | (m) | Depth (m) | (m)     | (m)              | (m)        | (%)         | (g/t)      | (g/t)             | (%) |
| SMD086       | DD   | 642465   | 5836370 | -60/239.5 | 264 | 385.9     | 142     | 154              | 12         | 1.01        | 0.18       | 2.6               |     |
|              |      |          |         |           |     | Incl.     | 149     | 153              | 4          | 2.33        | 0.42       | 5.3               |     |
|              |      |          |         |           |     |           | 261     | 262              | 1          | 2.17        | 7.06       | 7.9               |     |
|              |      |          |         |           |     |           | 301     | 308              | 7          | 0.16        | 0.48       | 15                | 0.3 |
|              |      |          |         |           |     |           | 318     | 321              | 3          | 0.49        | 0.29       | 3.4               |     |
|              |      |          |         |           |     |           | 326     | 327              | 1          | 5.90        | 0.33       | 47                |     |
| SMD087       | DD   | 642060   | 5836522 | -60/59.5  | 264 | 268.3     | 140     | 227 <sup>6</sup> | 87         | 1.74        | 0.57       | 20                |     |
|              |      |          |         |           |     | Incl.     | 163     | 187              | 24         | 4.19        | 1.27       | 53                |     |
|              |      |          |         |           |     | and       | 170     | 172              | 2          | 11.75       | 1.45       | 66                |     |
|              |      |          |         |           |     | and       | 181.7   | 183.2            | 1.5        | 13.28       | 2.58       | 209               |     |
|              |      |          |         |           |     | and       | 185.6   | 186.4            | 0.8        | 24.1        | 1.16       | 249               |     |
|              |      |          |         |           |     | and       | 185     | 187              | 2          | 9.95        | 0.71       | 107               | 0.8 |
|              |      |          |         |           |     | Incl.     | 218     | 227              | 9          | 4.09        | 1.83       | 39                |     |
|              |      |          |         |           |     | and       | 226     | 227              | 1          | 1.30        | 10.05      | 48                |     |
| SMD088       | DD   | 642427   | 5836445 | -60/239.5 | 264 | 405.5     | 212.3   | 242.3            | 30         | 1.98        | 0.23       | 9.1               |     |
|              |      |          |         |           |     | Incl.     | 216     | 226.8            | 10.8       | 3.20        | 0.31       | 16                |     |
|              |      |          |         |           |     | and       | 233.2   | 239              | 5.8        | 3.54        | 0.43       | 14                |     |
|              |      |          |         |           |     |           | 319.5   | 370              | 50.5       | 0.88        | 0.11       | 3.8               |     |
|              |      |          |         |           |     | Incl.     | 319.5   | 331.2            | 11.7       | 1.42        | 0.15       | 4.5               |     |
|              |      |          |         |           |     | and       | 342     | 357.6            | 15.6       | 1.26        | 0.17       | 5.0               |     |
|              |      |          |         |           |     | and       | 365.6   | 370              | 4.4        | 1.61        | 0.20       | 5.7               |     |
| SMD089       | DD   | 642502   | 5836384 | -60/239.5 | 262 | 502.1     | 87      | 98.8             | 11.8       | 1.54        | 0.42       | 14                |     |
|              |      |          |         |           |     | Incl.     | 91      | 94               | 3          | 3.28        | 1.09       | 34                |     |
|              |      |          |         |           |     |           | 214     | 233.9            | 19.9       | 2.40        | 0.35       | 17                |     |
|              |      |          |         |           |     | Incl.     | 219     | 226.1            | 7.1        | 4.30        | 0.52       | 35                |     |
|              |      |          |         |           |     | Incl.     | 219     | 222              | 3          | 6.02        | 0.71       | 52                |     |
|              |      |          |         |           |     |           | 271     | 280.7            | 9.7        | 3.10        | 0.97       | 26                |     |
|              |      |          |         |           |     | Incl.     | 273     | 275              | 2          | 7.86        | 2.09       | 88                |     |
|              |      |          |         |           |     | Incl.     | 273     | 274              | 1          | 11.05       | 2.73       | 131               |     |
| SMD090       | DD   | 642068   | 5836563 | -60/59.5  | 262 | 213.8     |         | Assays           | Pending    | as at the e | nd of the  | L<br>Quarter      | L   |
| SMD091       | DD   | 642374   | 5836383 | -60/59.5  | 262 | 191       |         | Assays           | Pending    | as at the e | end of the | Quarter           |     |
| SMD092       | DD   | 642346   | 5836411 | -60/59.5  | 262 | 222       |         | A                | <b>D</b> " | as at the e |            | <b>a</b> <i>i</i> |     |



|          | 1            |          | ayley Lode I | •               |           |                    |             |           |              |             |             |             |           |
|----------|--------------|----------|--------------|-----------------|-----------|--------------------|-------------|-----------|--------------|-------------|-------------|-------------|-----------|
|          |              | MGA 94 2 | zone 54      |                 |           |                    | Intercept   |           |              |             |             |             |           |
| Hole id  | Hole<br>Type | East     | North        | Dip/<br>Azimuth | RL<br>(m) | Total<br>Depth (m) | From<br>(m) | To<br>(m) | Width<br>(m) | Cu<br>(%)   | Au<br>(g/t) | Ag<br>(g/t) | Ni<br>(%) |
| SMD093   | DD           | 642153   | 5836294      | -60/59.5        | 262       | 515.1              | 35          | 334.7     | 299.7        | 0.40        | (3,-)       | (3, -)      | . ,       |
