

QUARTERLY REPORT FOR THE PERIOD ENDED 30 SEPTEMBER 2020

Highlights

- Hualilan Gold Project San Juan, Argentina
 - The company's 45,000 metre drill program commenced with five rigs on site and drilling from September 11. The company expects to complete 6,500 metres drilling per month
 - 47 drill holes (19 RC and 28 diamond core) totalling 7,268 metres were completed during the quarter. Also, during the quarter, samples were submitted for assay from 66 holes totalling 7,515 metres..
 - Results from the lower half of GNDD-025 confirmed a significant intrusion-hosted gold discovery with the intersection of **88 metres at 0.94 g/t gold, 2.2 g/t silver, 0.10% zinc**.
 - Results received from an additional 33 holes from the Company's 7,500 metre drilling program with results including (refer Table 1 for details):
 - 69.0 metres at 3.4 g/t gold, 8.1 g/t silver, 2.8% zinc from 9.9 metres (GNRC-068) (including 27.0m at 7.9 g/t gold, 16.0 g/t silver, 7.0% zinc, from 9.9m)
 - 2.9 metres at 29.5 g/t gold, 522 g/t silver, 10.8% zinc from 124.1 metres (GNDD-046)
 - 38.5 metres at 1.3 g/t gold, 1.2 g/t silver from 61 metres (GNDD-047) (including 6.0 metres at 6.3 g/t gold, 3.5 g/t silver from 62.5 metres)
 - Results from unsampled core from the first ten holes, drilled in 2019, was assayed returning significant mineralisation both above, and below, the previously reported intercepts. Highlights include (refer Table 2):

• El Guayabo/Colorado V Gold/Copper Projects - El Oro, Ecuador

- Assay results were received from drill holes located on the margins of a series of goldcopper soil anomalies, 1 kilometre long, believed to represent porphyry Gold - Copper targets
- All drill holes which penetrated the edges of these anomalies returned ore grade intersections which significantly upgrade these large targets.
- Results included (see Table 4 for details):
 - 106 metres at 0.5 g/t gold, 1.3 g/t silver, 0.1% copper
 (including 55 metres at 0.7 g/t gold, 1.5 g/t silver 0.1% copper at the end of the hole)
 - 63 metres at 0.6 g/t gold, 2.1 g/t silver, 0.1% copper from 67 metres (SAZK2-1)
 - 84 metres at 0.5 g/t gold, 1.2 g/t silver (ZK05) (including 51 metres at 0.7 g/t gold, 1.4 g/t silver)
- Detailed geologic mapping and rock chip sampling has returned high-grade gold at surface covering almost 2 kilometres of strike at the Company's Colorado V project in Ecuador. Results included (see Table 5 for details):
 - 5.0 g/t gold, 106 g/t silver, 1.2% copper (CV-072);
 - 10.2 g/t gold, 498 g/t silver (CV-092);
 - 14.4 g/t gold, 94.8 g/t silver (CV-096).

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Challenger Exploration (ASX: CEL) ("**CEL**" or the "**Company**") is pleased to provide its Quarterly Activities Report for its Gold and Copper projects in Argentina and Ecuador for the period ended 30 September 2020.

HUALILAN GOLD PROJECT - ARGENTINA

Confirmation Discovery of Intrusion-Hosted Gold Discovery

During the quarter assays for the bottom half of the discovery drill hole GNDD-025 extended the scale of the discovery of a new style of intrusion-hosted gold mineralisation at the Company's Hualilan Gold Project. Drill hole GNDD-025 returned a complete intersection of **88 metres at 0.94 g/t gold, 2.2 g/t silver, 0.1% zinc** from 53 metres to the end of the hole in dacite porphyry containing iron oxide, silica, and pyrite alteration (*previously 50 metres at 1.4 g/t gold, 3.4 g/t to 103 metres*). Importantly, mineralisation remains strong and open at depth, with the final two metres of the hole grading **1.0 g/t gold and 0.5 g/t silver**.

This near surface conceptual intrusion-hosted target covers 1 kilometre of strike and is up to 100 metres wide and is defined by the limited historical drilling, mapping of the surface exposure of the altered dacite porphyry, and recent CEL drill holes. The current northern end of this target is defined by CEL drill hole GNDD-025, with the current southern end of the target defined by CEL drill holes GNDD-031. There are expected to be major synergies from an exploration and mine development perspective as the porphyry hosted gold is contiguous to, and underlies, the existing high-grade mineralisation (Figure 1).

Figure 1 Showing distribution of the high-grade skarn mineralisation and adjacent porphyry at Cerro Norte.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Hualilan 7500 metre Drill Program

Sanchez Zone

Drill hole GNRC-068 was the Company's first drill hole designed to test the Sanchez Zone. The Sanchez Zone is believed to be controlled by an east-west orientated fault which dips steeply to the south. The Sanchez Fault, similar to the Magnata Fault Zone at Cerro Sur, is believed to be one of the key structures controlling mineralisation at Hualilan. The mineralising fluids migrating within the fault forming east-west oriented mineralisation and, where this fault intersects permeable limestone beds, replacing these limestone beds with north-south orientated massive sulphide Manto bodies.

The Sanchez Fault has been mapped in outcrop over 500 metres of strike across the main Cerro Norte hill. The steep terrain in this location made drill pad location difficult and as such the Sanchez Fault has historically only been drilled to 50 metres sub-surface over less than 100 metres of strike. It remains open at depth and under cover in both directions along strike.

The Sanchez Zone was a high priority target as the Company's experience with its drilling of the Magnata Fault Zone is that the mineralisation is generally:

- high-grade.
- laterally and vertically continuous.
- extensive at depth, with the Magnata Vein open below 160 metres; and
- likely to extend under cover along strike beyond the limits of the main outcrop.

Drill Hole GNRC-068

Drill hole GNRC-068 was drilled at an azimuth of 25 compared the majority of CEL's hole targeting the Main Manto which were drilled at an azimuth of 115 degrees (Figure 5). The hole intersected a far wider zone of mineralisation than expected returning 69.0 metres at 3.4 g/t gold, 8.1 g/t silver, 2.8% zinc (4.8 g/t AuEq) including a broad high grade zone of 27.0 metres at 7.9 g/t gold, 16.0 g/t silver, 7.0% zinc (11.4 g/t AuEq) containing a bonanza grade zone of 4.0 metres at 41.7 g/t gold, 54.2 g/t silver, 12.0% zinc (48 g/t AuEq), all from near surface. The results of drill hole GNRC-068 have significantly upgraded the Sanchez Fault as a target.

Nearby historical drill hole DDH-61 recorded a bonanza grade intercept of **5 metres at 94 g/t gold, 57 g/t silver** from 5 metres which was believed to be an isolated pod of bonanza-grade material. This correlates with the bonanza zone section in GNRC-068, which is now interpreted as a potential near vertical high-grade core at the centre of the Sanchez Fault. This interpretation is further supported by historical drill hole 05-HD-40, which recorded 2 metres of no recovery, likely to be an old stope, 40 metres below GNRC-068. Additionally, DDH-61 reported a 4-metre zone of no recovery above 4.7 metres of 1.8 g/t gold, 9.1 g/t Ag at the end of the hole. (Figure 2).

Neither of DDH-61 or 05-HD-40 are believed to be valid test of the Sanchez Fault structure as both holes reported wide zones of extremely poor core recovery, as low as 30%, across the interpreted downdip extension below GNRC-068. The Company has previously twinned historical holes which

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

reported low grade mineralisation corresponding with zones of poor core recovery and returned highgrade mineralisation. Significantly the 5 metres at 94 g/t gold in DDH-61 occurs in a zone of good core recovery. The Company has programmed GNRC-084 (assays pending) to twin 05-HD-40. A series of holes are also programmed to test the Sanchez Fault along strike to the west under cover and below GNRC-068.

Figure 2 - Cross Section showing GNRC-068 and Sanchez Fault

Sentazon

The Sentazon mineralisation is the southernmost zone included in the historical foreign non-JORC resource and comprises a small part of this historical foreign resource estimate. Previous drilling at Sentazon was predominantly clustered around and under the Sentazon shaft. The Company has programmed a number of new drill holes at Sentazon following the encouraging results from this round of drilling. The mineralisation remains open in all directions.

Drill Hole GNDD-046

Drill hole GNDD-046 was designed to extend the mineralisation encountered in GNDD-016 approximately 50 metres down dip. The hole returned substantially higher grades than GNDD-016 returning **2.9 metres at 29.5 g/t gold, 522.0 g/t silver, 10.8% zinc - 40.3 g/t AuEq²** which is the best intersection to date at Sentazon. It demonstrates that the Sentazon Manto remains open at depth and strong at this location.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

CEL is encouraged by the substantially higher-grades encountered in GNDD-046, compared to drill hole GNDD-016 up dip. GNDD-016 returned **4.5 metres at 6.0 g/t gold, 83.0 g/t silver, 3.9% zinc -8.9 g/t AuEq** and **5.0 metres at 1.8 g/t gold, 27.0 g/t silver, 8.3% zinc -6.2 g/t AuEq** separated by 2 metres of barren limestone. This higher grade at depth is believed to result from GNDD-046 successfully intersecting one of the higher-grade plunging shoots of mineralisation. Higher grades at Sentazon appear to be controlled by a plunge component which will be further tested in future holes.

Figure 3 - Cross Section showing GNDD-046

Importantly, the results of GNDD-046 also confirm that the later historical holes drilled in 2005 and 2006 have likely missed mineralisation. Historical drill hole 05-HD-46 reported no significant intersection in the same bottom hole location and GNDD-046. However, drill hole 05-HD-46 did log a zone of poor recovery at the level of the Sentazon Manto. The Company had believed that the 2004 historical drill holes had likely understated grade and width, however it now appears this problem caused by poor core recovery is more widespread.

GNDD-046 encountered a second zone of mineralisation higher in the hole at the contact of the limestone unit with overlying reporting **0.5 metres at 4.1 g.t gold, 27.0 g/t silver and 0.1% zinc**. A number of the Company's drill holes have now intersected potentially economic mineralisation at the boundary between the limestones and overlying shale unit.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

Drill hole GNDD-047 - Intrusion-hosted Mineralisation

Drill hole GNDD-047 was designed to test up-dip from GNDD-014 which returned 7.6 metres at 2.4 g/t gold, 15.0 g/t silver, 3.6% zinc - 4.3 g/t AuEq in limestone hosted Manto. GNDD-047 encountered high grade endoskarn mineralisation in altered porphyry dacite intrusives at the prognosed position of the skarn mineralisation returning **6.0 metres at 6.3 g/t gold, 3.5 g/t silver** from 62.5 metres. This higher grade endoskarn mineralisation is associated with strong chlorite-epidote and carbonate alteration of the dacite.

GNDD-047 also recorded a much broader zone of intrusion-hosted gold mineralisation to the end of the hole returning **38.5 metres at 1.3 g/t gold, 1.2 g/t silver** from 61 metres. The final two samples in

Figure 4 - Cross Section showing intrusion-hosted mineralisation in GNDD-047

the hole returned **1.2 g/t gold** and **0.1 g/t gold**. This extends the intrusion-hosted mineralisation a further 300 metres to the south along strike and increases the strike extent over which intrusion-hosted mineralisation has been intersected in drill holes to 1.5 kilometres.

GNDD-047 reaffirms the potential for significant intrusive-hosted gold mineralisation at the Hualilan Gold Project. It now appears that the porphyry dacite contains both significant high-grade endoskarn mineralisation, generally in the prognosed position of the skarn associated manto mineralisation, and also bulk gold mineralisation over at least this 1.5 kilometres of strike.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Other Sentazon Drill holes

Drill holes GNRC-052, GNRC-053, GNRC-054, GNRC-055, and GNRC-056 are a series of shallow RC holes drilled to test the near surface up-dip strike extent of the Sentazon Manto. Of note is GNRC-052 which is the southernmost drill hole at Sentazon drilled by the Company. The hole extended the Sentazon manto a further 40 metres south along strike, where it remains open, with an intersection of **6 metres at 1.7 g/t gold, 4.4 g/t silver, 0.32% zinc - 1.9 g/t AuEq.**

GNRC-054, GNRC-055, and GNRC-056 were drilled 25 metres, 60 metres and 100 metres north along strike from the GNDD-016 the previous northern limit of the Sentazon Manto. All three holes intersected mineralisation confirming the Sentazon Manto remains open to the north with GNRC-056 the northernmost of the three holes returning **1 metre at 2.3 g/t gold, 138 g/t silver, and 0.1% zinc**. GNDD-027, which was drilled 40 metres north along strike from GNDD-016, drilled an area where the plunging high-grade shoots in the Sentazon Manto are not present.

The Company is encouraged by this series of holes which have doubled the strike extent of the Sentazon Manto. The general lower tenor of the Sentazon Manto intersected in this up-dip, near surface, extent is believed to be either the result of near surface leaching or the higher-grade portions of the Sentazon manto occurring at depth. A series of holes are planned to test down dip from these holes as well as both north and south along strike where the mineralisation remains open.

Magnata Vein

Drill hole GNDD-024 **returned 6 metres at 2.5 g/t gold, 19.0 g/t silver, 0.2% zinc - 3.4 g/t AuEq** including **1 metre at 14.9 g/t gold, 107.0g/t silver, 0.5% zinc - 16.3 g/t AuEq** and successfully extended the Magnata Vein mineralisation 40 metres down dip from GNDD-018 with mineralisation remaining open at depth in the Magnata vein.

GNDD-017 was a step out 50 metres south along strike from GNDD-005 (5 metres at 10.9 g/t gold, 101 g/t silver, 1.5% zinc) which is the western most limit of the Magnata Vein. GNDD-017 was drilled to test the theory that the Magnata Fault curves to the south at its western extent. GNDD-017 intersected **1.7 metres at 0.3 g/t gold, 24.0 g/t silver, 2.0% zinc**. It is not yet clear if this represents a new zone of mineralisation or the Magnata Fault curving to the south as postulated with follow up drilling to be conducted.

Cerro Norte

Drill holes GNDD-19, GNDD-021 to GNDD-023, GNDD-027, GNDD-29 and GNRC-058 to GNRC-067 were a series of holes primarily designed to test the extreme up-dip, near surface, extensions of the Main Manto mineralisation at Cerro Norte. Highlights include:

GNDD-021 which intersected a number of zones of mineralisation including 1.2 metres at 11.0 g/t gold 9.0 g/t silver, 0.4% Zn - 11.3 g/t AuEq and 0.4 metres at 28.1 g/t gold 104.0 g/t silver, 5.8% Zn - 32.0 g/t AuEq and 9.8 metres at 0.4 g/t gold 4.4 g/t silver, 6.8% Zn - 32.0 g/t AuEq. GNDD-021 is the northernmost hole drilled into the main Manto and demonstrates that mineralisation is still open to the north.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

- GNDD-019, which recorded an intersection of 1.9 metres at 1.0 g/t gold 5.3 g/t silver, 5.3%
 Zn 3.5 g/t AuEq, some 50 metres south of GNDD-021
- GNRC-062, which recorded an intersection of 3.0 metres at 3.8 g/t gold 7.9 g/t silver, 2.7%
 Zn 5.1 g/t AuEq, approximately 40 metres up-dip from GNDD-021

Figure 5 - Cross Section Showing GNDD-024 and proposed drilling

Drill holes GNRC-058 to GNRC-060 were drilled south of the main Manto at Cerro Norte, with each of these shallow holes drilled well away (up to 300 metres) from any previous drilling and in areas of no surface outcrop. It is likely that these three drill holes were not targeted correctly and they will all need to be followed up with fences of drill holes to provide an adequate test.

Similar to the Sentazon Manto the general lower tenor of the Main Manto in its up dip, near surface, extent is believed to either be the result of near surface leaching or the higher-grade portions of the Sentazon manto occurring at depth. There is also a prevalence of zinc over gold at the northern extremity of the Main Manto which is believed to be representative a more distal mineral assemblage. The higher temperature mineral assemblage occurs at Sentazon, the southern end of the current mineralisation, which is postulated to be the nearer to the source of the mineralising fluids.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Muchilera Manto

Drill hole GNDD-030 and GNRC-037 were drilled to test the Muchilera Manto where underground inspection and channel sampling by previous explorers and followed up by CEL in 2019 (CEL announcement 16 July 2019) mapped a 2-3-metre-thick, bedding-parallel mineralised zone. The holes were drilled to follow up GNDD-012 which intersected skarn alteration in the limestone but bid not return a significant intersection. GNDD-030 returned **3.0 metres at 1.0 g/t gold, 53.0 g/t silver, 0.1% Zn - 1.6 g/t AuEq** while GNRC-037 intersected a 12-metre zone of low-grade mineralisation near surface. The presence of mineralisation in both holes is encouraging and the Company has planned a number of follow up holes targeting manto mineralisation in the limestone at Muchilera.

Assaying of all remaining sections of GNDD-001 to GNDD-010

Following the receipt of assay results for holes including GMDD-043, which returned **2.0 metres at 20.0 g/t gold**, **29.0 g/t silver**, **1.2% zinc** within a broader zone of **16 metres at 2.6 g/t gold**, **4.9 g/t silver**, **0.3% Zn** that was not evident visually, the Company has implemented a policy of 100 percent assaying. Accordingly, all of the core for the Company's first ten drill holes drilled in 2019 which had not been assayed was sampled and assayed.

This program returned significant mineralised zones both above, and below, the previously reported intercepts. Highlights from this assaying include:

- Bottom 1.5 metres of drill hole GNDD-002 ending in 5.1 g/t gold, 5.8 g/t silver (Cerro Norte)
- A new zone above the main zone in GNDD-005 with am intercept of 4 metres at 5.1 g/t gold,
 22 g/t silver, 0.5% zinc 5.6 g/t AuEq
- The discovery of broad zones, 35-40 metres wide, of lower grade mineralisation above the main zones of mineralisation in drill holes GNDD-007 and GNDD-008 (Magnata)
- Discovery of a new zone above the main zone in GNDD-009 with an intercept of 7 metres at 2.3 g/t gold, 102.0 g/t silver, 0.1% zinc 3.5 g/t AuEq (Sentazon)

The new zones above the existing high-grade skarn mineralisation take on additional importance in the context of a large intrusion-hosted bulk gold system, possibly conducive to exploitation via a large open pit, underlying the high-grade skarn mineralisation.

Complete assay results are available in Table 2 on page 22 of this Quarterly Report.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

EL GUAYABO GOLD AND COLORADO V GOLD/COPPER PROJECT - ECUADOR

100% Acquisition of the El Guayabo Concession

During the quarter revised terms for the acquisition of 100% El Guayabo Copper Gold concession in Ecuador were finalised.

As announced on 29 April 2019, the Company had conditional rights to acquire up to a 100% interest in the El Guayabo Project pursuant to minimum capital expenditure of A\$5M within 3 years from listing to earn a 51% interest. Following this, the Company could issue 180,000,000 Earn-in Shares to move to 100% of the project.

Challenger has not yet attained a controlling beneficial interest in the project, so it was an excellent opportunity for the Company to consolidate its equity position through this transaction, rather than spend money on exploration to earn its interest.

The Company renegotiated and finalised a new agreement to immediately purchase 100% of the El Guayabo Gold Copper Project. The consideration will be the issue of 18 million shares in the Company. In lieu of escrow, these shares will not be issued until 5 July 2021.

The revised agreement is subject to approval by CEL shareholders in accordance with the ASX Listing Rules. CEL will hold its Annual General Meeting on November 23 which will include a resolution to approve the terms of this acquisition.

Key Terms of Transaction

Previous El Guayabo Project Milestones

Project Interest	Cumulative Interest	Project Milestones
19.9%	19.9%	Existing interest in the project
20%	35%	Minimum expenditure on project of A\$2m - ~1 Year after relisting
16%	51%	Minimum expenditure on project of A\$3m - ~3 Years after relisting
49%	100%	180m CEL shares payable at the sole discretion of the Board of CEL. Shares to be issued no later than 15 December 2022.

Amended El Guayabo Project Milestones

Project Interest	Cumulative Interest	Project Milestones
19.9%	19.9%	Existing interest in the project
20%	100%	18m CEL shares payable at the sole discretion of the Board
		of CEL. Shares to be issued no later than 5 July 2021.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Extension of Colorado V intrusion-hosted gold target by 2 kilometres

During the quarter results were received for first pass detailed geological mapping and rock chip sampling at the Colorado V concession in Ecuador. The surface mapping and sampling was designed to investigate two large soil anomalies believed to be the immediate strike extent of the recently announced bulk gold discovery which returned drill intercepts including **134 metres at 1.0 g/t gold and 4.1 g/t silver**.

Mapping and sampling defined a 2-kilometre strike extent of high-grade gold and silver mineralisation at surface with assays ranging from **14.35 to 0.1 g/t gold**, **498 to 0.3 g/t silver**. The mineralisation, alteration, and structural controls to mineralisation appear to be directly spatially related to the large soil anomalies. This extends the potential strike of the recently announced bulk gold discovery at Colorado V by 500 percent to 2.5 kilometres. The much broader zone of anomalous soil geochemistry to the south-east of CV1 and CV2 will also be the subject of follow-up.

Figure 6 Showing highlights of the geologic mapping and rock chip sampling

The surface mapping and rock chip sampling program was designed to test south-east along strike from a 500-metre long zone defined by narrow underground workings where gold mineralisation is

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

currently being exploited on a small scale. The current owner of Colorado V concession had previously drilled several diamond core holes immediately along strike and down dip targeting extensions to this mineralisation. These drill holes were not systematically logged or assayed for bulk tonnage gold or base metal mineralisation. Complete sampling and assaying by CEL confirmed a bulk gold system surrounding these narrow veins with drill results including **144 metres at 1.5 g/t gold, 1.8 g/t silver** and **151 metres at 0.9 g/t gold and 3.8 g/t silver** (ASX release 27th May 2020).

This mineralisation does not appear to be traditional porphyry style mineralisation with the gold associated with antimony, arsenic and to a lesser extent bismuth. It shows relatively little geochemical expression in soil, possibly masked by the larger gold-copper in soil anomalies believed to relate to gold-copper porphyry mineralisation. Figure 1 shows antimony in soil which does appear to vector this mineralisation due to the strong correlation of antimony with the gold in this system. As demonstrated in Figure 6, the 500 metre strike extent defined by the underground workings and drilling, exhibits a strong antimony soil anomaly with a smaller coincident gold soil anomaly.

The Company had identified the two large soil anomalies CV1 and CV2 as priority targets which were postulated to be strike extensions of this bulk gold mineralisation. Now the geological mapping and sampling has confirmed antimony in soil to be a marker for the gold mineralisation the much broader zone of anomalous antimony soil geochemistry to the south-east of CV1 and CV2 will also be the subject of follow-up geological mapping and rock chip sampling.

Geologic Field Mapping and Sampling at Mora Creek

Detailed mapping and rock chip sampling were conducted along the creeks which cut the two large Antimony-Gold in soil anomalies CV1 and CV2. This identified significant mineralization associated with outcrops of diorite, quartz diorite porphyry and fine-grained dacite (stocks), which are likely early to middle Miocene age and intrude a metamorphic-meta sedimentary (Lower Cretaceous-Paleozoic) and volcanic (Oligocene) package. Breccia bodies have been identified along La Mora Creek and tributaries and indicate hydrothermal as well as igneous sources.

The supergene and hydrothermal alteration affecting the different lithologies which outcrop along La Mora Creek, show different grades and intensity. Hydrothermal alteration such as Silicification, Phyllic (qtz + sericite + pyrite), and Potassic (qtz + biotite +/- magnetite + sulphides) have been identified and is dominantly structurally associated. The quartz veining associated with these hydrothermal alterations varies from scarce quartz veining to small well-developed stock work zones. The hydrothermal alteration is most commonly associated with intermediate to acid stocks (fine grained dacite intrusions).

Mineralisation identified in outcrop along La Mora Creek has been variable and can be separated into two categories: including hydrothermal breccias as well as stockwork veining with an apparent temporal relation.

• Hydrothermal breccias contain sulfides such as pyrite, chalcopyrite, arsenopyrite, ± antimony and copper sulfosalts.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

The breccias have been cut by some late quartz+sulfides veinlets, and Phyllic alteration (quartz+sericite+pyrite±clays) is predominant, mainly in Dacite, demonstrating porphyry style veinlets with weak-moderate development of stockworks. Visible molybdenum is frequently observed in these Dacitic stocks. Local stockwork veining is composed of Quartz-Pyrite ± Cpy ± Pyrrhotite-Sphalerite ± minor Molybdenum. Gangue minerals are tourmaline, calcite, ankerite, and limonites. Economic gold mineralisation appears to be associated with 1% to 2% fine-grained disseminated and locally clotty sulphides.

Three structural trends have been mapped in the Mora Creek area.

- The first and oldest is the NE-SW trend related to the NE Andean trend.
- The second trend is oriented NW-SE (320°) which is related to a secondary tectonic event affected by the Portovelo-Pinas Fault, which is the northern limit of the metamorphic belt (Amotape Tahuin Terrane) and the volcanic and meta-sedimentary Lancones - Alamor Basin. Mapping has identified the displacement and segmentation of the NW-SE faulting by reactivated NE-SW shear zones, which have caused low-grade "hornfels zones", that are spatially associated along the major fault with NW foliation trend, and often are associated with fine-grained intrusive or sub-volcanic rocks; and
- The third structural trend is an east-west (270°) trend which appears to preferentially control emplacement of a complex hydrothermal breccia system. It is possible that the Antimony-Arsenic soil anomaly corresponds to the breccia complex.

Results

Table 2 (page 22) shows all significant results from the rock chip sampling program which are summarised in Table 6 below. Arsenic, antimony and bismuth path finder elements are all elevated in these samples.

As can be seen the high-grade gold and silver mineralisation at surface covers approximately 2 kilometres of strike on trend with the underground workings and zone of broad gold intercepts in the recently sampled drill core.

Importantly the results correlate with anomalies CV1 and CV2 indicating that antimony in soil appears to be a pathfinder for this gold and silver mineralisation. The mineralisation, alteration, and structural controls to mineralisation appear to be directly spatially related to the large antimony (with coincident gold) soil anomalies. This significantly extends the potential strike of the recently announced bulk gold discovery at Colorado V from 500 metres to 2.5 kilometres.

	Gold	Silver
Total number samples	135	135
Samples above 0.1 g/t Au	32%	32%
Average grade of all samples	0.4 g/t Au	8.5 g/t Ag
Average grade of samples above 0.1 g/t	1.1 g/t Au	24.1 g/t Ag

Table 6 - Averages of all rock chip sample results Colorado V extensions

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Discovery of Transformational Drill Targets at Colorado V

During the quarter results were received for a further 8 re-assayed drill holes from the Colorado V concession in Ecuador. These drill holes were located away from the main discovery zone and adjacent to, but off-target from, a series of regionally significant gold and copper soil anomalies (see Figure 7).

The drill holes are from a series of 60 historical holes drilled by CEL's farm-in partner targeting extensions to narrow high-grade vein hosted gold mineralisation they are currently exploiting. These historical drill holes were not systematically logged or assayed for bulk tonnage gold or base metal mineralisation. As the focus of the current owner of Colorado V was supplying high grade feed to their existing processing plant these soil anomalies were not a priority and consequently poorly explored.

Figure 7 : Showing location of drilling and Anomaly A and B (>100ppb gold in soil)

The drill holes reported were drilled adjacent to a series of regionally significant gold-coppermolybdenum soil anomalies. These anomalies have significant scale with the plus 100 ppb gold footprint of both Anomaly A and B being almost 1 kilometre long and 350-500 metres wide (Figure 1). The anomalies had been interpreted to be targets for porphyry mineralisation prior to the assaying of the historical drill holes.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

As can be seen from Figure 7 none of the historical drill holes are collared to be a valid test of the anomalies with the majority of these holes being drilled off the anomalies. Those holes which did penetrate the anomalies only drilled into their outer margins or at best. However, those holes which did intersect the edges of Soil Anomaly A and B returned significant results including (see Table 5 on page 24 for details):

- 106 metres at 0.5 g/t gold, 1.3 g/t silver, 0.1% copper including a higher-grade section of 55 metres at 0.7 g/t gold, 1.5 g/t silver 0.1% copper at the end of the hole (SAK0-2) with grades increasing at depth
- 63 metres at 0.6 g/t gold, 2.1 g/t silver, 0.1% copper from 67 metres. Note core from surface to 67 metres is missing (SAZK2-1)
- 84 metres at 0.5 g/t gold, 1.2 g/t silver incl 51 metres at 0.7 g/t gold, 1.4 g/t silver (ZK0-5)

The results demonstrate that these anomalies are compelling targets of significant scale. The grades in the few holes which did penetrate the margins of the anomalies are in line with those in the Tier 1 Cangrejos Project ⁽²⁾ located approximately 5 kilometres along strike. The Company's panel samples in the main adit, nearer the centre of Anomaly A, averaged 1.5 g/t gold. Finally, the geology and surface extent of the anomalies is similar to Cangrejos and of sufficient size to host a major gold discovery.

Potential Size of the Exploration Targets

Anomaly A and Anomaly B, combined, define an Exploration Target ranging between 442 to 468 million tonnes grading from 0.5 to 1.0 g/t gold, 1.5 to 2.5 g/t silver, plus copper credits.

It should be noted that the potential quantity and grade of the Exploration Target is conceptual in nature. There has been insufficient exploration to determine a mineral resource and there is no certainty that further exploration work will result in the determination of mineral resources.

A detailed explanation of the basis for the statement, including specific description of the level of exploration activity already completed is available below.

- Surface area defined by a 100 ppb gold soil anomaly which coincides with a 0.1 g/t gold cutoff in drill hole assays and the panel sampling in the adit
- Depth extent of 400 metres assumed based on a reasonable depth extent for surface mining operation of a large steeply plunging low grade Au-Ag-Cu deposit. Current intersections in holes assayed by the Company which demonstrate mineralisation persist with depth, and is open below 400 metres sub-surface
- Density estimates of 2,600 2,750 kg/m³ are based on typical expected values for diorite, schist and diorite-schist breccia intersected in the drilling, in the adit, and observed on surface. The assumed density is not supported by sample density measurements.
- Gold, Silver and Copper grade estimates are based on drill intersections that coincide with the volume defined by the gold in soil anomaly to a depth of 400m below surface. A grade

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

range of 0.5 to 1.0 g/t gold and 1.5 to 2.5 g/t silver has been used in the Exploration Target estimate.

- The proportion above cut-off (0.2 g/t gold) is an estimate based on the variability of grade from drilling and adit panel sampling. A range of 70-90% has been used.

Exploration Target Anomaly A	High estimate	Low estimate
Tonnage (Mt)	275	260
Gold Grade (g/t)	1.0	0.5
Silver Grade (g/t)	2.5	1.5
% tonnage above cut-off	90%	70%
Exploration Target Anomaly B	High estimate	Low estimate
Tonnage (Mt)	193	182
Gold Grade (g/t)	1.0	0.5
Silver Grade (g/t)	2.5	1.5
% tonnage above cut-off	90%	70%
Totals	High estimate	Low estimate
Tonnage (Mt)	468	442
Gold Grade (g/t)	1.0	0.5
Silver Grade (g/t)	2.5	1.5

Table 7: Exploration Target

Results of drilling adjacent to Anomaly A

Drill hole ZK0-5 is one of two holes which penetrated Anomaly A with the other hole ZK10-1 still to be logged and assayed. ZK0-5 was drilled on the extreme south-eastern flank of this anomaly and drilled through the sub-surface projection of Anomaly A. The intersection of **84 metres at 0.5 g/t gold, 1.2 g/t silver** including **51 metres at 0.7 g/t gold, 1.4 g/t silver** coincides with the projection of the plus 100ppb gold in soil anomaly at depth.

The only other assay data within this Anomaly is the limited panel sampling in the main Humedos Mine Adit completed by the Company. This panel sampling covered 40 metres of the adit with the panel samples averaging **1.5 g/t gold, 3.5 g/t silver and 0.15% copper**. These higher grades are now interpreted as being consistent with the location of these samples nearer to the centre of Anomaly A. The company has mapped 300 metres of porphyry style mineralisation in this adit and Intends to rock saw channel sample this entire adit.

Anomaly A represents a significant target with the surface area defined by the 100ppb gold contour covering 250,000 square metres. Projecting this shape down to 400 metres sub surface defines a shape containing 260-275 million tonnes. Drilling and underground panel sampling has demonstrated this target has grades above 1 g/t gold near its centre and 0.5 g/t gold near its margins and has not been validly drill tested.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Figure 8 - 3D Image showing Anomaly A (sub-surface projection) and drilling

Results of drilling adjacent to Anomaly B

Drill hole SAZK2-1 was drilled from within the southern end of Anomaly B outward crossing out of Anomaly B. The top 67 metres of core is missing. The hole has been assayed and returned **63 metres at 0.6 g/t gold, 2.1 g/t silver, 0.1% copper** within a broader zone of 209 metres at 0.3 g/t gold, 1.5 g/t silver, 0.1% copper starting at 67 metres. As can be seen in Figures 8 and 9 drill hole SAZK2-1 was drilled at an extremely low angle ending only 100 metres sub surface and failing to test the southern end of this anomaly at significant depth.

Drill holes SAKO-1 and SAKO-2 were both drilled from outside the main portion of the anomaly across a lower grade portion of the anomaly back into the outer edge of the anomaly toward the base of the holes. Both holes ended in mineralisation and show a consistent trend of the combined gold and copper mineralisation increasing with depth as the bottom of hole locations cross back into the subsurface projection of plus 100 ppb Anomaly B. Drill hole SAK-02 was drilled underneath hole SAKO-1 and as such ended further inside the 100-ppb envelope of Anomaly B. This hole returned **106 metres at 0.5 g/t gold, 1.3 g/t silver, 0.1% Cu** including a higher-grade section of **55 metres at 0.7 g/t gold, 1.5 g/t silver 0.1% copper** right near the end of the hole. Drill hole ZK18-1 which was drilled to the west of Anomaly B is interpreted to have intersected a later post mineral intrusive at depth.

Anomaly B represents a significant target with the surface area defined by the 100ppb gold contour covering 175,000 square metres. Projecting this shape down to 400 metres sub surface defines a shape containing 182-193 million tonnes. This target has been tested by only three drill holes, all located near its edge, all of which encountered significant widths of better than 0.5 g/t gold mineralisation with significant silver and copper credits.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Figure 9 - 3D Image showing Anomaly B (sub-surface projection) and drilling

Anomaly C

Drill holes ZK3-1 and ZK3-4 were drilled on the flanks of Anomaly C. Both holes encountered grades of 0.1 g/t gold and 0.1% copper throughout almost the entire hole. The mineralisation encountered in these two drill holes corresponds with a polymictic clast supported intrusive breccia and the sulphide assemblage contains more pyrite than the mineralisation encountered in Anomaly A and B. This breccia is interpreted as being either a marginal halo around a more strongly mineralised system or potentially related to a late shallow brecciation event in which no deep-seated hydrothermal fluids were involved.

Forward Exploration Program to test the Exploration Targets

The Company has contracted MPX geophysics to undertake a 50 square kilometre helicopter magnetic survey in August-September 2020. The survey will be flown on east-west lines with a line spacing of 50-metres. The results of this survey will be used to better define structural controls and map the intrusions and alterations in 3D to better define the potential porphyry targets. It is anticipated this data will be receive and processed in Q4

The Company has commenced an infill and extension soil sampling program to verify the historical Colorado V soil data, integrate the data with the Company's soil data over the El Guayabo concession, and tighten up the Colorado V soil anomalies. The Company will continue with its program of assaying all of the historical drill holes including the remaining holes drilled in the vicinity of soil Anomalies A, B and C.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

These activities are expected to be completed in Q4. Once this data has been integrated with the existing geological model the Company will make a decision on exploration drilling in Ecuador to test these new Exploration Targets and drill infill/twin holes on the ZKO-2 discovery trend. The Company notes drilling contract rates in Ecuador are at historical lows due to a marked downturn in exploration as a result of COVID-19.

KAROO BASIN - SOUTH AFRICA

The Company continues to pursue its application for shale gas exploration rights in South Africa. As previously reported, the Department of Mineral Resources is progressing a new petroleum resources development bill, and the Minister reportedly indicated during his address in the debate on the Presidential State of the Nation Address in June that the bill will soon undergo public participation, as part of the cabinet and parliamentary approval processes.

CORPORATE

Challenger is in a strong financial position, with the successful completion of a capital raising of A\$20.0m, before costs, on 23 July 2020 through the issue of 100 million ordinary shares at a price of 20 cents per share under the Company's existing ASX Listing Rule 7.1 and 7.1A placement capacity. The placement was completed at \$0.20 per share, a 13% discount to the last closing price of \$0.23 and a 13.5% discount to the 15 Day VWAP of \$0.2314.

The placement was strongly supported by a group of domestic and international institutions, sophisticated investors, and existing shareholders. It was closed ahead of schedule with bids for substantially more than the amount raised. Cash at bank as at the end of the quarter was \$19.7m.

While the costs of the Company's exploration programs are exposed to the USD, the Company has largely mitigated this risk by converting Australian dollars into US dollars. As of 30 September 2020, CEL had approximately US\$1.45m in US dollars.

As a demonstration of their strong commitment to the Company and our projects, the board, key management personnel, and senior employees (including employees in Ecuador and Argentina) have all agreed to receive shares in Challenger in lieu of cash consideration of between 40% and 100% of their current gross salaries and consulting fees for a minimum of six months (commencing April 2020) or until the end of the year.

Shareholder approval will be required to issue shares to Directors with the price used to be the recent capital raising price of 20 cents. This salary swap for shares has made an additional A\$600,000 available for exploration from April 2020 until December 2020. Payments to related parties for the quarter, as per section 6 of the Appendix 5B was \$37,500.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Challenger will be holding its Annual General Meeting (AGM) of the Company on Monday 23 November 2020 at 9.00am (WST) at Level 1, 1205 Hay Street, West Perth, Western Australia.

The Company and the Board are aware of the current circumstances resulting from COVID-19 and the impact it is having, and is likely to continue to have, on physical meetings. Accordingly, the Board has made the decision that it will hold a physical Meeting with the appropriate social gathering and physical distancing measures in place to comply with the State and Federal Government's current restrictions for physical gatherings. All shareholders will have the opportunity to join the meeting and register in advance with Zoom via the following link:

https://zoom.us/meeting/register/tJItce6spjooHNVPvd7rulUq4obbdehLpgDn

After registering, you will receive a confirmation email containing information about joining the meeting.

In accordance with subsection 5(f) of the Corporations (Coronavirus Economic Response) Determination (No. 1) 2020, the Company will not be dispatching physical copies of the Notice of Annual General Meeting, accompanying Explanatory Statement and Schedules (Notice of Meeting).

You will be able to view and download the Notice of Meeting online from the Company website, and specifically the announcements page at: <u>https://challengerex.com/investor-centre/#notice-of-meeting</u>

COVID-19

The Company continues to work with all levels of government and local communities in relation to COVID-19. To date no employee or contractor has tested positive to COVID-19.

The Company's priority remains the health and wellbeing of all its staff and contractors and their families. A copy of the Company's COVID-19 protocols is available on our website.

Ends

For further information contact:

Kris Knauer Managing Director +61 411 885 979 kris.knauer@challengerex.com Scott Funston Chief Financial Officer +61 413 867 600 scott.funston@challengerex.com

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

Table 1: Results from 2020 Second	Drilling Programme
-----------------------------------	---------------------------

Drill hole (#)		From (m)	Total (m)	Gold (g/t)	Ag (g/t)	Zn (%)	Au Equiv (g/t)	Comments
GNDD-017	from	34.3	1.7	0.31	24	2.0	1.5 g/t AuEq	0.2 g/t AuEq cut
GNDD-019	from	24.0	1.9	1.0	5.3	5.3	3.5 g/t AuEq	0.2 g/t AuEq cu
GNDD-021	from	14.8	1.2	11.0	9.0	0.4	11.3 g/t AuEq	10.0 g/t AuEq cu
	and	31.5	0.4	28.1	104	5.8	32.0 g/t AuEq	10.0 g/t AuEq cu
	and	98.2	9.8	0.40	4.4	6.8	3.6 g/t AuEq	0.2 g/t AuEq cu
	inc	104.2	0.8	0.88	13	22.7	11.7 g/t AuEq	10.0 g/t AuEq cu
GNDD-022		nsi					nsi	0, 1
GNDD-023	from	58.0	5.0	0.32	3.7	2.0	1.3 g/t AuEq	0.20 g/t AuEq cu
GNDD-024	from	85.0	6.0	2.5	19	0.15	3.4 g/t AuEq	0.20 g/t AuEq cu
	inc	88.0	1.0	14.9	107	0.46	16.3 g/t AuEq	10.0 g/t AuEq
GNDD-027		nsi					nsi	
GNDD-029	from	36.0	12.0	0.17	2.1	0.4	0.6 g/t AuEq	0.2 g/t AuEq cu
GNDD-030	from	33.0	3.0	0.95	53	0.1	1.6 g/t AuEq	0.2 g/t AuEq cu
GNDD-034	from	47.6	0.3	0.03	1.4	24.4	11.6 g/t AuEq	0.2 g/t AuEq cu
GNDD-035	from	88.8	5.8	9.5	28.7	3.5	11.5 g/t AuEq	ASX release 29
	inc	88.8	3.2	17.1	28.8	5.6	20.1 g/t AuEq	ASX release 29
GMDD-039	from	18.0	8.0	0.15	1.9	0.6	0.5 g/t AuEq	metallurgical
	and	67.6	1.0	24.5	58	3.9	27.0 g/t AuEq	metallurgical
GMDD-040	from	116.7	8.7	5.5	12	2.2	6.7 g/t AuEq	metallurgical
	inc	122.5	2.9	11.8	24	4.2	14.1 g/t AuEq	metallurgical
GMDD-041	from	31.0	16.0	2.6	4.9	0.3	2.8 g/t AuEq	metallurgical
	Inc	41.7	2.0	20.0	29	1.2	20.8 g/t AuEq	metallurgical
	from	63.5	5.1	7.9	83	7.9	12.5 g/t AuEq	metallurgical
GMDD-043	from	18.0	10.0	0.09	1.7	0.5	0.4 g/t AuEq	metallurgical
	and	70.5	0.3	25.9	81	9.4	31.2 g/t AuEq	metallurgical
GNDD-046		82.90	0.45	4.1	27	0.06	4.5 g/t AuEq	1.0 g/t AuEq
		124.15	2.85	29.5	522	10.8	40.3 g/t AuEq	10.0 g/t AuEq cu
GNDD-047	from	61.00	38.50	1.3	1.2	0.0	1.3 g/t AuEq	0.2 g/t AuEq cu
•	inc	62.50	6.00	6.3	3.5	0.2	6.4 g/t AuEq	1.0 g/t AuEq
	and	74.10	1.50	1.0	1.9	0.0	1.0 g/t AuEq	1.0 g/t AuEq
	and	83.55	0.45	7.3	12	0.0	7.4 g/t AuEq	1.0 g/t AuEq
	and	98.50	1.00	1.2	0.82	0.0	1.2 g/t AuEq	1.0 g/t AuEq
GNRC-052	from	69.0	6.0	1.7	4.4	0.3	1.9 g/t AuEq	0.2 g/t AuEq cu
GNRC-053		Nsi					nsi	0.2 8/ 0/ 02 9 00
GNRC-054	from	13.0	7.0	0.22	3.9	0.0	0.3 g/t AuEq	0.2 g/t AuEq cu
Chine 054	from	66.0	15.0	0.53	4.0	0.7	0.9 g/t AuEq	0.2 g/t AuEq cu
	inc	77.0	3.0	1.3	8.5	1.9	2.3 g/t AuEq	1.0 g/t AuEq
GNRC-055	from	18.0	7.0	0.28	6.9	0.0	0.4 g/t AuEq	0.2 g/t AuEq cu
GNRC-055	from	56.0	1.0	2.3	138	0.1	3.8 g/t AuEq	0.2 g/t AuEq cu
GNRC-050	from	37.0	12.0	0.06	2.4	0.6	0.4 g/t AuEq	0.2 g/t AuEq cu
GNRC-057		nsi	-2.0	5.00	L 17	0.0	nsi	5.2 B/ C/1024 CU
GNRC-058		nsi					nsi	
GNRC-055		nsi					nsi	
GNRC-061 GNRC-062	from	17.0	3.0	3.8	7.9	2.7	5.1 g/t AuEq	0.2 g/t AuEq
GNRC-062 GNRC-063	from	19.0	1.0	0.01	0.46	2.7	1.4 g/t AuEq	0.2 g/t AuEq 0.2 g/t AuEq
GNRC-063	from	22.0	1.0	0.01	4.2	3.8	1.8 g/t AuEq	0.2 g/t AuEq
GNNC-004		22.0 27.0	1.0	0.69		3.8 1.2	1.6 g/t AuEq 1.6 g/t AuEq	0.2 g/t AuEq 0.2 g/t AuEq
	and	27.0	1.0	0.09	27	1.2	TTO B/I AUEd	U.Z g/l AUEQ

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com.au

GNRC-065	from	33.0	2.0	0.01	1	4.9	2.3 g/t AuEq	0.2 g/t AuEq
GNRC-066		nsi					nsi	
GNRC-067		nsi					nsi	
GNRC-068	from	9.9	69.0	3.4	8	2.8	4.8 g/t AuEq	0.2 g/t AuEq
	inc	9.9	27.0	7.9	16	7.0	11.4 g/t AuEq	1.0 g/t AuEq
	inc	14.0	4.0	41.7	54.2	12.0	48.0 g/t AuEq	10.0 g/t AuEq
	inc	24.0	6.0	5.2	21.0	10.7	10.5 g/t AuEq	10.0 g/t AuEq
	and	51.0	1.0	1.0	40	0.9	1.9 g/t AuEq	1.0 g/t AuEq
	and	59.0	1.0	1.3	5	0.1	1.4 g/t AuEq	1.0 g/t AuEq
	and	66.0	2.0	1.6	1	0.0	1.7 g/t AuEq	1.0 g/t AuEq
	and	72.0	4.0	1.9	3	0.1	1.9 g/t AuEq	1.0 g/t AuEq

Table 1: Continued (Significant Intercepts from 2020 Second Drilling Programme)

¹ AuEq grade calculated using (USD prices of) gold 1,450/oz, silver 16/oz, and zinc 2,200/t. No metallurgical or recovery factors have been assumed at this early stage of the Project.

² See below for information regarding AuEq's reported under the JORC Code

³ Assays yet to be received for holes which are not included In Table 1

Table 2: Showing intercepts which were revised after assaying all samples from the maiden drilling program

Drill hole		From	Total	Gold	Ag	Zn	Au Equiv	Comments
(#)		(m)	(m)	(g/t)	(g/t)	(%)	(g/t)	
GNDD001	from	27.0	10.0	0.9	4.9	0.3	1.2 g/t AuEq	0.2 g/t AuEq cut
GNDD002A	from	81.5	3.0	3.1	8.6	5.8	5.9 g/t AuEq	1.0 g/t AuEq cut
	inc	83.0	1.5	5.1	22.0	0.5	5.4 g/t AuEq	5.0 g/t AuEq cut
GNDD005	from	29.0	19.0	1.3	8.1	0.6	1.6 g/t AuEq	0.2 g/t AuEq cut
	and	43.0	4.0	5.1	22	0.5	5.6 g/t AuEq	1.0 g/t AuEq cut
GNDD007	from	13.0	45.9	0.4	7.8	0.1	0.6 g/t AuEq	0.2 g/t AuEq cut
	Inc	45.0	3.0	1.9	5.2	0.3	2.0 g/t AuEq	1.0 g/t AuEq cut
	and	55.0	3.0	2.3	35	0.5	2.9 g/t AuEq	1.0 g/t AuEq cut
GNDD008	from	16.5	35.5	0.3	8.1	0.1	0.5 g/t AuEq	0.2 g/t AuEq cut
	inc	36.0	1.0	1.7	6.2	0.1	1.8 g/t AuEq	1.0 g/t AuEq cut
	and	43.4	1.6	1.7	8.4	0.1	1.9 g/t AuEq	1.0 g/t AuEq cut
	and	47.9	1.2	1.2	16	0.6	1.7 g/t AuEq	1.0 g/t AuEq cut
	from	91.0	5.7	12.3	182	0.6	14.7 g/t AuEq	1.0 g/t AuEq cut
	from	99.7	1.0	0.9	43	0.5	1.6 g/t AuEq	1.0 g/t AuEq cut
GNDD009	inc	72.0	7.0	2.3	102	0.1	3.5 g/t AuEq	1.0 g/t AuEq cut

Table 2: Showing intercepts which were revised after assaying all samples from the maiden drilling program

¹ AuEq grade calculated using (USD prices of) gold 1,450/oz, silver 16/oz, and zinc 2,200/t. No metallurgical or recovery factors have been assumed at this early stage of the Project.