|          | 00           | 042100   | 0000204      | 00/00.0         | 202       |                    |             |           | 64           | 0.40        |             |             |           |
|          |              |          |              |                 |           | Incl.              | 35          | 99        |              |             |             |             |           |
|          |              |          |              |                 |           | Incl.              | 36          | 54        | 18           | 1.11        |             |             |           |
|          |              |          |              |                 |           |                    | 304.6       | 334.7     | 30.1         | 1.44        | 0.21        | 4.4         |           |
|          |              |          |              |                 |           | Incl.              | 306         | 310       | 4            | 3.17        | 0.26        | 7.5         |           |
| SMD094   | DD           | 642205   | 5836237      | -60/59.5        | 262       | 608.3              | 50          | 103       | 53           | 0.39        |             |             |           |
| JD       |              |          |              |                 |           |                    | 347         | 351.9     | 4.9          | 2.14        | 0.33        | 9.8         |           |
| SMD095   | DD           | 642205   | 5836237      | -60/59.5        | 262       | 304.6              | 28          | 78        | 50           | 0.40        |             |             |           |
| 50       |              |          |              |                 |           |                    | 224         | 234       | 10           | 2.33        | 0.45        | 20          |           |
| SMD096   | DD           | 642319   | 5836284      | -60/71.5        | 262       | 287.7              | 33          | 58        | 25           | 0.52        |             |             |           |
|          |              |          |              |                 |           |                    | 152         | 154       | 2            | 1.25        |             | 10          |           |
|          |              |          |              |                 |           |                    | 220         | 235       | 15           | 3.26        | 0.62        | 16          |           |
|          |              |          |              |                 | Dupli     | cate Sample        | 220         | 235       | 15           | 3.59        | 2.73        | 18          |           |
|          |              |          |              |                 |           | Incl.              | 222         | 223       | 1            | 2.41        | 24.6        | 16.5        |           |
| SMD097   | DD           | 642319   | 5836284      | -60/88.5        | 262       | 298.6              | 38          | 56        | 18           | 0.63        |             |             |           |
|          |              |          |              |                 |           |                    | 255.8       | 260.6     | 4.8          | 3.56        | 0.46        | 29          |           |
| SMD098   | DD           | 642102   | 5836364      | -60/59.5        | 262       | 449.1              |             | Assays    | Pending      | as at the e | end of the  | Quarter     |           |
| SMS001D  | Sonic/       | 642197   | 5836489      | -60/59.5        | 264       | 212                |             |           | No Si        | gnificant F | Results     |             |           |
| SMS002AD | DD<br>Sonic/ | 642275   | 5836478      | -60/59.5        | 264       | 105.4              |             |           |              | gnificant R |             |             |           |
|          | DD           |          |              |                 |           |                    |             |           |              |             |             |             |           |
| SMS003   | Sonic        | 642207   | 5836523      | -60/59.5        | 264       | 97                 |             | Assays    | Pending      | as at the e | end of the  | Quarter     |           |
| SMS004   | Sonic        | 642150   | 5836555      | -60/59.5        | 264       | 131.5              |             | Assays    | Pending      | as at the e | end of the  | Quarter     |           |
| SMS005   | Sonic        | 642125   | 5836587      | -60/59.5        | 264       | 85.5               |             | Assays    | Pending      | as at the e | end of the  | Quarter     |           |
| SMS006   | Sonic        | 642102   | 5836620      | -60/59.5        | 264       | 76                 |             | Assays    | Pending      | as at the e | end of the  | Quarter     |           |
| SMS007   | Sonic        | 642085   | 5836654      | -60/59.5        | 264       | 64                 | 13          | 39        | 26           |             | 0.77        |             |           |
|          |              |          |              |                 |           |                    | 22          | 42        | 20           | 1.36        | 0.85        | 12          |           |
|          |              |          |              |                 |           | Incl.              | 24          | 39        | 15           | 1.68        | 1.09        | 14          |           |
|          |              |          |              |                 |           |                    | 42          | 45        | 3            |             |             |             | 1.40      |
| SMS008   | Sonic        | 642055   | 5836680      | -60/59.5        | 264       | 64                 | 20          | 45        | 25           | 0.45        |             |             |           |
|          |              |          |              |                 |           | Incl.              | 20          | 23        | 3            | 1.13        | 1.01        | 16          |           |
| SMS009   | Sonic        | 642011   | 5836730      | -60/59.5        | 264       | 54                 | 32          | 54        | 22           | 0.69        | 0.13        | 3.6         |           |
|          |              |          |              |                 |           | Incl.              | 51          | 54        | 3            | 1.87        | 0.47        | 16          |           |



- 1. Excluding 13.9m of core loss
- Excluding 13.2m of core loss
  Excluding 10.8m of core loss
- Excluding 10.8m of core loss
  1.8m of core loss immediately above this interval
- 0.4m of core loss included in this interval
- 6. 0.3m of core loss included in this interval