²See below for information regarding AuEq's reported under the JORC Code ³ Shows revised intercepts only

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

Table 3 - Assay results GNDD-025									
Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Pb (%)	Zn (%)	AuEq (g/t)	Note	
GNDD025	53.0	88.0*	0.94	2.3	0.08	0.10	1.0	0.2 g/t AuEq cut	
including	53.0	37.0	1.8	4.2	0.16	0.21	2.0	0.2 g/t AuEq cut in oxide	
including	61.0	14.0	3.1	5.3	0.11	0.19	3.3	1.0 g/t AuEq cut	
including	79.0	11.0	1.3	4.1	0.25	0.16	1.5	1.0 g/t AuEq cut	
including	93.0	1.0	1.1	2.5	0.37	0.09	1.3	1.0 g/t AuEq cut	
including	113.0	2.0	1.2	4.4	0.01	0.02	1.2	1.0 g/t AuEq cut	
including	139.0	2.0*	1.00	0.5	0.00	0.01	1.0	1.0 g/t AuEq cut	

Table 3 - Assay results GNDD-025

(1) Intercepts calculated using a using a 0.2 g/t AuEq cut-off and 1.0 g/t AuEq cut-off as Indicated

(2) * ended in mineralisation

(2) Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Commodity prices for the calculation of AuEq is Au US\$1450 oz, Ag US\$16 oz, and Zn US\$2,200/t
- Metallurgical recoveries for Au, Ag and Zn are assumed to be the same (see JORC Table 1 Section 3)
- AuEq (g/t) = Au (g/t) + Ag (g/t) x (16/1450) + Zn (%) x 2.12
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold

Figure x - Location of CEL Drilling and proposed drilling Magnata Vein Hualilan Project

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Drill hole (#)		From (m)	Total (m)		Au (g/t)	Ag (g/t)	Cu	Mo	Comment
(#) ZK3-4	from	26.0	12.0		0.3	1.5	ppm 513	ppm 5	0.1 g/t Au cut off
283-4	from	20.0 50.0	64.0	@ @	0.3	1.5	515 549	5	0.1 g/t Au cut off
	inc	86.0	2.0			1.5	458	3	1 g/t Au cut off
	from	180.0	70.0	@	1.5 0.2	1.4 1.6	438 777	3	0.1 g/t Au cut off
ZK3-1				@			654	5	
283-1	from inc	49.5 94.5	63.0 1.5	@	0.1 <mark>1.5</mark>	1.7 1.4	3126	5 7	0.1 g/t Au cut off 1 g/t Au cut off
	from	94.5 94.5	79.5	<mark>@</mark> @	0.1	2.0	662	4	0.1 g/t Au cut off
	inc	171.0	1.5	@	1.4	2.6	771	4 7	1 g/t Au cut off
SAZKO-1	from	31.2	59.6		0.2		392	3	
SAZKU-1				@		1.4			0.1 g/t Au cut off
	from	131.5	48.0	@	0.1	4.3	824	6	0.1 g/t Au cut off 0.1 g/t Au cut off
	from	229.8	63.0	@	0.2	1.0	325	8 12	0.1 g/t Au cut off
	from	319.0 352.0	171.8 94.5	@ @	0.2 0.3	1.5 2.4	616 996	12	-
CAK2 1	inc								1 g/t AuEq cut off
SAK2-1	from	66.5	208.5	@	0.3	1.5	626	5	0.1 g/t Au cut off
	inc	122.0 225.5	63.0	<u>@</u>	0.6	2.1	825	3	1 g/t AuEq cut off
	and from		1.5	@	1.6	1.4	638	2	1 g/t AuEq cut off
	inc	288.5 288.5	42.0 3.0	@	0.2	2.0 5.6	454 1136	1 1	0.1 g/t Au cut off
647/0 2				@	1.3				1 g/t AuEq cut off
SAZK0-2	from	0.0	80.7	@	0.4	1.9	478	3	0.1 g/t Au cut off
	inc	30.7	20.5	<u>@</u>	1.0	2.5	460	5	1 g/t AuEq cut off
	from	136.0	12.0	@	0.6	0.4	61 10	14	0.1 g/t Au cut off
	inc	137.5 200.5	3.0	@	1.4	0.3	10	4 15	1 g/t AuEq cut off
	from		203.3	@	0.3	1.3	588		ends in mineralisation
	inc	293.5	105.8	@	0.5	1.3	635	16 12	0.5 g/t Au cut off
	inc	214.0	1.5	@	1.8	2.1	681		1 g/t AuEq cut off
	inc	344.5	54.8	<mark>@</mark>	0.7	1.5	767	<mark>12</mark> 61	0.5 g/t Au cut off
	inc and	361.8 397.8	4.5 1.5	@ @	5.5	0.8 2.3	502 770	2	1 g/t AuEq cut off
71/4 4 2		46.2			1.3				1 g/t AuEq cut off
ZK1-13	from		27.0	@	0.1	0.8	306	1	0.1 g/t Au cut off
	and	140.0	1.5	<mark>@</mark>	1.9	0.7	236	1 2	1 g/t AuEq cut off
71/0 5	and	161.0	35.0	@	0.1	1.4	391		0.1 g/t Au cut off
ZK0-5	from	6.1	13.7	@	0.2	1.3	313	10	0.1 g/t Au cut off
	from	46.3	83.8	@	0.5	1.2	356	7 5	0.1 g/t Au cut off 0.5 g/t Au cut off
	inc	67.0 75.7	51.0	@	0.7	1.4	409	2	
	inc	75.7 80.7	1.1 1.0	@	1.2	1.4	483	2 4	1 g/t AuEq cut off
	and		1.0	@	1.8 13.9	2.2	549 254		1 g/t AuEq cut off
	and	93.7 146 5	1.0 150.0	<mark>@</mark>		3.4	354	7	1 g/t AuEq cut off 0.1 g/t Au cut off
	from from	146.5 370.0	150.0	@	0.2 0.9	1.0 5.2	310 1812	3 3	0.1 g/t Au cut off
	from	370.0 414.3	1.5 1.5	@	0.9 1.2	5.2 0.3	1812 127	3 1	0.1 g/t Au cut off 0.1 g/t Au cut off
	nom			@		0.3		2	0.1 g/t Au cut off 0.1 g/t Au cut off
		560.5 596.0	1.5 2.2	@	2.3 1.7	0.6 2.1	189 391	2 4	0.1 g/t Au cut off 0.1 g/t Au cut off
		596.0 607.0		@			190		0.1 g/t Au cut off 0.1 g/t Au cut off
ZK18-1	nsi	007.0	1.5	@	2.0	0.8	130	2	U.I g/ i Au cui Ull

Table 4: Assay results from Colorado V assaying program

Drill collar locations, hole dip and direction are available in this ASX Release see- JORC Table 1 Section 1
 Results are reported using a cut-off of 0.1 g/t Au with up to 10 metres of internal dilution.

Inclusive (incl) Intercepts use a cut-off of 0.5 g/t Au with up to 5 metres of internal dilution and 1 g/t Au

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

Sample	Au	Ag	Cu	Мо	As	Sb	Bi
(#)	(ppm)						
CV-055	1.995	6.47	26.2	2.98	1175	32.3	20.4
CV-066	0.669	3.19	188	3.62	64.5	3.44	0.2
CV-071	0.772	5.02	250	4.21	250	24.3	1.49
CV-072	5.03	106	12050	2.55	51400	23	14
CV-073	0.303	0.59	60.4	1.99	39	1.4	0.54
CV-076	0.111	3.16	31.3	2.46	168	6.19	1.18
CV-079	0.102	0.96	31.1	1.95	189	19.8	0.34
CV-088	0.639	13.3	685	2.44	2920	19.2	2.47
CV-092	10.2	498	740	2.73	2700	583	2.09
CV-094	0.771	72.4	269	2.64	341	849	2.59
CV-096	14.35	94.8	228	1.13	47100	1800	0.4
CV-099	0.271	7.25	306	45.5	31.5	9.68	0.49
CV-101	1.33	1.63	32.5	3.04	8050	11.55	0.49
CV-102	0.229	8.94	27.4	3.24	379	5.25	0.09
CV-103	0.286	14.3	41.6	4.05	636	12.65	0.18
CV-117	0.194	1.13	30.3	2.26	49	2.66	1.3
CV-120	0.312	19.6	604	2.72	2610	21.2	1.69
CV-123	0.233	9.72	113.5	2.15	991	55.4	0.63
CV-124	0.735	3.63	141.5	3.06	116	9.85	0.51
CV-125	0.451	9.3	191	2.48	367	105.5	1.65
CV-126	0.10	7.75	257	39.1	170.5	10.85	1.47
CV-129	0.12	7.34	152	3.5	458	16	0.57
CV-130	1.39	55	120.5	5.27	9460	122	7.45
CV-132	0.131	1.55	627	2.79	17.5	0.44	0.47
CV-134	0.112	2.61	612	35.2	20.8	1.05	0.99
CV-135	0.127	1.51	462	24.2	2.4	0.59	0.46
CV-141	0.544	8.46	61.9	1.62	1060	27.8	6.26
CV-142	0.218	1.38	54.4	2.71	80.1	9.92	0.32
CV-147	0.517	37.5	3940	3.02	63.9	6.98	2.29
CV-149	0.229	7.71	1405	2.89	78.2	11.55	4.54
CV-158	0.366	0.23	77.5	0.36	30.6	1.45	2.14
CV-160	0.102	1.42	457	4.59	6	0.32	0.37
CV-161	0.165	1.64	303	5.27	46.5	1.26	0.7
CV-163	0.151	3.77	571	23	19	3.4	1.11
CV-165	0.19	0.67	196.5	2.8	63.2	0.62	3.92
CV-167	2.52	3.72	3310	12.15	6	0.56	7.92
CV-168	0.11	2.8	660	5.05	1610	3.83	3.73
CV-170	0.199	9.74	1540	5.14	1110	2.38	14.1
CV-173	0.224	0.56	437	4.8	12.3	0.61	1.19
CV-174	0.253	0.83	561	7.51	41	1.63	1.78
CV-175	0.10	0.84	265	6.58	6.7	0.38	0.34
CV-177	0.109	0.29	144	170	1.7	0.16	0.91
CV-178	0.126	0.8	743	9.6	3.4	0.21	0.21
CV-179	0.193	1.07	1045	8.91	4.4	0.2	0.23

Table 5: Assay results from rock chips taken in Mora Creek which cuts Sb and coincident soil anomalies

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

About Challenger Exploration

Challenger Exploration Limited's(ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation in Ecuador.

- 1. Hualilan Gold Project, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and a non-JORC historical resource ^(#1) of 627,000 Oz @ 13.7 g/t gold which remains open in most directions. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. Results from CEL's first drilling program included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over almost 2 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 116m at 1.0 g/t Au, 4.0 g/t Ag, 0.2% Zn and 39.0m at 5.5 g/t Au, 2.0 g/t Ag, 0.3% Zn in porphyry dacites. CEL's current program includes 45,000 metres of drilling, metallurgical test work of key ore types, and an initial JORC Compliant Resource which will allow an economic review.
- 2. El Guayabo Gold/Copper Project covers 35 sqkms in southern Ecuador and was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t which have never been followed up. The Project has multiple targets including breccia hosted mineralisation, an extensive flat lying late stage vein system and an underlying porphyry system target neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134m at 1.0 g/t gold and 4.1 g/t silver including 63m at 1.6 g/t gold and 5.1 g/t silver.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Competent Person Statement – Exploration results

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to sampling techniques and data, exploration results, exploration targets, and geological interpretation has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

La Mancha Resources 2003 foreign resource estimate for the Hualilan Project ^										
	Tonnes	Gold Grade	Contained Gol							
Category	(kt)	(g/t)	(koz)							
Measured	218	14.2	100							
Indicated	226	14.6	106							
Total of Measured & Indicated	445	14.4	206							
Inferred	977	13.4	421							
Total of Measured, Indicated & Inferred	1,421	13.7	627							

Foreign Resource Estimate Hualilan Project

^ Source: La Mancha Resources Toronto Stock Exchange Release dated 14 May 2003 -Independent Report on Gold Resource Estimate. Rounding errors may be present. Troy ounces (oz) tabled here

^{#1} For details of the foreign non-JORC compliant resource and to ensure compliance with LR 5.12 please refer to the Company's ASX Release dated 25 February 2019. These estimates are foreign estimates and not reported in accordance with the JORC Code. A competent person has not done sufficient work to clarify the foreign estimates as a mineral resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign estimate will be able to be reported as a mineral resource. The company is not in possession of any new information or data relating to the foreign estimates that materially impacts on the reliability of the estimates or CEL's ability to verify the foreign estimate as minimal resources in accordance with Appendix SA (JORC Code). The company confirms that the supporting information provided in the initial market announcement on February 25, 2019 continues to apply and is not materially changed

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Droiget		Tenure Title	Interest	Area	DNPM No	Status of
Project	Property Name	Holder	%	(ha)	of Area	Tenure
El Guayabo	El Guayabo	Torata Mining Resources S.A	earning 100%	281	COD225	Granted
El Guayabo	Colorado V	Goldking Mining Company S.A	earning 50%	2331	COD3363.1	Granted
El Guayabo	El Guaybo 2	Mr. Segundo Ángel Marín Gómez	earning 80%	957	COD300964	Granted
Hualilan	Divisadero	Golden Mining S.R.L.	earning 75%	6	5448-M-1960	Granted
Hualilan	Flor de Hualilan	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pereyra y Aciar	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Bicolor	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Sentazon	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Muchilera	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Magnata	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pizarro	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	La Toro	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	La Puntilla	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pique de Ortega	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Descrubidora	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pardo	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Sanchez	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Andacollo	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	North of "Pizarro" Mine	Golden Mining S.R.L.	as above	1.9	195-152-C- 1981	Granted
Hualilan	South of "La Toro" Mine	CIA GPL S.R.L.	as above	1.9	195-152-C- 1981	Granted
Hualilan	Josefina	Golden Mining S.R.L.	as above	2570	30.591.654	Pending

Appendix 1 - Schedule of Tenements

Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

				Elevation	TD	Drilling	Logged	Samples
Hole_ID	Zone	East_UTM	North_UTM	masl	m	Status		sent for assay
GNDD073	Sentazon	504367.0	6599724.0	1796.4	150.20	completed	yes	yes
GNDD074	Sentazon	504367.0	6599724.0	1796.4	152.00	completed	yes	yes
GNDD077	Puntilla	504820.5	6601145.5	1825.0	222.00	completed	yes	yes
GNDD079	Pizarro	504635.9	6600287.5	1820.0	181.40	completed	yes	yes
GNDD082	Puntilla	504770.7	6601168.8	1825.7	266.00	completed	yes	yes
GNDD083	Demasia	504642.5	6600334.6	1821.0	181.00	completed	yes	yes
GNDD085	Muchilera	504456.0	6599889.0	1800.2	90.00	completed	yes	yes
GNDD088A	Ortega	504815.0	6601191.3	1825.7	265.00	completed	yes	yes
GNDD089	Pizarro	504636.0	6600284.0	1820.0	200.10	completed	yes	yes
GNDD092	Ortega	504836.0	6601217.0	1826.9	300.00	completed	yes	yes
GNDD093	Pizzaro	504678.0	6600330.0	1824.0	209.00	completed	yes	yes
GNDD095	Ortega	504807.0	6601224.0	1828.0	203.00	completed	yes	yes
GNDD096	Toro	504664.9	6600600.1	1817.3	215.00	completed	yes	yes
GNDD099	Sentazon	504386.2	6599759.2	1797.4	150.00	completed	yes	yes
GNDD100	Muchilera	504425.2	6599785.1	1796.9	120.00	completed	yes	yes
GNDD101	Puntilla	504784.8	6600985.6	1820.3	220.00	completed	yes	yes
GNDD102	Ortega	504786.1	6601271.9	1828.3	260.00	completed	yes	yes
GNDD103	Bicolor	504436.0	6599482.0	1788.0	299.00	completed	yes	yes
GNDD105	Puntilla	504699.0	6601025.6	1825.4	300.00	completed	yes	yes
GNDD106	Sentazon	504459.3	6599614.7	1792.9	300.00	completed	yes	yes
GNDD108	Puntilla	504895.0	6601154.9	1824.0	200.00	completed	yes	yes
GNDD109	Puntilla	504792.0	6601026.4	1822.0	209.00	completed	yes	yes
GNDD112	Puntilla	504898.2	6601197.6	1825.8	188.00	completed	yes	yes
GNDD113	Puntilla	504704.7	6601067.1	1826.3	230.00	completed	yes	no
GNDD114	Magnata	504436.0	6600111.0	1808.0	116.00	completed	yes	yes
GNDD115	Ortega	504862.0	6601285.0	1824.4	251.00	completed	yes	no
GNDD117	Magnata	504436.0	6600111.0	1808.0	120.00	completed	yes	no
GNDD119	Pardo	504827.0	6601540.0	1837.6	115.00	completed	no	no

Appendix 2 - Hualilan Gold Project status of 45,000 metre drilling program

Note - this table lists holes completed as of 30 September 2020.

As of the October 30 2020 the company is drilling ahead in the following holes:

- GNDD-139 drilling ahead at 413 metres
- GNDD-142 hole ended at 360 metres (preparing to move rig to next location)
- GNDD-144 drilling ahead at 249 metres
- GNDD-143 drilling ahead at 75 metres
- GNDD-145 current depth 12 metres

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

				Elevation	TD	Drilling	Logged	Sampled
Hole_ID	Zone	East_UTM	North_UTM	masl	m	Status		
GNRC071	Chiflon1	504877.0	6601572.0	1836.2	54	completed	yes	yes
GNRC072	Chiflon1	504877.0	6601572.0	1836.2	72	completed	yes	yes
GNRC075	Chiflon1	504842.1	6601571.2	1834.4	60	completed	yes	yes
GNRC076	Pardo	504828.9	6601538.8	1837.6	76	completed	yes	yes
GNRC078	Ortega	504844.5	6601443.3	1829.3	70	completed	yes	yes
GNRC080	Pardo	504867.5	6601565.0	1832.9	86	completed	yes	yes
GNRC081	Ortega	504814.0	6601457.6	1832.8	86	completed	yes	yes
GNRC084	Sanchez	504964.6	6601519.7	1837.3	145	completed	yes	yes
GNRC086	Ortega	504839.1	6601401.6	1829.4	60	completed	yes	yes
GNRC087	Ortega	504863.9	6601345.9	1829.8	30	completed	yes	yes
GNRC090	Ortega	504822.0	6601358.0	1830.5	60	completed	yes	yes
GNRC091	Ortega	504801.4	6601375.1	1831.5	80	completed	yes	yes
GNRC094	Ortega	504853.4	6601306.7	1829.1	60	completed	yes	yes
GNRC097	Ortega	504833.1	6601272.0	1826.3	70	completed	yes	yes
GNRC098	Ortega	504787.4	6601249.2	1829.1	96	completed	yes	yes
GNRC104	Ortega	504781.2	6601230.0	1828.5	150	completed	yes	yes
GNRC107	Magnata	504623.1	6600197.1	1823.3	120	completed	yes	yes
GNRC110	Magnata	504502.0	6600107.0	1814.0	60	completed	yes	yes
GNRC111	Sentazon	504427.8	6599739.8	1796.4	120	completed	yes	yes

Appendix 2 continued - Hualilan Gold Project status of 7,500 metre drilling program

Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

Appendix 3 - ASX Waivers

The ASX granted the Company a waiver from ASX Listing Rule 7.3.2 to permit the notice of meeting (the "Notice") seeking shareholder approval for the issue of up to 245,000,001 fully paid ordinary shares in the Company ("Waiver Securities") upon the Company satisfying the milestones in relation to each of the Projects ("Milestones") not to state that the Waiver Securities will be issued within 3 months of the date of the shareholder meeting.

The Waiver Securities must be issued no later than 60 months after the date of reinstatement of the Company's securities to official quotation.

15,000,001 Waiver Securities have been issued.

The total Earn-In Shares will be issued progressively subject to the achievement of the following milestones:

El Guayabo Project Milestones	lamondod milostonos sub	iect to shareholder annroval)
LI Guayabo Froject Willestolles	lamenueu miestones sub	jett to shareholder approvalj

Project Interest	Cumulative Interest	Project Milestones
19.9%	19.9%	Existing interest in the project
15.1%	35%	Minimum expenditure on project of A\$2m - ~1 Year after relisting
16%	51%	Minimum expenditure on project of A\$3m - ~3 Years after relisting
49%	100%	180m CEL shares payable at the sole discretion of the Board of CEL. Shares to be issued no later than 15 December 2022.

Hualilan Project Milestones

- A payment of 1.667 million shares (being shares in CEL assuming the Transaction completes) to Cerro Sur owners for assignment of Cerro Norte farmin due no later than one month after re-listing on the ASX.
- A milestone payment of 1.667 million shares (being shares in CEL assuming the Transaction completes) due on 22 June 2019.
- Minimum expenditure of A\$1 million on the Hualilan Project.
- The issue of a 11.667 million shares (being shares in CEL assuming the Transaction completes) no later than 1 July 2020 to acquire a 25% interest in the project.
- Completion of a Definitive Feasibility Study within five years and the issue of 50 million shares (being shares in CEL assuming the Transaction completes) to move from 25% to 75% of the project.

Performance Shares

The Company has 60,000,000 Class A Performance Shares and 60,000,000 Class B Performance Shares on Issue.

A summary of the terms and conditions of the Performance Shares are as follows:

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

The Performance Shares shall automatically convert into Shares, provided that if the number of Shares that would be issued upon such conversion is greater than 10% of the Company's Shares on issue as at the date of conversion, then that number of Performance Shares that is equal to 10% of the Company's Shares on issue as at the date of conversion under this paragraph will automatically convert into an equivalent number of Company Shares. The conversion will be completed on a pro rata basis across each class of Performance Shares then on issue as well as on a pro rata basis for each Holder. Performance Shares that are not converted into Shares under this paragraph will continue to be held by the Holders on the same terms and conditions.

(**No Conversion if Milestone not Achieved**): If the relevant Milestone is not achieved by the required date (being seven years from the date of the Proposed Acquisition or such other date as required by ASX), then all Performance Shares held by each Holder shall lapse.

(After Conversion): The Shares issued on conversion of the Performance Shares will, as and from 5.00pm (WST) on the date of issue, rank equally with and confer rights identical with all other Shares then on issue and application will be made by the Company to ASX for official quotation of the Shares issued upon conversion (subject to complying with any restriction periods required by the ASX). (Milestones):

The Performance Shares will, convert upon the satisfaction of the following milestones:

(**Class A**): A JORC Compliant Mineral Resource Estimate of at least Inferred category on either Project of the following:

a minimum 500,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 6 grams per tonne Gold Equivalent; or a minimum 1,500,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 2.0 grams per tonne Gold Equivalent; or a minimum 3,000,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 1.0 grams per tonne Gold Equivalent.

(**Class B**): The Class B Performance Shares held by the holder will convert into an equal number of Shares upon the Company:

Completion and announcement by CEL (subject to the provision of information allowable at the time of completion) of a positive Scoping Study (as defined in the JORC Code) on either Project by an independent third-party expert which evidences an internal rate of return of US Ten Year Bond Rate plus 10% (using publicly available industry assumptions, including deliverable spot commodity / mineral prices, which are independently verifiable) provided that the total cumulative EBITDA over the project life is over US\$50m.

No Performance Milestones were met during the quarter.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data -El Guayabo Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 El Guayabo: Newmont Mining Corp (NYSE: NEM) ("Newmont") and Odin Mining and Exploration Ltd (TSX: ODN) ("Odin") core drilled the property between February 1995 and November 1996 across two drilling campaigns. The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also inserted its own standards at 25 sample intervals as a control on analytical quality Diamond drilling produced core that was sawed in half with one half sent to the laboratory for assaying per industry standards and the remaining core retained on site. Cu assays above 2% were not re-assayed using a technique calibrated to higher value Cu results hence the maximum reported assay for coppre is 2%. All core samples were analysed using a standard fire assay with atomic absorption finish on a 30 g charge (30 g FAA). Because of concerns about possible reproducibility problems in the gold values resulting from the presence of coarse gold, the coarse crusher rejects for all samples with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a screen type fire analysis based on a pulverized sample with a mass of about 5 kg. Samples from most of these intervections were also analysed for Cu, Mo, Pb, Zn and Ag. CEL has re-sampled sections of the Newmont and Odin drill core. ¼ drill core was cutover intervals that replicated the earlier sampling. Sample intervals ranged from 0.7 - 4.5m with and average of 2.0m. 533 samp

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Australian Registered Office Level 1 1205 Hay Street 120m perf shares West Perth WA 6005

Issued Capital

648.7.m shares

86.6m options

16m perf rights

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		 taken so as to be as representative as possible of the exposure being mapped. Colorado V: Soil sampling: A database of 4,495 soil analyses has been provided by Goldking Mining Compand S.A. (GK) which has yet to be fully evaluated. No information has been provided on the methor of sample collection or assay technique. The soil analyses include replicate samples and second split analyses. Pulps have been securely retained by Goldking Mining Company and have been made available to CEL for check assaying. Check assaying is planned, including collection of fied duplicates. Rock chip sampling during regional mapping has been done on selected exposures. Sampling involves taking 2-3 kg of rock using a hammer from surface exposures that is representative of the exposure. Selected intervals of drill core have been cut longitudinally and half core are were submitted f gold determination at GK's on-site laboratory prior to CEL's involvement with the Project. Re-sampling of the core involves taking ½ core (where the core has previously been sampled). ½ core (where the core has not previously been sampled). The core is cut longitudinally and sample intervals of 1 – 3 meters have been collected for analysis. ZKO-1 and ZK1-3 have been analysed for of gold by fire assay (30g) wit ICP determination and other elements by 4 acid digest with ICP-AES finish (36 elements) at SGS del Peru S.A.C. SAZKO-1, SAZKO-2, SAZK2-1, ZKC 2, ZKO-5, ZK1-6, ZK2-1, ZK3-1, ZK3-4, ZK13-1 and ZK18-1 have been analysed for of gold fire assay (30g) with ICP determination and other elements by 4 acid digest with combined ICF AES and ICP-MS finish (50 elements) at SGS del Peru S.A.C. Samples from other holes have bee analysed for gold by fire assay (50g) with ICP determination and overlimit (>10 g/t Au) by fire assay with gravimetric determination and other elements by 4-acid digest with ICP-MS (48 elements) at ALS Laboratories in Peru.
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 El Guayabo: Diamond core drilling HQ size from surface and reducing to NQ size as necessary. The historica records do not indicate if the core was oriented Colorado V: Diamond drilling was done using a rig owned by GK. Core size collected includes HQ, NQ2 and NQ3. There is no indication that oriented core was recovered.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and 	 In a majority of cases core recovery was 100%. In the historical drill logs where core recoveries were less than 100% the percentage core recovery was noted. No documentation on the methods to maximise sample recovery was reported in historical reports however inspection of the available core and historical drilling logs indicate that core

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued CapitalAustralian Registered Office648.7.m sharesLevel 186.6m options1205 Hay Street120m perf sharesWest Perth WA 6005

16m perf rights

ce Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com.au

Criteria	JORC Code explanation	Commentary					
	whether sample bias may have occurred due to preferential los of fine/coarse material.	 recoveries were generally 100% with the exception of the top few metres of each drill hole. No material bias has presently been recognised in core. Observation of the core from various drill holes indicate that the rock is generally fairly solid even where it has been subjected to intense, pervasive hydrothermal alteration and core recoveries are generally 100%. Consequently, it is expected that the samples obtained were n unduly biased by significant core losses either during the drilling or cutting processes Colorado V: 					
		 Core from GoldKing has been re-boxed prior to sampling where boxes have deteriorated, otherwise the original boxes have been retained. Core lengths have been measured and compared to the depth tags that are kept in the boxes from the drilling and recovered lengths have been recorded with the logging. Where re-boxing of the core is required, core has been placed in the new boxes, row-by row with care taken to ensure all of the core has been transferred. No relationship has been observed between core recovery and sample assay values. 					
Logging - -	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical Whether logging is qualitative or quantitative in nature. Core (costean, channel, etc) photography. The total length and percentage of the relevant intersections logging is a standard percentage o	 El Guayabo: Geological logging was completed at 1-3 m intervals which is appropriate given the exploratio was reconnaissance in nature. All core was logged qualitatively at 1 to 3 m intervals depending on geology intercepted and core was photographed. 					
		Logging Core Total					
		Hole_ID Depth (m) Status Photograph Sampling Status Samples					
		ZK0-1413.6CompleteCompleteSamples Submitted281ZK0-2581.6CompleteCompleteSamples Submitted388					
		ZK0-2 S81.6 Complete Complete Samples Submitted S88 ZK0-3 463.0 Complete Complete Not Re-sampled					
		ZK0-3403.0CompleteCompleteNot Re-sampledZK0-4458.0CompleteCompleteSamples Submitted350					
nger Exploration Limite 23 591 382 <mark>EL</mark>	648.7.m shares Level 1 Mr Kris Knauer,	Finance Director E: admin@challengerex.com.au					

riteria	JORC Code expla	anation	Commenta	ary				
			ZK0-5	624.0	Complete	Pending	Samples Submitted	482
			ZK1-1	514.6	Complete	Pending	Samples Submitted	28
			ZK1-2	403.1	Complete	Complete	Not Re-Sampled	
			ZK1-3	425.0	Complete	Complete	Samples Submitted	27
			ZK1-4	379.5	Complete	Complete	Samples Submitted	26
			ZK1-5	419.5	Complete	Complete	Samples Submitted	26
			ZK1-6	607.5	Complete	Complete	Samples Submitted	40
			ZK1-7	453.18	Complete	Complete	Samples Submitted	37
			ZK1-8	556.0	Pending	Pending	Pending	
			ZK1-9	220.0	Complete	Complete	Samples Submitted	14
			ZK2-1	395.5	Complete	Complete	Samples Submitted	32
			ZK3-1A	372.48	Complete	Complete	Samples Submitted	25
			ZK3-2	364.80	Pending	Complete	Not Re-sampled	
			ZK3-4	322.96	Complete	Complete	Samples Submitted	15
			ZK3-11	?	Pending	Pending	Pending	
			ZK4-1	434.0	Pending	Pending	Pending	
			ZK4-2	390.5	Pending	Pending	Pending	
			ZK4-3	650.66	Pending	Pending	Pending	
			ZK4-4	285.0	Pending	Pending	Pending	
			ZK5-1	321.90	Complete	Complete	Not Re-sampled	
			ZK5-2	319.0	Pending	Pending	Pending	
			ZK5-3	446.5	Pending	Pending	Pending	
			ZK5-4	508.0	Pending	Pending	Pending	
			ZK5-5	532.0	Complete	Complete	Samples Submitted	37
			ZK6-1	552.6	Pending	Complete	Pending	
			ZK10-1	454.0	Complete	Complete	Samples Submitted	22
			ZK11-1	237.5	Pending	Pending	Pending	
			ZK12-1	531.5	Complete	Complete	Not Re-sampled	
			ZK12-2	510.6	Complete	Complete	Not Re-sampled	

OGTSONAL USE ONIY Ch ACN 123 591 382 ASX: CEL

120m perf shares 16m perf rights www.challengerex.com

86.6m options

Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman
Criteria	JORC Code explanation	Commentary					
		ZK13-1	394.0	Complete	Complete	Samples Submitted	246
		ZK13-2	194.0	Pending	Complete	Not Re-sampled	
		ZK16-1	324.0	Complete	Complete	Pending	
		ZK16-2	385.83	Complete	Complete	Samples Submitted	223
		ZK18-1	410.5	Complete	Complete	Samples Submitted	286
		ZK19-1	548.60	Pending	Pending	Pending	
		ZK21-1	?	Pending	Pending	Pending	
		ZK68-1	?	Pending	Pending	Pending	
		ZK100-1	415.0	Pending	Pending	Pending	
		ZK103-1	524.21	Pending	Pending	Pending	
		ZK105-1	404.57	Pending	Pending	Pending	
		ZK122-1	?	Pending	Pending	Pending	
		ZK205-1	347.0	Complete	Complete	Samples Submitted	211
		SAZK0-1A	569.1	Complete	Complete	Samples Submitted	396
		SAZK0-2A	407.5	Complete	Complete	Samples Submitted	260
		SAZK2-1	430.89	Complete	Complete	Samples Submitted	195
		SAZK2-2	354.47	Complete	Complete	Not Re-Sampled	
		Logged (m)	14.282.01	Logged		Samples Submitted	6,667
		Total (m)	21,478.37	Core Shack			
		Total (m)	22,379.34	Drilled			
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	 El Guayabo: Core was cut with diamond saw and half core was taken All drilling was core drilling as such this is not relevant Sample preparation was appropriate and of good quality. Each 1-3 m sample of half co dried, crushed to a nominal – 10 mesh (ca 2mm), then 250 g of chips were split out and pulverized. A sub-sample of the pulp was then sent for analysis for gold by standard fir on a 30 g charge with an atomic absorption finish with a nominal 5 ppb Au detection lin Measures taken to ensure that the sampling is representative of the in-situ material co not outlined in the historical documentation however a program of re-assaying was un by Odin which demonstrated the repeatability of original assay results 					ut and ard fire ass tion limit. rial collect

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com.au

www.challengerex.com

86.6m options

120m perf shares

16m perf rights

1205 Hay Street

Criteria	JORC Code explana	tion	C	Commentary
	- Whether sample size being sampled.	es are appropriate to the g	•	The use of a 1-3 m sample length is appropriate for deposits of finely disseminated mineralisation where long mineralised intersections are to be expected. CEL ¼ core sampling was done by cutting the core with a diamond saw. Standards (CRM) and blanks were inserted into the batched sent for preparation and analysis. No duplicate samples were taken and ¼ core was retained for future reference. The sample size is appropriate for th style of mineralisation observed. CEL rock chip samples of 2-3 kg are crushed to a nominal 2mm and a 500 g sub-sample is pulverized. The rock chips are collected from surface expose in creeks. Sampling is done so as to represent the material being mapped. The sample size is appropriate for the grain size of th material being sampled. Olorado V: No information is available on the method/s that have been used to collect the soil samples. Selected intervals of drill core have been cut longitudinally using a diamond saw and ½ core has been sampled. Sample intervals range from 0.1m to 4.5m with an average length of 1.35m. Th size of the samples is appropriate for the mineralisation observed in the core. Re-sampling of the core involves cutting of ¼ core (where previously sampled) or ½ core where not previously sampled. ¾ or ½ core over intervals of 1-3 metres provides an adequate sample size for the material being sampled.
Quality of assay data and laboratory tests	 laboratory procedur partial or total. For geophysical tool the parameters used make and model, re derivation, etc. Nature of quality co duplicates, external 	and appropriateness of the res used and whether the te ls, spectrometers, handheld d in determining the analys rading times, calibrations fo ntrol procedures adopted (laboratory checks) and wh of bias) and precision have	echnique is considered d XRF instruments, etc, sis including instrument actors applied and their eg standards, blanks, ether acceptable levels	 I Guayabo: The nature, quality and appropriateness of the assaying and laboratory procedures used by Newmont and Odin are still in line with industry best practice with appropriate QA/QC and cha of custody and are considered appropriate. Available historical data does not mention details of geophysical tools as such it is believed a geophysical campaign was not completed in parallel with the drilling campaign.
ger Exploration Limited 3 591 382 L	648.7.m shares 86.6m options	Australian Registered Office Level 1 1205 Hay Street Word Parth WA 6005	Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Directo Mr Flotchor Quinn, Chairman	Contact T: +61 8 6380 9235 or E: admin@challengerex.com.au

Mr Fletcher Quinn, Chairman

www.challengerex.com

120m perf shares

16m perf rights

Criteria	JORC Code explana	ation	Comn	nentary	
			of	the economic elements of interest.	
	 Cl cc ar rc Colora N re Sc Ba 	EL rock chip samples were prepared for ass ompleted at ALS Laboratories (Peru). The f halysis of the economic elements of interes ick chip samples. do V: o information is available on the methods sults are not provided in this report. bil samples have been analysed by GK for A a, Sb, Bi and Hg. Pulps have been securely	say at ALS Laboratories (Quito) with analysis bein ire assay and 4-acid digest provide for near-total st. No standards or blanks were submitted with used to analyse the soil or drill core samples. As Nu, Cu, Ag, Zn, Pb, As, Mn, Ni, Cr, Mo, Sn, V, Ti, Co retained and check assaying is planned. with assays undertaken by Goldking's on site		
			la • Sa ch 3 va	boratory imples of drill core re-sampled by CEL blan neck sample preparation and analysis. separate CRM's were included in the batch lues. The results of the analysis of the CRI	ks and CRM (standards) added to the batches to hes sent for analysis. All three have certified Au M is shown below. With a few exceptions, the C ertified reference value. There is no bias in the
			re	sults returned from either SGS or ALS labo RM3 analyses by fire assay at SGS did not in	oratories.
			1.30 1.20 1.30 1.00	SGS - CRM1 - Au (ppm) - mean +/- 2SD	ALS - CRM1 - Au (ppm) - mean +/- 2SD
			4.60	5 10 15 20 25 30 35 SGS - CRM2 - Au (ppm) - mean +/- 2SD	40 0 5 10 15 20 ALS - CRM2 - Au (ppm) - mean +/- 2SD
			420 400 380 0	5 10 15 20 25 30 35 SGS - CRM3 - Au (ppm) - mean +/- 2SD	420 400 5 10 15 20 ALS - CRM3 - Au (ppm) - mean +/- ZSD
			11.50 11.00 10.00 10.00		
			• Tv		 a 5 10 15 20 andomly within the sample batches. A CRM blank used initially. More recent batches have used a
enger Exploration Lim 123 591 382 CEL	ited Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman	Contact T: +61 8 6380 9235 E: admin@challengerex.com.au	

www.challengerex.com

D	
	Verification of sampling and assaying
Challe ACN 1 ASX: C	nger Exploration Limi 23 591 382 <mark>EL</mark>

Criteria

JORC Code explanation

Commentary

blank gravel material which has no certified reference value. The results are shown below. The first 4 gravel blanks show elevated Au values which is believed to be due to contamination of the blank prior to submission and not due to laboratory contamination. With one exception, the blanks have returned values below 10 ppb.

		• · · • · · · · · ·		
Verification of sampling and assaying	alternative comp - The use of twinne - Documentation o verification, data		ees, data rotocols. • •	I Guayabo: All intersections with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a screen type fire analysis based on a pulverised sample with a mass of about 5 kg. Additionally, Odin re-assayed the many of the higher-grade sections with re-assay results demonstrating repeatability of the original results. Neither Newmont nor Odin attempted to verify intercepts with twinned holes Data was sourced from scanned copies of original drill logs and in some cases original paper copies of assay sheets are available. This data is currently stored in a drop box data base with the originals held on site. No adjustments to assay data were made. CEL assay data has not been independently verified or audited. Data is stored electronically in MS Excel and PDF format from the Laboratory and entered into a Project database for analysis. There has been no adjustment of the data. Colorado V:
			•	 There is no information available on the verification of sample and assay results. No assay data is provided in this report. Soil replicate samples and second split assay results have been provided but not fully analysed at this stage. Of the 4,495 soil samples in the GK database, 166 are replicate samples and 140 are second split re-analyses. 37 samples have no co-ordinates in the database. The remaining 4,152 have analyses for all 19 elements indicated above.
nger Exploration Limited 23 591 382	Issued Capital 648.7.m shares	····	irectors Ir Kris Knauer, MD and CEO	Contact T: +61 8 6380 9235

www.challengerex.com

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		 Significant intersections have been internally checked against the assay data received. The data received has been archived electronically and a database of all drill information is being developed. There is no adjustment of the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 El Guayabo: Newmont undertook survey to located drill holes in accordance with best practice at the time. No formal check surveying has been undertaken to verify drill collar locations at this stage Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 Quality of topographic control appears to be+ - 1 meter which is sufficient for the exploration activities undertaken. Rock chip samples have been located using topographic maps with the assistance of hand-held GPS. Colorado V: Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 No information is available on the collar and down-hole survey techniques used on the Colorad V concession. Rock chip sample locations are determined by using a hand held GPS unit which is appropriate for the scale of the mapping program being undertaken.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling on both concessions is exploration based and a grid was not considered appropriate at that time. A JORC compliant Mineral Resource has not been estimated Sample compositing was not used
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	A sampling bias is not evident.
Sample security	- The measures taken to ensure sample security.	 El Guayabo: Newmont sent all its field samples to the Bondar Clegg sample preparation facility in Quito for preparation. From there, approximately 100 grams of pulp for each sample was air freighted to the Bondar Clegg laboratory (now absorbed by ALS-Chemex) in Vancouver, for analysis. There is a sample of the context of th

ASX: CEL

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Issued Capital

648.7.m shares

86.6m options

120m perf shares

16m perf rights

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

www.challengerex.com

	Criteria	JORC Code explanation	Commentary
)			 no record of any special steps to monitor the security of the samples during transport either between the field and Quito, or between Quito and Vancouver. However, Newmont did insert its own standards at 25 sample intervals as a control on analytical quality. CEL samples are kept in a secure location and prepared samples are transported with appropriate paperwork, securely by registered couriers. Details of the sample security and chain of custody are kept at the Project office for future audits. Colorado V: GK analysed samples in an on-site laboratory. It is understood that the samples have remained on site at all times. CEL have collected samples at the core shed at El Guayabo and secured the samples in polyweave sacks for transport by courier to SGS Laboratories in Quito for preparation. SGS in Quito courier the prepared sample pulps to SGS in Peru for analysis. Photographs and documentation are retained to demonstrate the chain of custody of the samples at all stages.
	Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	 El Guayabo: The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. There have been no audits of reviews of CEL data for the El Guayabo. Colorado V: No audits or reviews of sampling techniques and data is known. Goldking did twin two earlier holes with results still being compiled.

Section 2 Reporting of Exploration Results

Issued Capital

648.7.m shares

86.6m options

16m perf rights

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, 	 The El Guayabo (Code. 225) mining concession is located within El Oro Province. The concession is held by Torata Mining Resources S.A (TMR S.A) and was granted in compliance with the Mining Act ("MA") in on April 27, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness or national park issues. The mining title grants the owner an exclusive right to perform mining activities, including, exploration, exploitation

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Australian Registered Office Level 1 1205 Hay Street 120m perf shares West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

www.challengerex.com

Criteria	IORC Code explanation	Commentary				
-	wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 years. Under its option agree fixed and floating charge) over by TMR S.A in favor of AEP hat The Colorado V mining concer compliance with the Mining A concession is held by Goldkin normal Ecuadorian governme The concession has no histor The El Guayabo 2 Guayabo (O province, Ecuador. The concer Jaramillo and was granted in royalties on the project other 	ical sites, wilderness or national park issues. Code. 300964) mining concession is located Torata parish, Santa Rosa canton, El Oro ession is held by T Mr. Segundo Ángel Marín Gómez and Mrs. Hermida Adelina Freire compliance with the Mining Act ("MA") on 29April 29, 2010. There are no overriding than normal Ecuadorian government royalties.			
Evaloration	Acknowledgment and appraisal of		Il sites, wilderness, or national park issues.			
Exploration - Acknowledgment and appraisal of done by other exploration by other parties. parties		 El Guayabo: Previous exploration on the project has been undertaken by Newmont and Odin from 1994 to 1997. This included surface pit and rock chip geochemistry, followed by the drilling of 33 drill holes for a total of 7605.52 meters) to evaluate the larger geochemical anomalies. The collection of all exploration data by Newmont and Odin was of a high standard and had appropriate sampling techniques and intervals, adequate QA/QC and custody procedures, and appropriate duplicates and blanks used for determining assay precision and accuracy. The geological interpretation of this data, including core logging and follow up geology was designed and directed be in-country inexperienced geologists. It appears to have been focused almost exclusively for gold targeting surface gold anomalies or the depth extensions of higher-grade gold zones being exploited by the artisanal miners. The geologic logs for all drill holes did not record details that would have been typical, industry standards for porphyry copper exploration at that time. Several holes which ended in economic mineralisation have never been followed u In short, important details which would have allowed the type of target to be better explored were missed which in turn presents an opportunity to the current owner. 				
		21,471.83m have been comp	en completed by GK. Drilling has been done from 2016 to 2019. 56 drill holes, totaling leted by GK.			

Mr Fletcher Quinn, Chairman

120m perf shares

16m perf rights

Criteria	JORC Code explanation	Commentary								
Geology	 Deposit type, geological setting and style of mineralisation. 	 It is believed that the El Guayabo, El Guayabo 2, and Colorado V concessions contain a "Low Sulfide" porphyry gol copper system and intrusive-related gold. The host rocks for the intrusive complex is metamorphic basement and Oligocene – Mid-Miocene volcanic rocks. This suggests the intrusions are of a similar age to the host volcanic sequence, which also suggests an evolving basement magmatic system. Intrusions are described in the core logs quartz diorite and dacite. Mineralisation has been recognized in: Steeply plunging breccia bodies and in the metamorphic host rock adjacent to the breccia (up to 200 m diameter) Quartz veins and veinlets Disseminated pyrite and pyrrhotite in the intrusions and in the metamorphic host rock near the intrusion 								
Drill hole	- A summary of all information material to	El Guayabo dril	l hole informat	ion is provided	below.					
Information	the understanding of the exploration									
	results including a tabulation of the	DRILLHOLE		NORTH	ELEVATION		DIP	FINAL	DRILLED	
	following information for all Material drill	CODE	(X)	(N)	(m.a.s.l)	(°)	(°)	DEPTHP	BY	
	holes:	DDHGY 01	628928.09	9605517.20	839.01	360	-90.0	249.20	Odin	
	$\circ \hspace{0.1 cm}$ easting and northing of the drill hole	DDHGY 02	629171.15	9606025.55	983.16	360.0	-90.0	272.90	Odin	
	collar	DDHGY 03	629041.84	9606312.81	1063.37	305.0	-60.0	295.94	Odin	
	 elevation or RL (Reduced Level – 	DDHGY 04	629171.68	9606025.18	983.2	125.0	-60.0	172.21	Odin	
	elevation above sea level in metres)	DDHGY 05	628509.21	9606405.29	989.87	145.0	-60.0	258.27	Odin	
	of the drill hole collar	DDHGY06	629170.56	9606025.97	983.11	305.0	-60.0	101.94	Odin	
	 dip and azimuth of the hole 	DDHGY07	629170.81	9606025.80	983.16	305.0	-75.0	127.00	Odin	
	 down hole length and interception 	DDHGY 08	628508.95	9606405.74	989.86	145.0	-75.0	312.32	Odin	
	depth	DDHGY 09	629171.22	9606025.88	983.22	45.0	-75.0	166.25	Odin	
	 hole length. 	DDHGY 10	629170.77	9606025.24	983.12	225.0	-75.0	194.47	Odin	
	- If the exclusion of this information is	DDHGY 11	628507.97	9606405.33	989.83	160.0	-60.0	241.57	Odin	
	justified on the basis that the information	DDHGY 12	629087.18	9606035.53	996.98	125.0	-60.0	255.7	Odin	
	is not Material and this exclusion does	DDHGY13	629242.46	9605975.42	997.292	320.0	-65.0	340.86	Odin	
	not detract from the understanding of the	DDHGY 14	629242.27	9605975.64	997.285	320.0	-75.0	309.14	Odin	
	report, the Competent Person should	DDHGY 15	629194.67	9605912.35	977.001	320.0	-60.0	251.07	Odin	
	clearly explain why this is the case.	DDHGY 16	629285.92	9606044.44	1036.920	320.0	-60.0	195.73	Odin	
		DDHGY 17 DDHGY 18	629122.31 628993.10	9606058.64 9606035.45	1021.053	125.0	-82.0 -60.0	280.04 160.35	Odin	
					977.215	140.0			Odin	
		DDHGY 19	629087.23	9606034.98	997.332	45.0	-53.0	175.41	Odin	

www.challengerex.com

Issued CapitalAustralian Regis648.7.m sharesLevel 186.6m options1205 Hay Street

West Perth WA 6005

120m perf shares

16m perf rights

Australian Registered Office

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Directors

Criteria	JORC Code explanation	Comme	entary						
		DRILLHOLE	EAST	NORTH	ELEVATION	AZIMUTH	DIP	FINAL	DRILLED
		CODE	(X)	(N)	(m.a.s.l)	(°)	(°)	DEP THP	BY
		JDH01	627185.78	9606463.27	933.47	280.0	-60.0	236.89	Newmont
		JDH02	627260.37	9606353.12	921.56	280.0	-45.0	257.62	Newmont
		JDH03	627191.61	9606200.35	952.82	280.0	-45.0	260.97	Newmont
		JDH04	627429.81	9606324.00	933.80	280.0	-45.0	219.00	Newmont
		JDH05	627755.97	9606248.70	1066.24	280.0	-45.0	210.37	Newmont
		JDH06	628356.37	9606416.13	911.58	150.0	-45.0		Newmont
		JDH07	628356.37	9606416.13	911.58	150.0	-75.0		Newmont
		JDH08	628356.37	9606416.13	911.58	150.0	-60.0		Newmont
		JDH09	628507.01	9606408.43	990.18	150.0	-45.0	256.70	Newmont
		JDH10	628897.96	9606813.62	985.60	270.0	-45.0		Newmont
		JDH11	628878.64	9606674.39	1081.96	270.0	-45.0		Newmont
		JDH12	629684.61	9606765.31	993.45	150.0	-60.0		Newmont
		JDH13	629122.61	9606058.49	1020.98	125.0	-60.0		Newmont
		JDH14	628897.15	9605562.77	852.59	90.0	-45.0	239.32	Newmont
		hole ID	East (m)	North (m)	Elevatio n	Azimut Di h (°) (°)		Driller	
		ZK0-1	626378.705	9608992.99	204.452	221 -6	0 413.6	Shandong Zha Exploration Co	, 0
		ZK0-2	626378.705	9608992.99	204.452	221 -8	2 581.6	Shandong Zha Exploration Co	ojin Geologica
		ZK5-1	626377.846	9608790.388	273.43	221 -7	8 321.9	Shandong Zha Exploration Co	
		ZK5-2	626377.539	9608793.769	273.542	041 -7	8 319	Shandong Zha Exploration Co	
		ZK5-3	626383.556	9608800.999	273.622	330 -7	0 446.5	Shandong Zha Exploration Co	
		ZK5-4	626383.556	9608800.999	273.622	330 -7	8 508	Shandong Zha Exploration Co	
			C2C422 705	9608847.735	242.572	061 -7	0 532	Shandong Zha	aiin Caalagiga
		ZK5-5	626432.795	9008647.755	242.372	001 /	5 552	Exploration Co	

Ersonal use only

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Australian Registered Office Level 1 1205 Hay Street 120m perf shares West Perth WA 6005

Issued Capital

648.7.m shares

86.6m options

16m perf rights

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Comn	nentary						
		ZK205-1	626257.123	9608795.904	243.297	160	-70	346	Shandong Zhaojin Geological Exploration Co Ltd
		ZK1-1	626310.629	9608865.923	226.385	061	-70	514.6	Shandong Zhaojin Geological Exploration Co Ltd
		ZK1-2	626313.901	9608867.727	226.494	150	-70	403.1	Shandong Zhaojin Geological Exploration Co Ltd
		ZK1-3	626382.401	9608894.404	229.272	061	-70	424.5	Shandong Zhaojin Geological Exploration Co Ltd
		ZK6-1	626230.28	9609020.202	260.652	221	-70	552.6	Shandong Zhaojin Geological Exploration Co Ltd
		ZK6-2	626165.623	9608991.594	271.928	221	-70	531	Shandong Zhaojin Geological Exploration Co Ltd
		ZK12-1	626088.326	9609034.197	314.552	221	-70	531.5	Shandong Zhaojin Geological Exploration Co Ltd
		ZK12-2	626019.538	9608961.409	294.649	221	-70	510.6	Shandong Zhaojin Geological Exploration Co Ltd
		ZK1-4	626502.206	9608982.539	227.333	061	-70	379.5	Shandong Zhaojin Geological Exploration Co Ltd
		ZK1-5	626497.992	9608979.449	227.241	241	-70	415	Shandong Zhaojin Geological Exploration Co Ltd
		ZK1-6	626500.813	9608979.367	227.315	180	-70	607	Shandong Zhaojin Geological Exploration Co Ltd
		CK2-1	626328.573	9609000.856	216.798	221	-45	121.64	Shandong Zhaojin Geological Exploration Co Ltd
		CK2-2	626328.573	9609000.856	216.798	251	-45	171.85	Shandong Zhaojin Geological Exploration Co Ltd
		CK2-3	626328.573	9609000.856	216.798	191	-45	116.4	Shandong Zhaojin Geological Exploration Co Ltd
		СК2-4	626328.573	9609000.856	216.798	221	-70	146.12	Shandong Zhaojin Geological Exploration Co Ltd
		ZK1-7	626498.548	9608979.541	227.28	241	-82	456.49	Shandong Zhaojin Geological Exploration Co Ltd
		ZK1-8	626501.094	9608980.929	227.208	061	-85	556	Shandong Zhaojin Geological Exploration Co Ltd
		CK3-1	626359.641	9608859.373	205.96	020	-15	185.09	Shandong Zhaojin Geological Exploration Co Ltd
		CK3-2	626359.641	9608859.373	205.96	163	-00	21.75	Shandong Zhaojin Geological Exploration Co Ltd

Australian Registered Office Level 1 1205 Hay Street 120m perf shares West Perth WA 6005

Issued Capital

648.7.m shares

86.6m options

16m perf rights

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

www.challengerex.com

Criteria	JORC Code explanation	Comm	entary						
		СКЗ-З	626359.641	9608859.373	205.96	050	-15	138.02	Shandong Zhaojin Geological Exploration Co Ltd
		ZK19-1	626753.271	9608802.634	386.627	221	-70	548.6	Shandong Zhaojin Geological Exploration Co Ltd
		ZK0-3	626475.236	9609095.444	197.421	221	-75	463	Shandong Zhaojin Geological Exploration Co Ltd
		ZK0-4	626476.119	9609098.075	197.225	221	-90	458	Shandong Zhaojin Geological Exploration Co Ltd
		ZK0-5	626475.372	9609100.909	197.17	300	-70	624.5	Shandong Zhaojin Geological Exploration Co Ltd
		ZK2-1	626329.859	9609005.863	213.226	221	-90	395.5	Shandong Zhaojin Geological Exploration Co Ltd
		SAZKO-1A	627477.062	9609865.618	217.992	180	-70	569.1	Shandong Zhaojin Geological Exploration Co Ltd
		SAZKO-2A	627468.807	9609805.054	213.63	180	-70	403.75	Shandong Zhaojin Geological Exploration Co Ltd
		ZK13-1	627763.877	9609906.484	197.899	180	-70	394	Shandong Zhaojin Geological Exploration Co Ltd
		ZK18-1	627123.327	9609846.268	142.465	180	-70	410.5	Shandong Zhaojin Geological Exploration Co Ltd
		zk13-2	627757.925	9609713.788	234.34	000	-70	194.8	, Shandong Zhaojin Geological Exploration Co Ltd
		ZK4-1	626281.066	9609038.75	224.176	221	-90	434	, Shandong Zhaojin Geological Exploration Co Ltd
		ZK4-2	626281.066	9609038.75	224.176	221	-70	390.5	, Shandong Zhaojin Geological Exploration Co Ltd
		ZK4-3	626386.498	9609186.951	225.517	221	-70	650.66	Shandong Zhaojin Geological Exploration Co Ltd
		ZK100-1	626170.882	9608923.778	251.177	131	-70	415	Shandong Zhaojin Geological Exploration Co Ltd
		ZK3-1	626416.4	9609040.6	202.416	179	-29	295.52	Lee Mining
		ZK1-9	626416.4	9609040.6	202.416	203	-23	218.3	Lee Mining
		SAZK2-1	627330.0126	9609556.466	201.145	076	-05	430.89	Lee Mining
		SAZK2-2	627330.0126	9609556.466	201.145	062	-05	354.47	Lee Mining
		СК5-2	626457.0999	96089.8.4999	202.126	251	-69	273.11	Lee Mining
		CK5-1	626460.1233	9608906.592	202.124	194	-74	273.56	Lee Mining
		ZK10-1	626700.8538	9609675.002	126.617	221	-53	450.99	Lee Mining
		ZK103-1	628203.1453	9607944.85	535.324	215	-53	524.21	Lee Mining

Ersonal use only

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Australian Registered Office Level 1 1205 Hay Street 120m perf shares West Perth WA 6005

Issued Capital

648.7.m shares

86.6m options

16m perf rights

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

www.challengerex.com

Criteria	JORC Code explanation	Com	nentary						
		CK13-1 CK2-5 CK13-2 CK13-3 CK2-6 ZK105-1	626610.0642 626254.4315 626610.0642 626605.2307 626298.1066 628172.5923	9608838.445 9608931.693 9608838.445 9608833.471 9608961.819 9607826.055	202.556 190.593 202.556 202.556 203.231 541.244	41 342 041 221 332 183	-05 -05 -40 -59 -18 -54	227.1 357.56 231.16 197.06 392.56 404.57	Lee Mining Lee Mining Lee Mining Lee Mining Lee Mining Lee Mining
Data aggregation methods	 In reporting Exploration Results, weight averaging techniques, maximum and/o minimum grade truncations (eg cutting high grades) and cut-off grades are usu Material and should be stated. Where aggregate intercepts incorporat short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation sh be stated and some typical examples of aggregations should be shown in detail The assumptions used for any reporting metal equivalent values should be clear stated. 	M M of - Ag c c gr buld such of y been	ottom cut of 0.5 g/ onsistent nature of ade results does m – over half of th – only 20% of th – over one third Au Eq assumes Metallurgical r applied in calculati 1373 x Cu (%)).	de of 0.2 g/t Au Ec s have been repor t Au Equivalent ha the mineralisation ot have a large im he intercept comp he intercept include d includes gold gra s a gold price of US ecovery factors for ng the Au Eq, hen	quivalent (Au ted with high as been used in the impact pact. For exa rises gold gra des grades bu ades in exces SD 1,275/oz, or gold, silver ce the formu	Eq) was un ner grade to detern of the ago mple, in the ades in ex- etween 0. s of 2 g/t a silver p and copp ila for calo	sed for de inclusions nine the P gregation the interc ccess of 1 2 and 0.5 Au. rice of US per are as culating th	etermining s to demons- nigher-grade of high-gra ept of 156n g/t Au g/t Au g/t Au D 16.43 /oz sumed to b- ne Au Eq is a	intercepts. strate the impact of aggregation. A e inclusions. Given the generally de results and longer lengths of longer m @ 2.6 g.t Au in hole GGY-02: e and a copper price of USD 6,766 e equal. No metallurgical factors Au (g/t) + (Ag (g/t) x 16.43/1275) - d in the metal equivalents calculat

Issued Capital 648.7.m shares Level 1 86.6m options 1205 Hay Street 120m perf shares West Perth WA 6005

16m perf rights

Australian Registered Office

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Drillhole		Minerali	sed Inte	Total		Gold		Ag		Cu		Au Equiv	Azimuth	Incl	TD
(#)		From	То	(m)		(g/t)	((g/t)		(%)	_	(g/t)	(deg)	(deg)	(m)
JDH-001	from	183	190.6	7.6	m @	0.3	g/tAu +		not ass	ayed		n/a	280	-60	236.9
JDH-002	from	7.6	152.9	145.3	m @	0.4	g/tAu+		not ass	ayed		n/a	280	-45	257.5
	and	199	243	44.0	m @	0.4	g∕tAu+		not ass	ayed		n/a			
JDH-003	from	35.95	71.6	35.7	m @	0.5	g/tAu +		not ass	ayed		n/a	280	-45	261
	and	120.4	254.6	134.2	m @	0.4	g∕tAu +		not ass	ayed		n/a			
	inc	146.81	224.08	77.3	m @	0.5	g/tAu +		not ass	ayed		n/a			
JDH-004	from	3.96	21.95	18.0	m @	0.4	g/tAu +		not ass	ayed	<u>.</u>	n/a	280	-45	219
	and	79.74	120.42	40.7	m @	0.4	g/tAu +		not ass	ayed		n/a			
	and	150.9	203.7	52.8	m @	0.7	g/tAu +		not ass	ayed		n/a			
JDH-005	from	5.2	81.4	76.2	m @	0.4	g/tAu +		not ass	ayed	. <u>.</u>	n/a	280	-45	210.4
	and	169.7	208.5	38.8	m @	0.2	g/tAu +		not ass	ayed		n/a			
JDH-006	from	17.99	89.6	71.6	m @	0.2	g/tAu+	2.0	g/tAg +	0.10	% Cu	0.42	150	-45	302.7
	and	164.8	281	116.2	m @		g∕tAu +								
	inc	227.8	281.09	53.3	m @	1.2	g∕tAu +	13.2	g/tAg +	0.62	% Cu	2.39			
JDH-007	from	39.7	84.45	44.8	m @	0.3	g/tAu +	1.4	g/tAg +	0.04	% Cu	0.38	150	-75	105.8
JDH-008	from	104.7	136.7	32.0	m @	0.1	g/tAu +	3.6	g/tAg +	0.13	% Cu	0.41	150	-60	352.7
	and	249.08	316.15	67.1	m @	0.2	g∕tAu +	5.7	g/tAg +	0.21	% Cu	0.62			
	and	291.76	316.15	24.4	m @	0.5	g/tAu +	9.2	g/tAg +	0.34	% Cu	1.13			
JDH-009	from	10.3	122.03	111.7	m @	0.7	g/tAu +	14.6	g/tAg +	0.58	% Cu	1.85	150	-45	256.7
	inc	34.6	91.54	56.9	m @	0.2	g/tAu +	19.1	g/tAg +	0.82	% Cu	1.80			
	and	201.4	205.4	4.0	m @	11.4	g/tAu +	9.7	g/tAg +	0.01	% Cu	11.54			
	and	255.1	eoh	1.5	m @	0.7	g/tAu +	1.5	g/tAg +	0.02	% Cu	0.75			
JDH-10	from	1.5	50.9	49.4	m @	0.5	g/tAu +	2.5	g/tAg +	0.09	% Cu	0.68	270	-45	221.6
	and	90.54	119	28.5	m @	0.2	g/tAu +	3.0	g/tAg +	0.10	% Cu	0.40			
	and	140	203	81.6	m @	0.4	g/tAu +	1.3	g/tAg +	0.07	% Cu	0.53			
JDH-011	from	100.7	218	117.3	m @	0.4	g/tAu +	4.6	g/tAg +	0.10	% Cu	0.62	270	-45	218.0
JDH-012	from	12.2	53.96	41.8	m @	0.6	g/tAu +	6.5	g/tAg +	0.02	% Cu	0.67	150	-60	124.1
JDH-013	from	53.35	69.6	16.3	m @	0.5	g/tAu +	1.2	g/tAg +	0.01	% Cu	0.48	150	-60	239.3
	and	89.9	154.9	65.0	m @	1.4	g∕tAu +	2.8	g/tAg +	0.06	% Cu	1.53			
	inc	114.32	142.76	28.4	m @	2.8	g/tAu +	4.9	g/tAg +	0.10	% Cu	3.03			
JDH-014	from	26.96	75.69	48.7	m @	0.4	g/tAu +	5.2	g/tAg +	0.10	% Cu	0.63	90	-60	239.4
	and	85.84	116.32	30.5	m @	0.2	g∕tAu+		g/tAg +		% Cu				
	and	128.52	175.3	46.8	m @	0.5	g/tAu +	3.3	g/tAg +	0.08	% Cu	0.63			
	and	179.35	217.98	38.6	m @	0.1	g/tAu +	2.5	g/tAg +	0.08	% Cu	0.26			

Issued Capital 648.7.m shares 86.6m options 120m perf shares

16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

ce Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

www.challengerex.com

Drillhole		Mineral	ised Inte	Total		Gold	Ag	C	u	Au Equiv	Azimuth	Incl	TD
(#)		From	То	(m)		(g/t)	(g/t)	(9		(g/t)	(deg)	(deg)	(m)
GGY-001	from	10	69	59.0	m @	0.2	g/tAu + 2.8 g/tAg	+ 0.	07 % Cu	0.35	360	-90	249.2
	and	139	249.2	110.2	m @		g/tAu + 1.1 g/tAg		06 % Cu	0.51			
	inc	141	174	33.0	m @	0.6	g/t Au + 2.0 g/t Ag	+ 0.	08 % Cu	0.76			
GGY-002	from	9.7	166	156.3	m @	2.6	g/tAu + 9.7 g/tAg	+ 0.	16 % Cu	2.99	360	-90	272.9
	inc	27	102	75.0	m @	4.6	g/t Au + 19.1 g/t Ag	+ 0.	22 % Cu	5.21			
	and	114	166	52.0	m @	1.3	g/tAu + 3.3 g/tAg	+ 0.	18 % Cu	1.64			
	plus	244	272.9	28.9	m @	0.3	g/tAu + 2.4 g/tAg	+ 0.	04 % Cu	0.37			
GGY-003	from	40	260.75	220.8	m @	0.2	g/tAu + 2.9 g/tAg	+ 0.	06 % Cu	0.36	305	-60	295.9
GGY-004	from	1	42	41.0	m @	0.5	g/t Au + 2.3 g/t Ag	+ 0.	03 % Cu	0.56	125	-60	172.2
GGY-005	from	12	162	150.0	m @	0.4	g/t Au + 11.0 g/t Ag	+ 0.	30 % Cu	0.99	145	-60	258.3
	inc	14	54	40.0	m @	0.6	g/t Au + 25.5 g/t Ag	+ 0.	60 % Cu	1.95			
	and	180	194	14.0	m @	0.2	g/t Au + 6.1 g/t Ag	ı + 0.	22 % Cu	0.64			
GGY-006	from	72	101.9	49.0	m @	0.4	g/tAu + 2.3 g/tAg	+ 0.	03 % Cu	0.45	305	-60	101.9
GGY-007	from	0.9	41	40.1	m @	1.1	g/tAu + 2.6 g/tAg	ı + 0.	04 % Cu	1.20	305	-75	127
	inc	110	127		m @		g/tAu + 1.2 g/tAg		04 % Cu	0.98	000		
GGY-008	from	16	271	255.0	m @	0.1	g/tAu + 6.5 g/tAg	ı + 0.	24 % Cu	0.62	145	-75	312.3
001 000	inc	235	271		m @		g/t Au + 11.5 g/t Ag		50 % Cu	1.32	115	15	512.5
GGY-009	from	1.65	45	43.4	m @	1.7	g/tAu + 3.0 g/tAg	ı + 0.	06 % Cu	1.80	45	-75	166.2
GGY-010	from	0	69		m @		g/tAu + 2.3 g/tAg	_	03 % Cu		225	-75	194.5
010-100	inc	21	50		m @		g/tAu + 2.3 g/tAg		03 % Cu 03 % Cu	2.98	225	-75	194.5
	and	75	95		m @		g/tAu + 0.8 g/tAg		01 % Cu	0.33			
GGY-011	from	14	229	215.0	m @		g/tAu + 9.6 g/tAg	_	36 % Cu	0.89	160	-60	241.6
	inc	14	97		m @		g/t Au + 14.9 g/t Ag		50 % Cu	1.24	100	00	241.0
	inc	202	229		m @		g/t Au + 15.2 g/t Ag		80 % Cu	1.90			
GGY-012	from	57	192	135.0	m @	0.3	g/tAu + 2.0 g/tAg	ı + 0.	06 % Cu	0.39	125	-60	256
	and	156	192		m @		g/tAu + 3.3 g/tAg		13 % Cu	0.44			
GGY-013	from	229.7	280	50.3	m @	0.2	g/tAu + 2.2 g/tAg	ı + 0.	05 % Cu	0.31	320	-65	340.9
GGY-014				nsi	-				-	0.00	320	-75	309.1
	from	110			m @	0.4	g/tAu + 0.5 g/tAg		03 % Cu			-60	_
GGY-015	from and	110 157	132.4 225.5		m @		g/t Au + 0.5 g/t Ag g/t Au + 1.5 g/t Ag		03 % Cu 10 % Cu	0.41 0.45	320	-60	251.1
CCV 04 C			30		m @		g/tAu + 0.7 g/tAg		01 % Cu	0.45	220	60	105.7
GGY-016	from and	8 42	57		m @ m @		g/tAu + 0.7 g/tAg g/tAu + 0.5 g/tAg		01 % Cu 02 % Cu	0.26	320	-60	195.7
	and	105	118		m @		g/tAu + 0.5 g/tAg		02 % Cu 01 % Cu	0.34			
	and	185	188		m @		g/tAu + 0.8 g/tAg		02 % Cu	1.04			
GGY-017	from	0	24	24.0	m @		g/tAu + 1.3 g/tAg		01 % Cu	0.49	125	-82	280.4
001 017	and	69	184	115.0	-		g/tAu + 1.5 g/tAg		03 % Cu	0.49	125	02	200.4
	inc	125	147		m @		g/tAu + 2.0 g/tAg		05 % Cu	0.29			
	and	206	241	35.0	m @	0.3	g/t Au + 1.7 g/t Ag		05 % Cu	0.41			
	and	254	277	23.0	m @	0.6	g/t Au + 1.2 g/t Ag	ı + 0.	04 % Cu	0.63			
GGY-018	from	81	136	55.0	m @	0.2	g/t Au + 3.5 g/t Ag	+ 0.	06 % Cu	0.34	140	-60	160.4
GGY-019	from	89	155	66.0	m @	03	g/t Au + 2.0 g/t Ag		03 % Cu	0.36	45	-53	175.4

Issued Capital 648.7.m shares 86.6m options 120m perf shares

16m perf rights

Level 1

1205 Hay Street

West Perth WA 6005

Australian Registered Office Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact

JORC Code explanation

Commentary

Drill hole				Total	Au	Ag	Cu	Au Ec
(#)		From	То	(m)	(g/t)	(g/t)	(%)	(g/t)
GGY-001	historical intercept	139	249.2	110.2m	0.4	1.1	0.06	0.5
	(re-assayed section)	141	177	36.0m	0.54	2.30	0.08	0.7
	(original assays)	'	1	36.0m	0.56	1.51	0.08	0.7
	(re-assayed section)	205	236	31.0m	0.19	0.89	0.03	0.3
	(original assays)	'	1	31.0m	0.21	0.13	0.03	0.3
GGY-002	historical intercept	9.7	166	156.3m	2.6	9.7	0.16	3.0
	(re-assayed section)	40	102	62.0m	5.22	21.33	0.25	5.9
	(original assays)	1	(62.0m	4.83	19.96	0.23	5.5
	historical intercept	114	166	52.0m	1.3	3.3	0.18	1.6
	(re-assayed section)	114	171	57.0m	1.20	3.44	0.18	1.5
	(original assays)	'	'	57.0m	1.24	3.53	0.17	1.6
GGY-005	historical intercept	12	162	150.0m	0.4	11.0	0.30	1.0
	(re-assayed section)	10	60	50.0m	0.45	19.23	0.33	1.2
	(original assays)	'	(50.0m	0.51	21.74	0.44	1.5
	(re-assayed section)	64	98	34.0m	0.10	5.25	0.16	0.4
	(original assays)	'	1	34.0m	0.84	6.22	0.16	1.2
	(re-assayed section)	132	162	30.0m	0.10	6.35	0.33	0.7
	(original assays)	((30.0m	0.07	6.18	0.31	0.7
GGY-011	historical intercept	14	229	215.0m	0.2	9.6	0.36	0.9
	(re-assayed section)	14	126	112.0m	0.17	10.89	0.30	0.8
	(original assays)	((112.0m	0.18	11.73	0.36	0.9
	(re-assayed section)	166	206	40.0m	0.09	5.08	0.22	0.5
	(original assays)	'	1	40.0m	0.09	4.90	0.22	0.5
	(re-assayed section)	218	231	13.0m	0.22	8.52	0.41	1.0
	(original assays)	'	1	13.0m	0.34	19.48	0.96	2.2
GGY-017	historical intercept	69	184	115.0m	0.5	2.1	0.03	0.5
	(re-assayed section)	94	129	35.0m	0.45	2.76	0.04	0.6
	(original assays)	'	1	35.0m	0.30	4.01	0.03	0.4
	(re-assayed section)	206	258	52.0m	0.37	2.00	0.06	0.5
	(original assays)	'	1	52.0m	0.26	1.42	0.06	0.4
JDH-006	historical intercept	17.99	89.6	71.6m	0.2	2.0	0.10	0.4
	(re-assayed section)	10.3	81.3	71.0m	0.18	1.38	0.03	0.2
	(original assays)	,	,	71.0m	0.20	1.59	0.07	0.3

Comparison showing historic and re-assayed intercepts for El Guayabo drill holes are shown below:

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 648.7.m shares 86.6m options 120m perf shares

16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

ffice Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com.au

www.challengerex.com

(7

JDH-009 JDH-10	historical intercept (re-assayed section) (original assays) historical intercept (re-assayed section) (original assays) historical intercept	164.8 150.6 ' 10.3 6.7	281 281.1 , 122 107.8	116.2m 130.5m 130.5m 111.7m 101.1m	0.6 0.26 0.42 0.7	8.9 7.21 8.02 14.6	0.40 0.26 0.36	1. 0.
	(re-assayed section) (original assays) historical intercept (re-assayed section) (original assays)	, 10.3	, 122	130.5m 111.7m	0.42 0.7	8.02	0.36	0.
	(original assays) historical intercept (re-assayed section) (original assays)	10.3		111.7m	0.7			
	(re-assayed section) (original assays)					14.6		1.
JDH-10	(re-assayed section) (original assays)			101.1m			0.58	1
JDH-10	(original assays)		107.0	101.100	0.21	13.80	0.36	1
JDH-10	historical intercent	1	1	101.1m	0.22	15.08	0.59	1
	mstorical intercept	1.5	50.9	49.4m	0.5	2.5	0.09	0
	(re-assayed section)	15.2	50.9	35.7m	0.44	2.88	0.10	0
	(original assays)	(1	35.7m	0.41	2.96	0.10	C
	historical intercept	140	203	81.6m	0.4	1.3	0.07	C
	(re-assayed section)	150.5	203.4	52.9m	0.36	1.34	0.07	C
_	(original assays)	((52.9m	0.39	1.24	0.06	C
JDH-012	historical intercept	12.2	53.96	41.8m	0.6	6.5	0.02	C
	(re-assayed section)	18.3	54	35.7m	0.68	7.62	0.02	C
	(original assays)	(1	35.7m	0.69	7.36	0.02	C
JDH-013	historical intercept	89.9	154.9	65.0m	1.4	2.8	0.06	1
	(re-assayed section)	112.3	155	42.7m	2.11	2.84	0.05	2
	(original assays)	1	1	42.7m	2.00	3.70	0.08	2
JDH-014	historical intercept	26.96	75.69	48.7m	0.4	5.2	0.10	C
	(re-assayed section)	27	61.5	34.5m	0.64	5.99	0.13	(
	(original assays)	1	1	34.5m	0.52	6.25	0.13	(
	historical intercept	128.52	175.3	46.8m	0.46			
				40.011	0.46	3.3	0.08	C
	(re-assayed section)	140.7 ,	167.2 ,	26.5m	0.46	3.3 2.24	0.08 0.07	((
	JDH-013	JDH-012 historical intercept (re-assayed section) (original assays) JDH-013 historical intercept (re-assayed section) (original assays) JDH-014 historical intercept (re-assayed section) (original assays) historical intercept	JDH-012historical intercept12.2(re-assayed section)18.3(original assays)'JDH-013historical intercept89.9(re-assayed section)112.3(original assays)'JDH-014historical intercept26.96(re-assayed section)27(original assays)'	JDH-012historical intercept12.253.96(re-assayed section)18.354(original assays)''JDH-013historical intercept89.9154.9(re-assayed section)112.3155(original assays)''JDH-014historical intercept26.9675.69(re-assayed section)2761.5(original assays)''	JDH-012 historical intercept 12.2 53.96 41.8m (re-assayed section) 18.3 54 35.7m (original assays) ' ' 35.7m JDH-013 historical intercept 89.9 154.9 65.0m (re-assayed section) 112.3 155 42.7m (original assays) ' ' 42.7m JDH-014 historical intercept 26.96 75.69 48.7m (re-assayed section) 27 61.5 34.5m (original assays) ' ' 34.5m	JDH-012 historical intercept 12.2 53.96 41.8m 0.6 (re-assayed section) 18.3 54 35.7m 0.68 (original assays) ' ' 35.7m 0.69 JDH-013 historical intercept 89.9 154.9 65.0m 1.4 (re-assayed section) 112.3 155 42.7m 2.11 (original assays) ' ' 42.7m 2.00 JDH-014 historical intercept 26.96 75.69 48.7m 0.4 (re-assayed section) 27 61.5 34.5m 0.64 (original assays) ' ' 34.5m 0.52	JDH-012 historical intercept 12.2 53.96 41.8m 0.6 6.5 (re-assayed section) 18.3 54 35.7m 0.68 7.62 (original assays) ' ' 35.7m 0.69 7.36 JDH-013 historical intercept 89.9 154.9 65.0m 1.4 2.8 (re-assayed section) 112.3 155 42.7m 2.11 2.84 (original assays) ' ' 42.7m 2.00 3.70 JDH-014 historical intercept 26.96 75.69 48.7m 0.4 5.2 (re-assayed section) 27 61.5 34.5m 0.64 5.99 (original assays) ' ' 34.5m 0.52 6.25	JDH-012 historical intercept 12.2 53.96 41.8m 0.6 6.5 0.02 (re-assayed section) 18.3 54 35.7m 0.68 7.62 0.02 (original assays) ' ' 35.7m 0.69 7.36 0.02 JDH-013 historical intercept 89.9 154.9 65.0m 1.4 2.8 0.06 (re-assayed section) 112.3 155 42.7m 2.11 2.84 0.05 (original assays) ' ' 42.7m 2.00 3.70 0.08 JDH-014 historical intercept 26.96 75.69 48.7m 0.4 5.2 0.10 (re-assayed section) 27 61.5 34.5m 0.64 5.99 0.13 (original assays) ' ' ' 34.5m 0.52 6.25 0.13

> 120m perf shares 16m perf rights

Issued Capital

648.7.m shares

86.6m options

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Office

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

teria	JORC Code explanation	Commentary	/							
		ZK1-3	46.0	103.7	57.7	0.5	1.9			
		inc	56.0	85.7	29.7	0.8	3.1			
		from	127.0	163.0	36.0	0.5	3.5			
		and	290.5	421.0	130.5	0.5	3.1			
		inc	302.5	380.5	78.0	0.7	3.5			
		ZK1-5	211.4	355.0	145.6	1.5	1.7			
		inc	253.0	340.0	87.0	2.1	1.9			
		KZ0-2	13.3	108.2	94.9	0.3	1.7			
		inc	75.7	108.2	32.5	0.4	2.6			
		and	172.7	193.1	20.4	0.3	2.1			
		and	225.0	376.4	151.4	0.9	3.8			
		inc	227.0	361.0	134.0	1.0	4.1			
		inc	227.0	290.0	63.0	1.6	5.1			
		ZK3-4	26	38	12	0.3	1.5	513	5	
		and	50	114	64	0.2	1.5	549	5	
		inc	86	88	2	1.5	1.4	458	3	1 g/t Au cut off
		and	180	250	70	0.2	1.6	777	3	
		ZK3-1	49.5	112.5	63	0.1	1.7	654	5	
		inc	94.5	96	1.5	1.5	1.4	3126	7	1 g/t Au cut off
		and	94.5	174	79.5	0.1	2	662	4	
		inc	171	172.5	1.5	1.4	2.6	771	7	1 g/t Au cut off
		SAZK0-1	31.2	90.8	59.6	0.2	1.4	392	3	
		and	131.5	179.5	48	0.1	4.3	824	6	
		and	229.8	292.8	63	0.2	1	325	8	
		and	319	490.8	171.8	0.2	1.5	616	12	
		inc	352	446.5	94.5	0.3	2.4	996	15	1 g/t Au cut off
		SAK2-1	66.5	275	208.5	0.3	1.5	626	5	
		inc	122	185	63	0.6	2.1	825	3	1 g/t Au cut off
		and	225.5	227	1.5	1.6	1.4	638	2	1 g/t Au cut off
		and	288.5	330.5	42	0.2	2	454	1	
		inc	288.5	291.5	3	1.3	5.6	1136	1	1 g/t Au cut off
		SAZK0-2	0	80.7	80.7	0.4	1.9	478	3	
		inc	30.7	51.2	20.5	1	2.5	460	5	1 g/t Au cut off
		and	136	148	12	0.6	0.4	61	14	
		inc	137.5	140.5	3	1.4	0.3	10	4	1 g/t Au cut off
		and	200.5	403.8	203.3	0.3	1.3	588	15	Hole ends in mineralisation

Issued Capital 648.7.m shares Level 1 86.6m options 1205 Hay Street 120m perf shares West Perth WA 6005

16m perf rights

Australian Registered Office

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	iry							
		inc	293.5	399.3	105.8	0.5	1.3	635	16	
		inc	214	215.5	1.5	1.8	2.1	681	12	1 g/t Au cut off
		inc	344.5	399.3	54.8	0.7	1.5	767	12	
		inc	361.8	366.3	4.5	5.5	0.8	502	61	1 g/t Au cut off
		and	397.8	399.3	1.5	1.3	2.3	770	2	1 g/t Au cut off
		ZK1-13	46.2	73.2	27	0.1	0.8	306	1	
		and	140	141.5	1.5	1.9	0.7	236	1	1 g/t Au cut off
		and	161	196	35	0.1	1.4	391	2	
		ZK0-5	6.1	19.8	13.7	0.2	1.3	313	10	
			46.3	130.1	83.8	0.5	1.2	356	7	
		inc	67	118	51	0.7	1.4	409	5	0.5 g/t Au cut off
		inc	75.7	76.8	1.1	1.2	1.4	483	2	1 g/t Au cut off
		and	80.7	81.7	1	1.8	2.2	549	4	1 g/t Au cut off
		and	93.7	94.7	1	13.9	3.4	354	7	1 g/t Au cut off
		and	146.5	296.5	150	0.2	1	310	3	
		and	370	371.5	1.5	0.9	5.2	1812	3	
		and	414.3	415.8	1.5	1.2	0.3	127	1	
		and	560.5	562	1.5	2.3	0.6	189	2	
		and	596	598.2	2.2	1.7	2.1	391	4	
			607 NSI	608.5	1.5	2	0.8	190	2	
between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, and the statement to this effect (eg 'down hole length, the statement to this effect (eg 'down hole length, the statement to this effect (eg 'down hole length, the statement to the st	 mineralisation is not yet cle mineralisation is not known The preliminary interpretation inclined holes may not be referred. 	ar. The owner ion is that the epresentative	cautions breccia h of the tru	that only and osted minera e width of thi	l only the lisation oc is breccia	down hol ccurs in n hosted m	e lengths ar ear vertical ineralisation	re reported breccia pip n. The relat	geometry of the intrusive hosted and the true width of es. Thus, intersections in steepl tionship between the drilling is illustrated in the figure below
enger Exploration Limited 123 591 382 CEL	I Issued Capital Austral 648.7.m shares Level 1 86.6m options 1205 H	ay Street Mr Scott Fu	uer, MD and CEO Inston, Finance Dire Quinn, Chairman	ector	Contact T: +61 8 6380 92 E: admin@challe		u			

Criteria	JORC Code explanation	Commentary
	representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting o Exploration Results.	f
Other substantive exploration data	 Other exploration data, if meaningful an material, should be reported including (b not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	•
		SD MT model; Cross-sections and Elevation Plan maps of the 3D MT models;
		Figures showing Survey Locations and Results are included in the boidy of this release DCIP INVERSION PROCEDURES
		DCIP is an electrical method that uses the injection of current and the measurement of voltage difference along with its rat of decay to determine subsurface resistivity and chargeability respectively. Depth of investigation is mainly controlled by th array geometry but may also be limited by the received signal (dependent on transmitted current) and ground resistivit Chargeability is particularly susceptible to data with a low signal-to-noise ratio. The differences in penetration dept between DC resistivity and chargeability are a function of relative property contrasts and relative signal-to-noise leve between the two measurements. A detailed introduction to DCIP is given in Telford, et al. (1976). The primary tool for evaluating data is through the inversion of the data in two or three dimensions. An inversion model depends not only on the data collected, but also on the associated data errors in the reading and the "model norm". Inversion models are not uniqu and may contain "artefacts" from the inversion process. The inversion model may not accurately reflect all the informatic apparent in the actual data. Inversion models must be reviewed in context with the observed data, model fit, and with a understanding of the model norm used. The DC and IP inversions use the same mesh. The horizontal mesh is set as 2 cells between electrodes. The vertical mesh designed with a cell thickness starting from 20 m for the first hundred metres to accommodate the topographic variation
iger Exploration Limited 3 591 382 <mark>L</mark>	Issued Capital Australian Registered Off 648.7.m shares Level 1 86.6m options 1205 Hay Street 1200m part shares Wort Borth WA 6005	ce Directors Contact Mr. Kris Knauer, MD and CEO T: +61 8 6380 9235 Mr. Scott Funston, Finance Director E: admin@challengerex.com.au Mr. Blotchor Quipe, Chairman E: admin@challengerex.com.au

Mr Fletcher Quinn, Chairman

www.challengerex.com

120m perf shares

16m perf rights

	Criteria JO	RC Code explana	tion	Commentary	
				iterations. The DC data is inverted as starting model. For IP inversion models with conductivity distribu location in a 2D mesh. The conduc uniform conductivity. Two IP inversi models. The first inversion of the II IP dcref model. The second IP inv labelled IP hsref model. This mode	ases logarithmically with depth. The inversions were generally run for a maximum of 50 using an unconstrained 2D inversion with a homogenous half-space of average input data as, the apparent chargeability \Box is computed by carrying out two DC resistivity forward tions $\sigma(xi,zj)$ and $(1-\eta)\sigma(xi,zj)$ (Oldenburg and Li, 1994), where (xi,zj) specifies the tivity distributions used in IP inversions can be the inverted DC model or a half space of sions are then calculated from the same data set and parameters using different reference P data uses the previously calculated DC model as the reference model and is labelled the ersion uses a homogeneous half-space resistivity model as the reference model and is el is included to test the validity of chargeability anomalies, and to limit the possibility of due to the use of the DC model as a reference. The results of this second IP inversion are thtached to this report.
				The Magnetotelluric (MT) method magnetic (H) field on the surface o	is a natural source EM method that measures the variation of both the electric (E) and the earth to determine the distribution at depth of the resistivity of the underlying rocks. is presented in Vozoff (1972) and Orange (1989).
				The measured MT impedance Z, de is generally represented by an app	fined by the ratio between the E and H fields, is a tensor of complex numbers. This tensor arent resistivity (a parameter proportional to the modulus of Z) and a phase (argument of ers with frequency relates the variations of the resistivity with depth, the high frequencies
				phase have an opposite behaviour associated with a decrease in appa the resistivity of the surface that e observed data. The solution how different conditions) to test and co An additional parameter acquired	low frequencies the deeper part of the earth. However, the apparent resistivity and the c. An increase of the phase indicates a more conductive zone than the host rocks and is arent resistivity. The objective of the inversion of MT data is to compute a distribution of explains the variations of the MT parameters, i.e. the response of the model that fits the ever is not unique and different inversions must be performed (different programs, ompare solutions for artefacts versus a target anomaly. d during MT survey is the Tipper. Tipper parameters Tzx and Tzy (complex numbers)
				'iocal' effect, mainly defined by th geological strike direction. Anothe vectors. The induction vectors (def	tween the vertical magnetic field and the horizontal X (Tzx), and Y (Tzy) magnetic fields epresent the transfer function between the electric and magnetic fields). This tipper is a e lateral contrast of the resistivity. Consequently, the tipper can be used to estimate the er important use of the tipper is to display its components as vectors, named induction ined by the real components of Tzx and Tzy) plotted following the Parkinson-Real-Reverse- ductive zones. The tipper is then a good mapping tool to delineate more conductive zones.
					nined primarily by the frequency content of the measurement. Depth estimates from any eed 20 km. However, the data can only be confidently interpreted when the aperture of th of investigation.
				models are not unique, may cont information apparent in the actual	on the data, but also on the associated data errors and the model norm. The inversion ain artefacts of the inversion process and may not therefore accurately reflect all the data. Inversion models need to be reviewed in context with the observed data, model fit. del norm used and evaluate whether the model is geologically plausible.
ACN ASX:	enger Exploration Limited 123 591 382 CEL rw.challengerex.com	Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman	Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

JORC Code explar	lation	Commentary					
		For this project, 2D inversions were direction is perpendicular to the p field); no TE mode (crossline E-fiel The 2D inversions were performed assuming 10% and 5% error for t component Z. No static shift of th The 3D inversion was carried out over an area of approximately 5kr The 3D inversion was completed u the measured data from 10 kHz to impedance tensors (Zxx, Zxy, Zyx, The measured tipper data (Tzx, Tz homogenous half space with resis mesh with 75 m x 75 m cell size w cover the first 4 km. Padding cells 3D inversion was run for a maxim In addition a total of 129 samples chargeability properties (Chargea	rofile for all sites: the TM n d) were used in the 2D inv d using the TM-mode resis he resistivity and phase re- e data has been applied on using the CGG RLM-3D inve n x 3.5km. All MT sites from using a sub sample of the N 0.01 Hz with a nominal 4 f and Zyy) were used as input stivity of 100 Ohm-m was of vas used in horizontal direct were added in each direct um of 50 iterations. distributed along 12 hole bility M and Susceptibility	mode is the ersions. tivity and espectively the data. ersion coor n this curr IT data with used as the tions in the on to accor s were an (SCPT 0.0	en defined by the i phase data interpo r, which is equivale e. The 3D inversion ent survey were us th a maximum of 2- es per decade. At ea ith an associated e an associated erro e starting model for e resistivity model mmodate the inve alysed to measure	inline E-field (and cro plated at 6 frequencie ent to 5% error on t ns of the MT data we sed for the 3D invers 4 frequencies at each ach site, the complet rror set to 5% on ea or set to 0.02 on each or this 3D MT inversion . The vertical mesh we rsion for boundary c the resistivity (Rho nent used for the an	ess line H- es per decad he impedan ere complet ion. h site coveri ce MT compl ch parameter ion. A unifor was defined onditions. T (Ohm*m) a
		Sample Core IP Tester, manufactu only as first order estimate, and no subject to some errors (i.e. wrong Colorado V: Exploration Target: An Exploration Target for two min soil anomalies, drill hole geologica	ot as "absolute" (true) value size of the core entered in peralized zones on the Colo	e as readin the equip rado V mi	gs by the field crew oment). ning concession ha	vwere not repeated a	and potentia urface gold
		only as first order estimate, and no subject to some errors (i.e. wrong Colorado V: Exploration Target: An Exploration Target for two mir soil anomalies, drill hole geologica	ot as "absolute" (true) value size of the core entered in peralized zones on the Colo	e as readin the equip rado V mi id panel sa	gs by the field crew oment). ning concession ha ampling from an ad	v were not repeated a s been made using s lit at one of the targe	and potentia urface gold
		only as first order estimate, and no subject to some errors (i.e. wrong Colorado V: Exploration Target: An Exploration Target for two min soil anomalies, drill hole geologica Exploration Target Anomaly A	ot as "absolute" (true) value size of the core entered in peralized zones on the Colo al and assay information an	as readin the equip rado V mi d panel sa Unit	gs by the field crew oment). ning concession ha ampling from an ad Low estimate	were not repeated a s been made using s lit at one of the targe High Estimate	and potentia urface gold
		only as first order estimate, and no subject to some errors (i.e. wrong Colorado V: Exploration Target: An Exploration Target for two mir soil anomalies, drill hole geologica <u>Exploration Target Anomaly A</u> Surface area (100 ppb Au in soil	ot as "absolute" (true) value size of the core entered in peralized zones on the Colo al and assay information an	as readin the equip rado V mi d panel so <u>Unit</u> m ²	gs by the field crew oment). ning concession ha ampling from an ad <u>Low estimate</u> 250000	were not repeated a s been made using s lit at one of the targe <u>High Estimate</u> 250000	and potentia ourface gold
		only as first order estimate, and no subject to some errors (i.e. wrong Colorado V: Exploration Target: An Exploration Target for two min soil anomalies, drill hole geologica <u>Exploration Target Anomaly A</u> Surface area (100 ppb Au in soil Depth	ot as "absolute" (true) value size of the core entered in peralized zones on the Colo al and assay information an	e as readin the equip rado V mi id panel sa <u>Unit</u> m ² m	gs by the field crew oment). ampling concession ha ampling from an ad <u>Low estimate</u> 250000 400	were not repeated a s been made using s lit at one of the targe High Estimate	and potentia
		only as first order estimate, and no subject to some errors (i.e. wrong Colorado V: Exploration Target: An Exploration Target for two mir soil anomalies, drill hole geologica Exploration Target Anomaly A Surface area (100 ppb Au in soil Depth Bulk Density	ot as "absolute" (true) value size of the core entered in peralized zones on the Colo al and assay information an	as readin the equip rado V mi d panel so <u>Unit</u> m ²	gs by the field crew oment). ning concession ha ampling from an ad <u>Low estimate</u> 250000	were not repeated a s been made using s lit at one of the targe <u>High Estimate</u> 250000 400	and potenti
		only as first order estimate, and no subject to some errors (i.e. wrong Colorado V: Exploration Target: An Exploration Target for two min soil anomalies, drill hole geologica <u>Exploration Target Anomaly A</u> Surface area (100 ppb Au in soil Depth	ot as "absolute" (true) value size of the core entered in peralized zones on the Colo al and assay information an	as readin the equip rado V mi d panel sa <u>Unit</u> m ² m kg/m ³ Mt	gs by the field crew oment). ampling concession ha ampling from an ad <u>Low estimate</u> 250000 400 2600	were not repeated a s been made using s lit at one of the targe <u>High Estimate</u> 250000 400 2750	and potenti ourface gold
		only as first order estimate, and no subject to some errors (i.e. wrong Colorado V: Exploration Target: An Exploration Target for two min soil anomalies, drill hole geologica Exploration Target Anomaly A Surface area (100 ppb Au in soil Depth Bulk Density Tonnage	ot as "absolute" (true) value size of the core entered in peralized zones on the Colo al and assay information an	as readin the equip rado V mi id panel si <u>Unit</u> m ² m kg/m ³	gs by the field crew oment). ning concession ha ampling from an ad <u>Low estimate</u> 250000 400 2600 260	were not repeated a s been made using s lit at one of the targe <u>High Estimate</u> 250000 400 2750 275	and potenti ourface gold

www.challengerex.com

16m perf rights

Criteria	JORC Code explana	ation	Commentary				
			Contained Au		Moz	2.3	5.6
			Contained Ag		Moz	8.8	19.9
			Exploration Target Anomaly B		Unit	Low estimate	High Estimate
			Surface area (100 ppb Au in soil e	envelope):	m²	175000	175000
			Depth		m	400	400
			Bulk Density		kg/m³	2600	2750
			Tonnage		Mt	182	193
			Grade Au		g/t	0.4	0.7
			Grade Ag		g/t	1.5	2.5
			% tonnage above cut-off		%	70%	90%
			Contained Au		Moz	1.6	3.9
			Contained Ag		Moz	6.1	13.9
			Total of Target A & B		Unit	Low estimate	High Estimate
			Tonnage		Mt	442	468
			Contained Au		Moz	4.0	9.5
			Contained Ag		Moz	14.9	33.8
			The potential quantity and grade of exploration to estimate a Mineral Mineral Mineral Resource.		-	•	
			 The following is an explanation of Surface Area: The surface a vertically to the surface. The gold-in-soil anomaly contou Depth: A depth of 400 metr underground bulk tonnage r controlled by steeply plungi from surface. 	rea of the target has been e e surface projection of the in r. This area has been used t es from surface has been us nining project would be exp	stimated ntersect to estima sed as an pected to	d by projecting drill ions in the drill hole ate the horizontal e n estimate of the de p extend. The mine	es coincides with the 100 xtent of the mineralizat epth that an open pit an ralization at Colorado V
ger Exploration Lim 3 591 382 L	ited Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman	Contact T: +61 8 6380 9235 E: admin@challengerex.com.au			

Criteria	JORC Code explanation	Commentary
		 Bulk Density: The bulk density is based on geological observations of the rocks that host the mineralization. Typical bulk densities for these rock types are in the range used. Gold and Silver grades: The gold and silver grade range has been estimated from the weighted average and median sample grades and deviations from mean from drill core and underground panel sampling. Proportion of tonnage above cut-off grade: These values are estimates based on drill hole intersection grade continuity down-hole assuming that not all of the Target volume, if sampled would be above the economic cut-off grade.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 El Guaybo Project Re-logging and re-assaying core including SWIR/alteration mapping to better vector on the porphyry and breccia targets – available assays 6 elements only, no SWIR, and not logged by porphyry experts. Helicopter magnetic survey on east-west flight lines with 50m spacing, proceesing and interpretation of these data. Channel sampling of the adit and artisanal workings - > 1km of underground exposure of the system which has never been systematically mapped or sampled. Sampling of additional breccia bodies – only 2 of the 10 known breccias have been systematically defined and properly sampled. Complete interpretation of the 3D MT survey (with IP lines) covering 16 sq. This will include integration of all the geological data and constrained inversion modelling The aim of the program above is to define targets for a drilling program
		 Colorado V Project Re-logging and re-assaying of drill core where only partial gold assays are available. Helicopter magnetic survey on east-west flight lines with 50m spacing, proceesing and interpretation of these data. Channel sampling of mineralized exposures in the adits and underground workings. Surface mapping and sampling. Compile and integrate existing soil survey data with CEL's MMI soil survey covering 16 sq kms. Additional soil geochemical sampling (MMI and c-horizon) to be completed near main anomalies The aim of the program above is to further test the Exploration Targets and identify targets for drilling.

Australian Registered Office

Issued Capital

648.7.m shares

86.6m options

120m perf shares

16m perf rights

Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data -Hualilan Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling. For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples lengths are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts. For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine. Core samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75µm. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination. A 10g charge was analysed for 48 elements by 4-acid digest and ICP-MS determination. Elements determined were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10% were re-analysed by the same method using a different calibration. Sample intervals were selected according to geological boundaries. There was no coarse gold observed in any of the core.
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in WGS84, zone 19s which is the standard projection used by CEL for the Project. Collar locations have been check surveyed using differential GPS (DGPS) by CEL to verify if the site coincides with a marked collar or tagged drill site. In most cases the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

JORC Code explanation	Commenta Hole_id	у Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date
	AG01	DD	2504908.0	6602132.3	1807.6	000	-90	84.5	Jan-84
	AG02	DD	2504846.5	6602041.1	1803.4	112	-70	60.0	Jan-84
	AG03	DD	2504794.5	6601925.6	1803.1	080	-55	110.0	Jan-84
	AG04	DD	2504797.1	6602065.5	1806.6	000	-90	168.0	Jan-8
	AG05	DD	2504843.5	6601820.3	1798.1	000	-90	121.8	Jan-84
	AG06	DD	2504781.9	6601922.8	1803.8	000	-90	182.2	Jan-8
	AG07	DD	2504826.3	6601731.0	1796.9	000	-90	111.5	Jan-8
	AG08	DD	2504469.8	6600673.7	1779.7	090	-57	80.2	Jan-8
	AG09	DD	2504455.7	6600458.5	1772.6	000	-90	139.7	Jan-8
	AG10	DD	2504415.5	6600263.9	1767.7	000	-90	200.8	Jan-8
	AG11	DD	2504464.8	6600566.5	1775.9	000	-90	141.0	Jan-8
	AG12	DD	2504847.6	6602161.7	1808.8	000	-90	171.4	Jan-8
	AG13	DD	2504773.6	6601731.3	1798.7	000	-90	159.5	Jan-8
	AG14	DD	2504774.7	6601818.8	1801.2	000	-90	150.2	Jan-8
			2504770.7	6601631.4	1796.7	000	-90	91.3	Jan-8
	AG15	DD	2504770.7	0001051.4	1/90./	000	-90	51.5	Jan-c
	AG15 _AG16	DD DD	2504429.5	6600665.8	1779.8	000	-90	68.8	Jan-8
			2504429.5 East	6600665.8 North	1779.8 Elevation	000 Azimuth	-90 Dip	68.8 Depth	Jan-8
	AG16 Hole_id	DD Type	2504429.5 East (m)	6600665.8 North (m)	1779.8 Elevation (m ASL)	000 Azimuth (°)	-90 Dip (°)	68.8 Depth (m)	Jan-8 Da
	_AG16	DD	2504429.5 East	6600665.8 North	1779.8 Elevation	000 Azimuth	-90 Dip	68.8 Depth	Jan-8 Da
	AG16 Hole_id MG01	DD Type RC	2504429.5 East (m) 2504825.5	6600665.8 North (m) 6602755.4	1779.8 Elevation (m ASL) 1800.0	000 Azimuth (°) 100	-90 Dip (°) -60	68.8 Depth (m) 51.0	Jan-8 Dat Jan- Jan-
	AG16 Hole_id MG01 MG01A	DD Type RC RC	2504429.5 East (m) 2504825.5 2504810.5	6600665.8 North (m) 6602755.4 6602755.4	1779.8 Elevation (m ASL) 1800.0 1800.0	000 Azimuth (°) 100 100	-90 Dip (°) -60 -60	68.8 Depth (m) 51.0 116.0	Jan-8 Dat Jan- Jan- Jan-
	AG16 Hole_id MG01 MG01A MG02	DD Type RC RC RC	2504429.5 East (m) 2504825.5 2504810.5 2504835.5 2504853.5 2504843.5	6600665.8 North (m) 6602755.4 6602755.4 6602805.4	1779.8 Elevation (m ASL) 1800.0 1800.0 1800.0	000 Azimuth (°) 100 100 100	-90 Dip (°) -60 -60	68.8 Depth (m) 51.0 116.0 90.0	
	AG16 Hole_id MG01 MG01A MG02 MG03	DD Type RC RC RC RC RC	2504429.5 East (m) 2504825.5 2504810.5 2504835.5 2504853.5 2504843.5 2506130.5	6600665.8 North (m) 6602755.4 6602755.4 6602805.4 6602880.4	1779.8 Elevation (m ASL) 1800.0 1800.0 1800.0 1795.0	000 Azimuth (°) 100 100 100 100	-90 Dip (°) -60 -60 -60 -60	68.8 Depth (m) 51.0 116.0 90.0 102.0	Jan-8 Dat Jan- Jan- Jan- Jan-
	AG16 Hole_id MG01 MG01A MG02 MG03 MG04 MG05 MG06	DD Type RC RC RC RC RC RC RC RC	2504429.5 East (m) 2504825.5 2504810.5 2504835.5 2504853.5 2504843.5 2506130.5 2506005.5	6600665.8 North (m) 6602755.4 6602755.4 6602805.4 6602805.4 6602880.4 6602975.4	1779.8 Elevation (m ASL) 1800.0 1800.0 1800.0 1795.0 1800.0	000 Azimuth (°) 100 100 100 100 100 100	-90 Dip (°) -60 -60 -60 -60 -60	68.8 Depth (m) 51.0 116.0 90.0 102.0 120.0 96.0 90.0	Jan-8 Dat Jan- Jan- Jan- Jan- Jan- Jan- Jan-
	AG16 Hole_id MG01 MG01A MG02 MG03 MG04 MG05 MG06 MG07	DD Type RC RC RC RC RC RC RC RC RC RC RC RC	2504429.5 East (m) 2504825.5 2504810.5 2504835.5 2504835.5 2504843.5 2504843.5 2506130.5 2506005.5 2506100.5	North (m) 6602755.4 6602755.4 6602805.4 6602805.4 6602975.4 6602975.4 6602975.4 6605055.4 6605115.4 6605015.4	1779.8 Elevation (m ASL) 1800.0 1800.0 1795.0 1800.0 1750.0 1750.0 1750.0	000 Azimuth (°) 100 100 100 100 85 100 100	-90 Dip (°) -60 -60 -60 -60 -60 -60	68.8 Depth (m) 51.0 116.0 90.0 102.0 120.0 96.0 90.0 96.0	Jan-8 Dat Jan- Jan- Jan- Jan- Jan- Jan- Jan- Jan-
	AG16 Hole_id MG01 MG01A MG02 MG03 MG04 MG05 MG06 MG07 MG08	DD Type RC RC RC RC RC RC RC RC RC RC RC RC RC	2504429.5 East (m) 2504825.5 2504810.5 2504835.5 2504835.5 2504843.5 2504843.5 2506130.5 2506005.5 2506100.5 2505300.5	6600665.8 North (m) 6602755.4 6602755.4 6602805.4 6602805.4 6602975.4 6602975.4 6605055.4 6605015.4 6605015.4 6603070.4	1779.8 Elevation (m ASL) 1800.0 1800.0 1795.0 1800.0 1750.0 1750.0 1750.0 1750.0 1750.0	000 Azimuth (°) 100 100 100 100 85 100 100 85 100 100 95	-90 Dip (°) -60 -60 -60 -60 -60 -60 -60 -70	68.8 Depth (m) 51.0 116.0 90.0 102.0 120.0 96.0 90.0 96.0 96.0 66.0	Jan-8 Dat Jan- Jan- Jan- Jan- Jan- Jan- Jan- Jan-
	AG16 Hole_id MG01 MG01A MG02 MG03 MG04 MG05 MG06 MG07 MG08 MG09	DD Type RC RC RC RC RC RC RC RC RC RC RC RC RC	2504429.5 East (m) 2504825.5 2504835.5 2504835.5 2504843.5 2504843.5 2506130.5 2506005.5 2506100.5 2505300.5 2505285.5	North (m) 6602755.4 6602755.4 6602805.4 6602805.4 6602975.4 6602975.4 6605055.4 6605015.4 6605015.4 6603070.4 6603015.4	1779.8 Elevation (m ASL) 1800.0 1800.0 1795.0 1800.0 1750.0 1750.0 1750.0 1750.0 1740.0 1740.0	000 Azimuth (°) 100 100 100 100 85 100 100 95 0	-90 Dip (°) -60 -60 -60 -60 -60 -60 -60 -70 -70 -90	68.8 Depth (m) 51.0 116.0 90.0 102.0 120.0 96.0 90.0 96.0 66.0 102.0	Jan-8 Dat Jan- Jan- Jan- Jan- Jan- Jan- Jan- Jan-
	AG16 Hole_id MG01 MG01A MG02 MG03 MG04 MG05 MG06 MG07 MG08 MG09 MG10	DD Type RC RC RC RC RC RC RC RC RC RC RC RC RC	2504429.5 East (m) 2504825.5 2504835.5 2504835.5 2504843.5 2506130.5 2506005.5 2506100.5 2505300.5 2505285.5 2505025.5	North (m) 6602755.4 6602755.4 6602805.4 6602805.4 6602975.4 6605055.4 6605055.4 6605015.4 6603070.4 6603015.4 6603015.4 6603025.4	1779.8 Elevation (m ASL) 1800.0 1800.0 1795.0 1750.0 1750.0 1750.0 1750.0 1740.0 1740.0 1724.0	000 Azimuth (°) 100 100 100 100 85 100 100 95 0 100	-90 Dip (°) -60 -60 -60 -60 -60 -60 -70 -90 -60	68.8 Depth (m) 51.0 116.0 90.0 102.0 120.0 96.0 90.0 96.0 66.0 102.0 120.0	Jan-8 Dat Jan- Jan- Jan- Jan- Jan- Jan- Jan- Jan-
	AG16 Hole_id MG01 MG01A MG02 MG03 MG04 MG05 MG06 MG07 MG08 MG09	DD Type RC RC RC RC RC RC RC RC RC RC RC RC RC	2504429.5 East (m) 2504825.5 2504835.5 2504835.5 2504843.5 2504843.5 2506130.5 2506005.5 2506100.5 2505300.5 2505285.5	North (m) 6602755.4 6602755.4 6602805.4 6602805.4 6602975.4 6602975.4 6605055.4 6605015.4 6605015.4 6603070.4 6603015.4	1779.8 Elevation (m ASL) 1800.0 1800.0 1795.0 1800.0 1750.0 1750.0 1750.0 1750.0 1740.0 1740.0	000 Azimuth (°) 100 100 100 100 85 100 100 95 0	-90 Dip (°) -60 -60 -60 -60 -60 -60 -60 -70 -70 -90	68.8 Depth (m) 51.0 116.0 90.0 102.0 120.0 96.0 90.0 96.0 66.0 102.0	Jan-8 Dat Jan- Jan- Jan- Jan- Jan- Jan- Jan- Jan-

CISONAL USE ONIY

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 648.7.m shares 86.6m options 120m perf shares

16m perf rights

Australian Registered Office Level 1

1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

riteria	JORC Code explanation	Commenta	y	East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Туре	(m)	(m)	(m ASL)	Azimuth (°)	(°)	(m)	Da
		Hua01	RC	2504845.3	6602041.2	1809.7	117	-50	60.0	19
		Hua02	RC	2504889.5	6602081.1	1809.7	125	-55	45.0	19
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90	100.0	19
		Hua04	RC	2504873.3	6602169.1	1809.7	000	-90	100.0	1
		Hua05	RC	2505003.2	6602152.6	1810.7	180	-60	100.0	1
		Hua06	RC	2505003.3	6602161.6	1810.7	360	-60	100.0	1
		Hua07	RC	2504967.7	6602153.2	1810.2	000	-90	100.0	1
		Hua08	RC	2504973.2	6602153.7	1810.2	000	-90	13.0	1
		Hua09	RC	2504940.7	6602150.3	1809.7	180	-60	100.0	1
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60	100.0	1
		Hua11	RC	2504913.3	6602167.4	1809.7	360	-60	88.0	1
		Hua12	RC	2504912.8	6602165.9	1809.7	000	-90	100.0	1
		Hua13	RC	2504912.3	6602156.9	1809.7	180	-60	90.0	-
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60	100.0	-
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60	100.0	:
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90	100.0	:
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50	42.0	:
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90	106.0	
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90	54.0	
				East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Туре	(m)	(m)	(m ASL)	(°)	(°)	(m)	Da
		DDH20	DD	2504977.3	6602133.3	1804.8	116	-54	49.1	199
		DDH21	DD	2504978.3	6602118.3	1804.8	000	-90	88.6	199
		DDHZI	00	200.070.0					00.0	
		DDH21	DD	2504762.9	6601587.1	1769.8	116	-65	66.0	
						1769.8 1767.9	116 000			199
		DDH22	DD	2504762.9	6601587.1			-65	66.0	199 199
		DDH22 DDH23	DD DD	2504762.9 2504920.4	6601587.1 6601994.3	1767.9	000	-65 -90	66.0 58.8	199 199 199
		DDH22 DDH23 DDH24	DD DD DD	2504762.9 2504920.4 2504821.0	6601587.1 6601994.3 6601938.8	1767.9 1802.0	000 116	-65 -90 -80	66.0 58.8 100.3	199 199 199 199
		DDH22 DDH23 DDH24 DDH25	DD DD DD DD	2504762.9 2504920.4 2504821.0 2504862.6	6601587.1 6601994.3 6601938.8 6601964.5	1767.9 1802.0 1803.7	000 116 116	-65 -90 -80 -74	66.0 58.8 100.3 49.2	199 199 199 199 199
		DDH22 DDH23 DDH24 DDH25 DDH26	DD DD DD DD DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3	1767.9 1802.0 1803.7 1795.0	000 116 116 312	-65 -90 -80 -74 -60	66.0 58.8 100.3 49.2 80.3	199 199 199 199 199 199
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27	DD DD DD DD DD DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1	1767.9 1802.0 1803.7 1795.0 1806.6	000 116 116 312 116	-65 -90 -80 -74 -60 -60	66.0 58.8 100.3 49.2 80.3 43.2	199 199 199 199 199 199
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28	DD DD DD DD DD DD DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3	1767.9 1802.0 1803.7 1795.0 1806.6 1806.6	000 116 116 312 116 116	-65 -90 -80 -74 -60 -60 -50	66.0 58.8 100.3 49.2 80.3 43.2 41.7	199 199 199 199 199 199 199
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29	DD DD DD DD DD DD DD DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6	1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0	000 116 116 312 116 116 350	-65 -90 -80 -74 -60 -60 -50 -52	66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5	199 199 199 199 199 199 199 199
		DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30	DD DD DD DD DD DD DD DD DD	2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1	6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3	1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3	000 116 116 312 116 116 350 059	-65 -90 -80 -74 -60 -60 -50 -52 -85	66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1	199 199 199 199 199 199 199 199 199 199

CISONAL USE ONIY **Challenger Exploration Limited** ACN 123 591 382 ASX: CEL

Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

www.challengerex.com

	DDH34 DDH35	DD	2504826.5	6601920.2	1801.3	116	-70	69.4	1999-(
								05.4	1000
	DDU22	DD	2505003.9	6602156.7	1808.8	310	-85	174.6	1999-
	DDH36	DD	2504637.5	6600777.3	1799.9	330	-50	45.5	1999-
	DDH37	DD	2504826.5	6601920.2	1809.4	000	-90	121.0	1999-
	DDH38	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999
	DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999
	DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999
	DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999
	DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999
	DDH43	DD	2504829.2	6601952.5	1801.8	116	-70	70.8	1999
	DDH44	DD	2504811.3	6601895.1	1802.0	116	-60	102.2	1999
	DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999
	DDH46	DD	2504884.4	6601976.3	1805.9	116	-45	71.6	1999
	DDH47	DD	2504884.4	6601976.3	1805.9	116	-65	71.0	1999
	DDH48	DD	2504866.9	6601962.7	1803.1	116	-47	30.7	1999
	DDH49	DD	2504866.9	6601962.7	1803.1	116	-72	41.9	1999
	DDH50	DD	2504821.4	6601913.9	1801.1	116	-77	87.5	1999
	DDH51	DD	2504821.4	6601913.9	1801.1	116	-80	87.5	1999
	DDH52	DD	2504825.5	6601901.1	1800.9	116	-83	74.0	1999
	DDH53	DD	2504504.1	6600714.0	1788.7	090	-62	85.7	1999
	DDH54	DD	2504504.1	6600714.0	1788.7	090	-45	69.1	1999
	DDH55	DD	2504997.9	6602163.5	1808.6	360	-53	63.1	1999
	DDH56	DD	2504943.1	6602171.3	1810.5	360	-75	50.6	1999
	DDH57	DD	2504943.1	6602171.3	1810.5	000	-90	66.2	1999
	DDH58	DD	2504970.3	6602153.3	1809.1	360	-71	62.0	1999
	DDH59	DD	2504970.3	6602153.3	1809.1	000	-90	66.3	1999
	DDH60	DD	2504997.9	6602162.5	1809.0	360	-67	59.9	1999
	DDH61	DD	2504997.9	6602162.5	1809.0	000	-90	58.1	1999
	DDH62	DD	2504751.4	6601602.6	1789.2	170	-45	68.4	1999
	DDH63	DD	2504751.4	6601602.6	1789.2	170	-70	131.5	1999
	DDH64	DD	2504776.3	6601596.9	1789.1	170	-45	66.7	1999
	DDH65	DD	2504552.7	6600792.0	1793.8	194	-45	124.8	1999
	DDH66	DD	2504552.7	6600792.0	1793.8	194	-57	117.0	1999
	DDH67	DD	2504552.7	6600792.0	1793.8	194	-66	126.1	1999
	DDH68	DD	2504623.9	6600779.0	1800.7	000	-90	79.5	1999
	DDH69	DD	2504623.9	6600779.0	1800.7	194	-60	101.5	1999
	DDH70	DD	2504595.5	6600797.7	1798.1	190	-81	128.0	1999
	DDH71	DD	2504631.6	6600797.4	1799.0	194	-63	136.3	1999

CISONAL USE ONLY Chall ACN 123 591 382 ASX: CEL

www.challengerex.com

648.7.m shares 86.6m options 1205 Hay Street 120m perf shares West Perth WA 6005 16m perf rights

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

riteria	JORC Code explanation	Commentary								
		DDH72	DD	2504547.2	6600764.1	1799.6	194	-45	75.6	1999-
		DDH73	DD	2504593.4	6600766.5	1807.5	190	-57	70.8	1999-
		DDH74	DD	2504598.2	6600831.8	1795.3	190	-62	190.9	1999-
		DDH75	DD	2504731.2	6600784.7	1821.4	194	-45	40.2	1999-
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7	1999-
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90	85.6	1999
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75	132.9	1999
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6	1999
		Hole_id	Тур	East	North	Elevation	Azimuth	Dip	Depth	n
			е	(m)	(m)	(m ASL)	(°)	(°)	(m)	
		03HD01A	DD	2504627.8	6600800.1	1798.4	180	-60	130.	.2
		03HD02	DD	2504457.9	6600747.8	1782.9	180	-60	130.	.5
		03HD03	DD	2504480.1	6600448.6	1774.0	360	-45	100.	
		04HD04	DD	2504436.6	6600439.3	1773.4	360	-60	104.	.6
		04HD05	DD	2504420.9	6600256.8	1769.5	110	-68	122.	.6
		04HD06	DD	2504428.6	6600236.6	1768.1	110	-68	136.	.0
		04HD07	DD	2504415.7	6600277.7	1769.0	100	-63	108.	.2
		04HD08	DD	2504826.5	6601920.2	1801.3	116	-70	70.	.0
		04HD09	DD	2504832.3	6601928.1	1801.7	116	-70	75.	.9
		04HD10	DD	2504648.5	6600788.9	1801.5	205	-60	120.	.0
		04HD11	DD	2504462.0	6600428.3	1773.6	075	-62	95.	.1
		04HD12	DD	2504449.3	6600648.9	1779.6	360	-60	77.	.4
		04HD13	DD	2504434.5	6600646.6	1779.7	360	-60	74.	.0
		04HD14	DD	2504461.1	6600748.4	1783.1	180	-70	130.	.6
		04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	160.	.0
		04HD16C	DD	2504457.1	6600311.7	1770.3	195	-65	225.	.5
		04HD17	DD	2504417.5	6600256.6	1769.5	110	-72	213.	.2
		04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	140.	.7
		04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	120.	.0
		04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	120.	.0
		04HD21	DD	2504648.5	6600788.9	1801.5	205	-60	120.	.0
		04HD23	DD	2504441.0	6600456.0	1772.5	075	-82	499.	.7
		04HD24	DD	2504389.0	6600252.0	1766.5	090	-81	188.	.2
		04HD25	DD	2504456.0	6600294.0	1768.5	155	-84	500.	.8
		04HD26	DD	2504424.0	6600409.0	1771.5	180	-69	464.	
		04HD27	DD	2504461.0	6600428.0	1773.0	100	-45	60.	.0
		04HD28	DD	2504461.0	6600428.0	1773.0	100	-60	63.	.7

Issued Capital 648.7.m shares 86.6m options 120m perf shares

16m perf rights

Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code exp		Commentary							
			04HD29	DD	2504438.0	6600087.0	1764.5	108	-45 2	65.0
			04HD30	DD	2504421.0	6600044.0	1764.0	108		.28.2
			04HD31	DD	2504687.0	6601326.0	1794.0	045		42.9
			04HD32	DD	2504828.0	6601916.0	1801.3	116		68.4
			05HD33	DD	2505410.0	6601983.0	1765.0	000	-60	81.4
			05HD34	DD	2505451.0	6602079.0	1763.0	273		69.0
			05HD35	DD	2504905.0	6601689.0	1794.0	140	-65 3	50.0
			05HD36	DD	2504880.0	6601860.0	1802.0	295		.30.0
			05HD37	DD	2504866.0	6601888.0	1797.0	295		.30.0
			05HD38	DD	2504838.0	6601937.0	1796.0	115		70.0
			05HD39	DD	2504964.0	6602128.0	1814.0	030		17.5
			05HD40	DD	2504964.0	6602128.0	1814.0	030		.50.0
			05HD41	DD	2504931.0	6602125.0	1812.0	022		.42.5
			05HD42	DD	2504552.7	6600791.5	1797.0	194		.20.0
			05HD43	DD	2504552.7	6600791.5	1797.0	194		95.5
			05HD44	DD	2504603.0	6600799.0	1798.0	190		.30.5
			05HD45	DD	2504362.0	6600710.0	1767.0	088		.21.5
			05HD46	DD	2504405.0	6600282.0	1766.0	090		.30.7
						~~~~~~~	1 - 0 0 0	a c =		
			05HD47 05HD48	DD DD	2504212.0 2504160.0	6599177.0 6599164.0 was done using a	1729.0 1728.0	065 065 ounted d	-60 1	.81.5 .00.7
			05HD47 05HD48 CEL drilling of by Foraco Arg Drilling (Men	DD HQ3 co gentina S doza). T	2504160.0 ore (triple tube) S.A. (Mendoza) he core has no	6599164.0 was done using a and a trailer mou been oriented.	1728.0 LM90 truck m nted Hydrocor	065 ounted d e drill ma	-60 1 rill machine t chine operate	.00.7 hat is op ed by Er
			05HD47 05HD48 CEL drilling of by Foraco Arg Drilling (Meno CEL drilling of drill rig set up	DD HQ3 co gentina S doza). T reverse for reve	2504160.0 ore (triple tube) S.A. (Mendoza) the core has no e circulation (RC erse circulation	6599164.0 was done using a and a trailer mou been oriented. ) drill holes is bei drilling. Drilling i	1728.0 LM90 truck m nted Hydrocor ng done using a s being done u	065 ounted d e drill ma a track-m sing a 5.2	-60 1 rill machine t chine operate ounted LM65 5-inch hamm	.00.7 hat is of ed by Er 0 unive er bit.
			05HD47 05HD48 CEL drilling of by Foraco Arg Drilling (Meno CEL drilling of drill rig set up Collar details projection. C	DD HQ3 co gentina S doza). T reverse for reve for DD c ollar loc	2504160.0 ore (triple tube) 5.A. (Mendoza) he core has no e circulation (RC erse circulation drill holes and R ations for drill h	6599164.0 was done using a and a trailer mou been oriented. ) drill holes is bei	1728.0 LM90 truck m nted Hydrocor ng done using a s being done u bleted by CEL a 5 are surveyed	065 ounted d e drill ma a track-m sing a 5.2 re shown using DGI	-60 1 rill machine t chine operate ounted LM65 5-inch hamm below in WG PS. Collar loca	00.7 hat is oped by Er 0 unive er bit. S84, zo
			05HD47 05HD48 CEL drilling of by Foraco Arg Drilling (Meno CEL drilling of drill rig set up Collar details projection. C	DD HQ3 co gentina S doza). T reverse for reve for DD c ollar loc	2504160.0 ore (triple tube) 5.A. (Mendoza) he core has no e circulation (RC erse circulation drill holes and R ations for drill h	6599164.0 was done using a and a trailer mou been oriented. ) drill holes is bei drilling. Drilling i C drill holes comp noles to GNDD105	1728.0 LM90 truck m nted Hydrocor ng done using a s being done u bleted by CEL a 5 are surveyed	065 ounted d e drill ma a track-m sing a 5.2 re shown using DGI	-60 1 rill machine t chine operate ounted LM65 5-inch hamm below in WG PS. Collar loca	.00.7 hat is op ed by En 0 unive er bit. S84, zoi
			05HD47 05HD48 CEL drilling of by Foraco Arg Drilling (Meno CEL drilling of drill rig set up Collar details projection. C from GNDD10	DD HQ3 co gentina S doza). T reverse for reve for DD c ollar loc	2504160.0 ore (triple tube) S.A. (Mendoza) the core has nor e circulation (RC erse circulation drill holes and R ations for drill h urveyed with a	6599164.0 was done using a and a trailer mou been oriented. drill holes is bei drilling. Drilling i C drill holes comp noles to GNDD105 handheld GPS to l	1728.0 LM90 truck m nted Hydrocor ng done using a s being done us bleted by CEL a 5 are surveyed be followed up Elevation	065 ounted d e drill ma a track-m sing a 5.2 re shown using DGI with DGF Dip (°)	-60 1 rill machine t chine operato ounted LM65 5-inch hamm below in WG PS. Collar loca PS. <b>Azimuth</b>	00.7 hat is op ed by Er 0 unive er bit. S84, zon ation for Dep
			05HD47 05HD48 CEL drilling of by Foraco Arg Drilling (Mene CEL drilling of drill rig set up Collar details projection. C from GNDD10 Hole_id	DD HQ3 co gentina S doza). T reverse for reve for DD c ollar loc	2504160.0 ore (triple tube) 5.A. (Mendoza) The core has no e circulation (RC erse circulation drill holes and R ations for drill H urveyed with a East (m)	6599164.0 was done using a and a trailer mou been oriented. drill holes is bei drilling. Drilling i C drill holes comp noles to GNDD105 handheld GPS to l North (m)	1728.0 LM90 truck m nted Hydrocor ng done using a s being done us bleted by CEL a s are surveyed be followed up Elevation (m)	065 ounted d e drill ma a track-m sing a 5.2 re shown using DGI with DGF <b>Dip</b> (°) -57	-60 1 rill machine t chine operate ounted LM65 5-inch hamm below in WG PS. Collar loca S. Azimuth (°)	00.7 hat is op ed by Er 0 unive er bit. S84, zon tion for Dep (m

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com.au

ASX: CEL

86.6m options

120m perf shares

16m perf rights

1205 Hay Street

Criteria	JORC Code	e explanation	Commentar	y					
			GNDD003	504824.427	6601313.623	1827.768	-70	115	90.2
			GNDD004	504994.416	6601546.302	1835.345	-60	115	100.0
			GNDD005	504473.042	6600105.922	1806.448	-55	090	110.0
			GNDD006	504527.975	6600187.234	1817.856	-55	170	100.9
			GNDD007	504623.738	6600196.677	1823.447	-68	190	86.3
			GNDD0074	504624.021	6600198.394	1823.379	-68	190	219.
			GNDD008	504625.047	6600198.059	1823.457	-60	184	109.
			GNDD0084	504625.080	6600199.718	1823.264	-60	184	169
			GNDD009	504412.848	6599638.914	1794.22	-55	115	147
			GNDD010	504621.652	6600196.048	1823.452	-68	165	146
			GNDD011	504395.352	6599644.012	1794.025	-64	115	169
			GNDD012	504450.864	6599816.527	1798.321	-55	115	120
			GNDD013	504406.840	6599613.052	1792.378	-58	112	141
			GNDD014	504404.991	6599659.831	1793.728	-59	114	140
			GNDD015	504442.039	6600159.812	1808.700	-62	115	166
			GNDD016	504402.958	6599683.437	1794.007	-60	115	172
			GNDD017	504460.948	6600075.899	1806.143	-55	115	132
			GNDD018	504473.781	6600109.152	1806.458	-60	115	130
			GNDD019	504934.605	6601534.429	1834.720	-70	115	80
			GNDD020	504463.598	6600139.107	1807.789	-58	115	153
			GNDD021	504935.804	6601567.863	1835.631	-60	115	120
			GNDD022	504835.215	6601331.069	1828.015	-60	113	100
			GNDD023	504814.193	6601336.790	1828.535	-55	117	100
			GNDD024	504458.922	6600123.135	1807.237	-70	115	150
			GNDD025	504786.126	6601137.698	1823.876	-60	115	14:
			GNDD026	504813.588	6601444.189	1831.810	-55	115	100
			GNDD027	504416.311	6599703.996	1794.702	-55	115	139
			GNDD028	504824.752	6601321.020	1827.837	-57	115	100
			GNDD029	504791.830	6601316.140	1829.344	-71	115	120

Mr Fletcher Quinn, Chairman

www.challengerex.com

120m perf shares

16m perf rights

riteria	JORC Co	de explanation	Commentary						
			GNDD030	504454.538	6599860.757	1799.266	-60	115	148.
			GNDD031	504622.013	6600198.726	1823.191	-60	130	149
			GNDD032	504619.803	6600203.906	1822.790	-55	097	166
			GNDD033	504830.792	6601385.842	1829.315	-55	115	62
			GNDD034	504862.613	6601524.893	1834.263	-60	115	6
			GNDD035	504782.969	6601234.234	1827.709	-78	115	11
			GNDD036	504303.325	6599128.637	1779.458	-55	115	13
			GNDD037	504462.875	6599831.674	1798.456	-55	115	8
			GNDD038	504465.362	6600097.111	1806.580	-55	115	8
			GMDD039	504815.800	6601318.000	1829.100	-70	115	8
			GMDD040	504402.100	6599641.500	1794.800	-55	115	13
			GMDD041	504473.000	6600104.000	1806.400	-55	095	9
			GNDD042	504392.551	6599574.224	1790.603	-60	115	14
			GMDD043	504815.800	6601320.000	1829.100	-67	115	8
			GNDD044	504380.090	6599622.578	1791.934	-65	115	18
			GNDD045	504366.823	6599679.058	1793.712	-57	115	24
			GNDD046	504364.309	6599702.621	1794.533	-60	115	19
			GNDD047	504459.642	6599644.133	1793.422	-60	115	10
			GNDD048	504792.642	6601286.638	1828.497	-74	115	9
			GNDD049	504807.030	6601419.483	1831.588	-60	115	9
			GNDD050	504826.614	6601509.677	1833.357	-60	115	8
			GNDD051	504766.792	6601032.571	1823.273	-60	115	12
			GNDD060	504803	6601065	1822	-60	115	20
			GNDD073	504367.546	6599724.992	1795.493	-57	115	15
			GNDD074	504366.299	6599725.496	1795.450	-73	115	15
			GNDD077	504821.005	6601145.026	1823.951	-60	115	22
			GNDD079	504636.330	6600286.824	1823.053	-60	115	18
			GNDD082	504769.532	6601169.127	1825.621	-60	115	26
			GNDD083	504646.604	6600336.172	1823.893	-60	115	18

Challenge ACN 123 ASX: CEL

1205 Hay Street West Perth WA 6005

86.6m options

120m perf shares

16m perf rights

Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

E: admin@challengerex.com.au

Criteria	JORC Cod	le explanation	Commentar	Ŷ					
			GNDD085	504456.068	6599888.509	1799.895	-60	115	90.0
			GNDD0884	504815.621	6601193.811	1825.210	-60	115	265.0
			GNDD089	504635.811	6600285.352	1823.032	-55	133	200.1
			GNDD092	504839.792	6601208.375	1824.849	-60	115	300.0
			GNDD093	504679.396	6600332.075	1827.365	-55	115	209.0
			GNDD095	504804.597	6601219.844	1826.834	-67	115	203.
			GNDD096	504666.622	6600602.793	1820.371	-60	115	215.
			GNDD099	504384.933	6599759.693	1796.525	-60	115	150
			GNDD100	504424.250	6599784.711	1796.728	-60	115	120
			GNDD101	504781.691	6600986.509	1821.679	-60	115	220
			GNDD102	504787.340	6601285.049	1828.549	-57	115	260
			GNDD103	504432.004	6599482.162	1788.500	-55	115	299
			GNDD105	504701.392	6601025.961	1824.818	-60	115	300
			GNDD106	504459.3	6599614.7	1792.9	-55	115	300
			GNDD108	504895.0	6601154.9	1824.0	-60	115	200
			GNDD109	504792.0	6601026.4	1822.0	-60	115	209
			GNDD112	504898.2	6601197.6	1825.8	-60	115	188
			GNDD113	504704.7	6601067.1	1826.3	-60	115	230
			GNDD114	504436.0	6600111.0	1808.0	-50	115	116
			GNDD115	504862.0	6601285.0	1824.4	-60	115	252
			GNDD116	504443.7	6599555.8	1789.5	-65	115	269
			GNDD117	504436.0	6600111.0	1808.0	-60	115	120
			GNDD118	505086.0	6601110.0	1811.2	-60	295	300
			GNDD119	504827.0	6601540.0	1837.6	-66	115	115
			GNDD120	504408.2	6600102.0	1808.3	-60	110	164
			GNDD121	504867.0	6601137.0	1822.1	-57	115	181
			GNDD122	504658.0	6600647.6	1816.8	-60	115	250
			GNDD123	504822.0	6601512.0	1835.6	-63	130	130
			GNDD124	504408.2	6600102.0	1808.3	-70	115	160
er Exploration Limited	Issued Capital	Australian Registered Office	Directors	Contact					
591 382	648.7.m shares 86.6m options	Level 1 1205 Hay Street Wost Both WA 6005	Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Eletcher Quine, Chairman	T: +61 8 6380 9235 E: admin@challengerex.com.au					

Mr Fletcher Quinn, Chairman

www.challengerex.com

120m perf shares

16m perf rights

Criteria	JORC Code	e explanation	Commentary						
			GNDD125	505138.0	6601130.0	1808.4	-60	295	300.0
			GNDD126	504719.2	6601148.6	1828.0	-60	115	196.
			GNDD127	504892.0	6601505.0	1837.0	-55	115	300.
			GNDD128	504712.3	6601108.0	1827.1	-60	115	230
			GNDD129	504636.0	6600284.0	1820.0	-55	185	291
			GNDD130	504839.0	6601092.8	1821.4	-60	115	227
			GNDD131	504655.5	6600737.1	1818.4	-60	115	280
			GNDD132	504822.0	6601358.0	1830.5	-55	115	300
			GNDD133	504870.3	6601640.9	1838.5	-60	170	182
			GNDD134	504636.0	6600284.0	1820.0	-55	154	290
			GNDD135	504846.0	6601548.7	1834.8	-64	350	135
			GNDD136	504844.5	6601443.3	1829.3	-55	115	310
			GNDD137	504650.0	6600695.0	1818.2	-60	115	37
			GNDD138	504888.0	6601538.0	1837.5	-65	350	23
			GNDD139	504759.7	6601085.5	1825.3	-60	115	20
			GNDD140	504994.4	6601546.3	1835.3	-60	60	23
			GNDD141	504788.4	6601251.8	1827.9	-70	115	27
			GNRC052	504443.927	6599554.145	1790.676	-60	115	
			GNRC053	504452.888	6599589.416	1791.660	-60	115	
			GNRC054	504458.908	6599679.484	1794.408	-60	115	
			GNRC055	504461.566	6599726.253	1795.888	-60	115	1
			GNRC056	504463.187	6599763.817	1796.276	-60	115	1
			GNRC057	504453.440	6599901.106	1800.270	-60	115	
			GNRC058	504716.992	6600488.640	1825.624	-60	115	1
			GNRC059	504785.101	6600721.845	1817.042	-60	115	
			GNRC061	504963.888	6601521.567	1835.635	-60	115	
			GNRC062	504943.260	6601531.855	1834.917	-60	115	
			GNRC063	504914.884	6601499.583	1833.781	-60	115	
			GNRC064	504895.067	6601472.101	1833.039	-60	115	

Mr Fletcher Quinn, Chairman

Chal

www.challengerex.com

120m perf shares

16m perf rights

Criteria	JORC Code explanation	Commentary						
		GNRC065	504865.673	6601481.570	1831.536	-60	115	
		GNRC066	504896.480	6601506.894	1834.226	-60	115	
		GNRC067	504911.268	6601541.124	1836.127	-60	115	!
		GNRC068	504990.546	6601552.694	1835.287	-60	030	1
		GNRC069	504934.855	6601579.782	1836.179	-60	115	1
		GNRC070	504925.545	6601566.505	1835.127	-60	350	:
		GNRC071	504878.397	6601572.030	1833.873	-60	350	!
		GNRC072	504877.872	6601568.814	1833.843	-70	350	-
		GNRC075	504842.742	6601573.984	1835.428	-60	350	(
		GNRC076	504828.279	6601539.638	1835.244	-60	115	
		GNRC078	504842.744	6601450.106	1830.180	-60	115	
		GNRC080	504864.734	6601560.758	1834.333	-60	115	:
		GNRC081	504815.835	6601460.850	1832.033	-73	115	
		GNRC084	504965.730	6601530.280	1836.056	-55	030	1
		GNRC086	504838.724	6601402.481	1829.645	-60	115	
		GNRC087	504858.585	6601345.400	1828.417	-60	115	
		GNRC090	504821.284	6601359.986	1829.379	-60	115	
		GNRC091	504789.111	6601376.410	1830.448	-60	115	:
		GNRC094	504852.454	6601307.187	1827.304	-60	115	
		GNRC097	504831.396	6601289.723	1827.153	-60	115	-
		GNRC098	504784.865	6601253.409	1827.869	-76	115	9
		GNRC104	504780.186	6601228.313	1827.663	-64	115	1
		GNRC107	504623.1	6600197.1	1823.3	-60	185	1
		GNRC110	504502.0	6600107.0	1814.0	-62	90	
		GNRC111	504427.8	6599739.8	1796.4	-60	115	1
Drill sample recove	<ul><li>recoveries and results assessed.</li><li>Measures taken to maximise sample recovery and</li></ul>	the end of each r	d into wooden boxe un. These depths ar g has been being do	re reconciled by CEI	geologists wh	en measu		
	representative nature of the samples.		re collected from a	-			recovery cycle	one. 4
	- Whether a relationship exists between sample red	overy ne sub sumples a		iotary spiriter mou		c sumple i		,

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com.au

86.6m options

120m perf shares

16m perf rights

1205 Hay Street

Criteria	JORC Code explanation Commentary									
	and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	kg sub-samples is collected for each metre of RC drilling. Duplicate samples are taken at the rate of I every 25-30 samples using a riffle splitter to split out a 2-4 kg sub-sample. The whole sample recovere weighed to measure sample recovery and consistency in sampling.								
		A possible relationship has been observed between historic sample recovery and Au Ag or Zn grade whereby low recoveries have resulted in underreporting of grade. Insufficient information is not yet available to more accurately quantify this. Core recovery is influenced by the intensity of natural fracturing in the rock. A positive correlation between recovery and RQD has been observed. The fracturing is generally post mineral and not directly associated with the mineralisation.								
Logging	<ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>	Detailed logs are available for most of the historical drilling. Some logs have not been recovered. No core photographs from the historic drilling have been found. No drill core has survived due to poor storage and neglect. No RC sample chips have been found.								
		For CEL drilling, all the core is logged for recovery RQD weathering lithology alteration mineralization an structure to a level that is suitable for geological modelling resource estimation and metallurgical test work. RC drill chips are logged for geology, alteration and mineralisation. Where possible logging is quantitative. Geological logging is done in MS Excel in a format that can readily be transferred to a database which holds all drilling logging sample and assay data.								
Sub-sampling techniques and sample preparation	<ul> <li>If core whether cut or sawn and whether quarter half or all core taken.</li> <li>If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry.</li> <li>For all sample types the nature quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in-situ material collected including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul>	Competent drill core is cut longitudinally using a diamond saw for sampling of ½ the core. Soft core is split using a wide blade chisel or a manual core split press. The geologist logging the core indicates on the drill core where the saw cut is to be made to ensure half-core sample representivity. Sample intervals are selected based on lithology alteration and mineralization boundaries. Sample lengths average 1.16m. No second-half core samples have been submitted. The second half of the core samples has been retained in the core trays for future reference.								
		From hole GNDD073, duplicate diamond core samples have been collected for every 25-30m drilled. The duplicate diamond core samples are ¼ core samples. Duplicate core sample results and correlation plot (log scale for Au, Ag and Zn) are shown below:								
			n	RSQ	mean		median		variance	
					original	duplicate	original	duplicate	original	duplicate
		Au (ppm)	41	0.361	0.044	0.037	0.006	0.002	0.009	0.006
		Ag (ppm)	41	0.932	0.38	0.35	0.22	0.19	0.21	0.19
		Cd (ppm)	41	0.951	0.85	0.76	0.28	0.27	2.25	2.00
		Cu (ppm) Fe (%)	41 41	0.002 0.927	72.11 0.854	6.63 0.822	2.80 0.310	2.60 0.290	1.7E+05 0.5	1.5E+02 0.5
		10 (70)			1		<u> </u>		<u> </u>	
91 382 6	Australian Registered Office         Directors           48.7.m shares         Level 1         Mr Kris Knauer, MD an           6.6m options         1205 Hay Street         Mr Scott Funston, Fina			t 3 6380 9235 n@challengere:	x.com.au					

Mr Fletcher Quinn, Chairman

CISONAL USE ONIY Challe ACN 12 ASX: CEL

120m perf shares

16m perf rights
Criteria	JORC Cod	e explanation	Commentar	y							
			Pb (ppm)	41	0.805	58.3	42.1	14.2	12.7	7.1E+03	3.3E+03
			S (%)	41	0.983	0.133	0.133	0.050	0.040	0.036	0.040
			Zn (ppm)	41	0.913	189	167	81	80	5.8.E+04	4.5.E+04
			n=count			I		I		I	
			RSQ = R squa	ared							
			2020 Hualilan I	DD - Duplicate	e Samples - Au (ppr	m) 20	20 Hualilan DD - Duplic	ate Samples - Ag (pp	2020 F	lualilan DD - Duplica	e Samples - Zn (ppm)
			10			10			100000		
			1			_			10000		
			Duplicate	•	•	Duplicate		2	0001 Duplicate		
			Q 0.1			(udd) 8V 0.1		6	(mdd) 100		
			< 0.01	- 13 ·	•	₹ 0.1	••••		N 10	4.	•
			•	•			•			•	
			0.001	0.01 Au (ppm) C	0.1 1 Driginal	10 0.01	0.01 0.1 Ag (ppr	1 1) Original	10 1	10 100 Zn (ppm)	1000 10000 1 Driginal
									om a cyclone i	mounted on	the drill rig
			duplicate RC	•							
			The duplicat	e RC sa	mple resul	ts and corre	elation plots	(log scale fo	or Au, Ag and	Zn) are show	wn below:
				n	RSQ	mean		median		variance	
						original	duplicate	original	duplicate	original	duplicate
			Au (ppm)	82	0.849	0.097	0.118	0.017	0.015	0.040	0.097
			Ag (ppm)	82	0.691	1.74	2.45	0.56	0.56	14.07	66.59
			Cd (ppm)	82	0.989	16.06	16.92	0.44	0.45	4334	4903
			Cu (ppm)	82	0.978	48.39	53.45	5.75	5.65	2.5E+04	3.2E+04
			Fe (%)	82	0.998	1.478	1.501	0.445	0.395	7.8	7.8
			Pb (ppm)	82	0.901	296.3	334.4	25.8	30.0	6.2E+05	7.5E+0
			S (%)	82	0.978	0.100	0.108	0.020	0.020	0.038	0.047
			Zn (ppm)	82	0.977	3521	3350	166	185	2.6.E+08	2.1.E+08
			n=count			I		1		1	
			RSQ = R squa	ared							
er Exploration Limited	Issued Capital	Australian Registered Office	Directors	Contact	t						
591 382	648.7.m shares 86.6m options	Level 1 1205 Hay Street	Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director		6380 9235 @challengere	x.com.au					
	120m perf shares	West Perth WA 6005	Mr Fletcher Quinn, Chairman								

www.challengerex.com

. 16m perf rights

	2020 Hualilan RC - Duplicate Samples - Au (ppm) 2020 Hualilan RC - Duplicate Samples - Ag (ppm) 2020 Hualilan RC - Duplicate Samples - Zn (ppm)
	$ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
	mineralization present in the Project. Sample sizes are appropriate for the mineralisation style and grain size of the deposit.
Quality of assay data       -       The nature quality and appropriateness of the and laboratory procedures used and whether technique is considered partial or total.         -       For geophysical tools spectrometers handhel instruments etc the parameters used in deter analysis including instrument make and mod times calibrations factors applied and their a         -       Nature of quality control procedures adopted standards blanks duplicates external laboration and whether acceptable levels of accuracy (i. bias) and precision have been established.	<ul> <li>the</li> <li>(Exploration Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project d XRF</li> <li>The ALS laboratory in Mendoza has not yet been inspected by CEL representatives.</li> <li>Internal laboratory standards were used for each job to ensure correct calibration of elements.</li> <li>CEL submit blank samples (cobble and gravel material from a quarry nearby to Las Flores San Yuan) to both the MSA laboratory and the ALS laboratory which were strategically placed in the sample sequence immediately after samples that were suspected of containing high grade Au Ag Zn or Cu to test the lab preparation contamination procedures. The values received from the blank samples suggest rare cross</li> </ul>

www.challengerex.com

86.6m options 120m perf shares . 16m perf rights

648.7.m shares

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com.au



### Australian Registered Office

**Issued Capital** 

648.7.m shares

86.6m options

120m perf shares

16m perf rights

Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com.au

www.challengerex.com

17

For GNDD001 – GNDD012 – GNDD0012 – GNDD012	For GNDD011 – GNDD1010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag PC u and Z h have been submitted in samples (CRM) with known values for Au Ag PC u and Z h have been submitted in the SAG laboratory in Canada Two of the standards were only used 4 times each and the third a value < 250 below the certified value. All other entified value. For CRM 2 one sample returned a Cu value above the certified value. All other entified value. The standard are within 250 of the expected value. The standard is a constrained a cu value above the certified value. All other entified value. The standard are within 250 of the expected value. The standard is a constrained a cu value above the certified value. All other entified value. The constrained a cu value above the certified value. The value many set are within 250 of the expected value. The standard is a constrained a cu value above the certified value. All other entained value. The standard is a constrained a curvalue above the certified value. All other entained value. The standard is a constrained a curvalue above the certified value. All other entained value. The standard is a constrained a curvalue above the certified value. All other expected value. The standard is a constrained a curvalue above the certified value. The standard is a constrained a curvalue above the certified value. The standard is a constrained a curvalue above the certified value. The standard is a constrained a curvalue above the certified value. The standard is a constrained value in the standard is a constrained value. The standard is a curvalue. The standard is a constrained value in the standard is a curvalue. The standard is a curvalue. The standard is a curvalue. The standard is a curvalue in the standard is a curvalue in the standard is a curvalue. The standard is a curvalue in the standard is a curvalue in the standard is a curvalue. The standard is a curvalue in the standard is a curvalue in the standard is	enterna										
	For GNDD011 – GNDD1010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag PC u and Z h have been submitted in samples (CRM) with known values for Au Ag PC u and Z h have been submitted in the SAG laboratory in Canada Two of the standards were only used 4 times each and the third a value < 250 below the certified value. All other entified value. For CRM 2 one sample returned a Cu value above the certified value. All other entified value. The standard are within 250 of the expected value. The standard is a constrained a cu value above the certified value. All other entified value. The standard are within 250 of the expected value. The standard is a constrained a cu value above the certified value. All other entified value. The constrained a cu value above the certified value. The value many set are within 250 of the expected value. The standard is a constrained a cu value above the certified value. All other entained value. The standard is a constrained a curvalue above the certified value. All other entained value. The standard is a constrained a curvalue above the certified value. All other entained value. The standard is a constrained a curvalue above the certified value. All other expected value. The standard is a constrained a curvalue above the certified value. The standard is a constrained a curvalue above the certified value. The standard is a constrained a curvalue above the certified value. The standard is a constrained a curvalue above the certified value. The standard is a constrained value in the standard is a constrained value. The standard is a curvalue. The standard is a constrained value in the standard is a curvalue. The standard is a curvalue. The standard is a curvalue. The standard is a curvalue in the standard is a curvalue in the standard is a curvalue. The standard is a curvalue in the standard is a curvalue in the standard is a curvalue. The standard is a curvalue in the standard is a curvalue in the standard is				Blank (	gravel) - ALS (N	Vendoza) - A	u (ppm)				
0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       0000       00000       0000       0000       0000       00000       00000       00000       00000       00000       00000       00000       00000       00000       00000       00000       00000       00000       000000       000000       000000       000000       000000       00000000       0000000       0000	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zh have been submitted to samples were analysed in the samples submitted in 2019. For CRM 1 one sample returned a Cu value abbove the certified value. For CRM 3 (graphs below) one sample returned a Cu value abbove the certified value. For CRM 3 (graphs below) one sample returned a Cu value abbove the certified value. For CRM 3 (graphs below) one sample returned a Cu value abbove the certified value. For CRM 3 (graphs below) one sample returned a Cu value abbove the certified value. For CRM 3 (graphs below) one sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned a Cu value abbove the certified value. For CRM 3 (or sample returned accu value abbove the certified value. For CRM 3 (or sample returned accu value abbove the certified value. For		1.0	.00		_ ,						
0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	For GNDD01 – GNDD01 Samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for A u.g Pb Cu and Zn have been submitted to samples difference analyses were analysed in the samples submitted 1 reference analyses were analysed in the samples submitted a 12019. For CRM 1 one sample returned a Cu value abboratory in Canda Two of the standards were only used 4 times each and the thrid 1 reference analyses were analysed in the samples submitted a 12019. For CRM 1 one sample returned a Cu value abboratory in Canda Two of the standards were only used 4 times each and the thrid 1 reference analyses were analysed in the samples submitted a 12019. For CRM 1 one sample returned a Cu value abboratory in Canda Two of the standards of the standard spectrum within 250 below the certified value. For CRM 3 (graphs below) one sample returned a Cu value abboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standard and the sample returned a Cu value abboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standards of the standard baboratory in Canda Two of the standards of the standards of the standard baboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standards of the standard baboratory in Canda Two of the standard baboratory in Canda Two of the standard baboratory in Canda Two											
000       000       100       200       300       40       500       60       70       80         Blank (gravel) - ALS (Mendoza) - Ag (ppm)         100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted to sample sof drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times sample returned a Cu value above the certified value. All other analyses are within 25D of the expected value.		0.6	.60								
0       10       20       30       40       50       60       70       80         Blank (gravel) - ALS (Mendoza) - Ag (ppm)         150       0       10       20       30       40       50       60       70       80         150       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< th=""><th>For GNDD01 – GNDD01 Samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted to samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Cnanda Two of the standard Swere only used to the standard deviations (SD) above the certified value. For CRM 1 one sample returned a Cu value &lt; 25D below the certified value. All other analyses are within 25D of the expected value. The standard accuracy are sample returned a Cu value show the certified value. All other analyses are within 25D of the expected value. The standard set of the spected value. The standard science within 25D of the expected value. The standard science within 25D of the expected value. The standard science is the certified value. The standard science is the certified value. The standard deviations (SD) above the certified value. The standard science is the standard value. The standard deviations (SD) above the certified value. The standard science is the standard value. The standard science is the certified value. The standard science is the standard value. The standard science is the certified value. The standard value is the certified value. The standard value is the certified value. The standard value is the standard value. The standard value is the standard value is the standard value. The standard value is the standard value is the standard value. The standard value is the standard value is the standard value. The standard value is the standard value is the standard value. The standard value is the standard value is the standard value. The standard value is the standard value is the standard value. The standard value is the standard value is the standard value is the standard value. The standard value is the standard value is the standard value is the standar</th><th></th><th>0.4</th><th>.40</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	For GNDD01 – GNDD01 Samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted to samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Cnanda Two of the standard Swere only used to the standard deviations (SD) above the certified value. For CRM 1 one sample returned a Cu value < 25D below the certified value. All other analyses are within 25D of the expected value. The standard accuracy are sample returned a Cu value show the certified value. All other analyses are within 25D of the expected value. The standard set of the spected value. The standard science within 25D of the expected value. The standard science within 25D of the expected value. The standard science is the certified value. The standard science is the certified value. The standard deviations (SD) above the certified value. The standard science is the standard value. The standard deviations (SD) above the certified value. The standard science is the standard value. The standard science is the certified value. The standard science is the standard value. The standard science is the certified value. The standard value is the certified value. The standard value is the certified value. The standard value is the standard value. The standard value is the standard value is the standard value. The standard value is the standard value is the standard value. The standard value is the standard value is the standard value. The standard value is the standard value is the standard value. The standard value is the standard value is the standard value. The standard value is the standard value is the standard value. The standard value is the standard value is the standard value is the standard value. The standard value is the standard value is the standard value is the standar		0.4	.40								
0       10       20       30       40       50       60       70       80         1       0       10       20       30       40       50       60       70       80         200       10       20       30       40       50       60       70       80         200       10       20       30       40       50       60       70       80         200       10       20       30       40       50       60       70       80         200       10       20       30       40       50       60       70       80         200       10       20       30       40       50       60       70       80         200       10       20       30       40       50       60       70       80         200       10       20       30       40       50       60       70       80         200       10       20       30       40       50       60       70       80	For GNDD01 – GNDD01 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au & 2p b Cu and Zh have been submitted in samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third .											
	Blank (grave) - ALS (Mendoza) - Ag (gram)         1000000000000000000000000000000000000		2.0						70	80		
Image: transmission of the standard series of the samples of the samples of the samples of the samples submitted in 2019. For CRM 1 one sample returned to the third of the samples submitted in 2019. For CRM 1 one sample returned to the samples submitted in 2019. For CRM 1 one sample returned to the samples samples (SD) above the certified value. For CRM 2 one sample returned to the certified value. All other analyses are within 2SD of the expected value. The standard	For GNDD01 – GNDD01 osamples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zh have been submitted values for difference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned value < 25D below the certified value. For CRM 3 (graphs below) one sample returned value < 25D below the certified value. All other analyses are within 25D of the expected value. The standard become the certified value. All other analyses are within 25D of the expected value. The standard become the certified value. All other analyses are within 25D of the expected value. The standard become the certified value. All other analyses are within 25D of the expected value. The standard become the certified value. All other analyses are within 25D of the expected value. The standard become the samples are within 25D of the expected value. The standard become the certified value. All other analyses are within 25D of the expected value. The standard become the certified value. All other analyses are within 25D of the expected value.								70			
	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned value < 25D below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. For CRM 3 cores are within 2SD of the expected value. The standard curacy because the expected value.				Blank (	gravel) - ALS (I	Vlendoza) - A	g (ppm)				
	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted to samples of critication and accuracy of the analytic procedures and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned acu value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned acu value above the certified value. Act CRM 3 (graphs below) one sample returned acu value above the certified value. For CRM 2 one sample returned acu value above the certified value. For CRM 2 one sample returned acu value above the certified value. For CRM 3 (graphs below) one sample returned acu value above the certified value. For CRM 3 of the samples returned acu value above the certified value. For CRM 3 of the sample returned acu value above the certified value. For CRM 3 of the sample returned acu value above the certified value. For CRM 3 of the sample returned acu value above the certified value. For CRM 3 of the sample returned acu value above the certified value. For CRM 3 (graphs below) one sample returned acu value above the certified value. For CRM 3 (graphs below) one sample returned acu value above the certified value. For CRM 3 (graphs below) one sample returned acu value above the certified value. For CRM 3 (graphs below) one sample returned acu value above the certified value. For CRM 3 (graphs below) one sample returned acu value above the certified value. For CRM 3 (graphs below) one sample returned acu value above the certified value. For CRM 3 (graphs below) one sample returned acu value above the certified value. For CRM 3 (graphs below) one sample returned acu value above the certified value. For CRM 3 (graphs below) one sample returned acu value above the certified value. For CRM 3 (graphs below) one sample returned acu value above the certified value. For CRM 3 (graphs below) one sample returned acu value above the certified value.		2.0	.00								
The minimum of the standard series of the sta	For GNDD01 – GNDD10 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zh have been submitted V samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned value > 2 standard deviations (SD) above the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard		1.5	.50								
For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned a Cu value < 25D below the certified value. For CRM 3 (graphs below) one sample returned a Cu value solve the certified value. For CRM 3 (graphs below) one sample returned a Cu value solve the certified value. For CRM 3 (graphs below) one sample returned a Cu value solve the certified value. For CRM 3 (graphs below) one sample returned a Cu value solve the certified value. For CRM 3 (graphs below) one sample returned a Cu value solve the certified value. For CRM 3 (graphs below) one sample returned a Cu value solve the certified value. For CRM 3 (graphs below) one sample returned a Cu value solve the certified value. For CRM 3 (graphs below) one sample returned a Cu value solve the certified value. For CRM 3 (graphs below) one sample returned a Cu value solve the certified value. For CRM 3 (graphs below) one sample returned a Cu value solve the certified value. For CRM 3 (graphs below) one sample returned to the certified value. For CRM 3 (graphs below) one sample returned to value solve the certified value. For CRM 3 (graphs below) one sample returned to value solve the certified value. For CRM 3 (graphs below) one sample returned to value solve the certified value. For CRM 3 (graphs below) one sample returned to value solve the certified value. For CRM 3 (graphs below) one sample returned to value solve the certified value. For CRM 3 (graphs below) one sample returned to value solve the certified value. For CRM 3 (graphs below) one sample returned to value solve the certified value. For CRM 3 (graphs below) one sample returned to value solve th	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 3 (graphs below) one sample returned a Cu value or 25D below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard		1./	.00			•					
For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned a value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned a value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned a value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned a value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard		2.0	.50								
by the samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . The for CRM 1 one sample returned a Cu value above the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard for the certified value. All other analyses are within 2SD of the expected value. The standard for the certified value. All other analyses are within 2SD of the expected value. The standard for the certified value. All other analyses are within 2SD of the expected value. The standard for the certified value. All other analyses are within 2SD of the expected value. The standard for the standard for the certified value. The standard for the c	by the samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . The for CRM 1 one sample returned a Cu value above the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard for the certified value. All other analyses are within 2SD of the expected value. The standard for the certified value. All other analyses are within 2SD of the expected value. The standard for the certified value. All other analyses are within 2SD of the expected value. The standard for the certified value. All other analyses are within 2SD of the expected value. The standard for the standard for the certified value. The standard for the c		0/	.00	•• •••••• •••••			••••••	•••••••			
For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. All other analyses are within 2SD of the expected value. The standard	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. All other analyses are within 2SD of the expected value. The standard				10 20	30	40	50 60	70	80		
For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard				Blank (	gravel) - ALS (I	Mendoza) - Zi	n (ppm)				
For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard		20	000				•				
For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. All other analyses are within 2SD of the expected value. The standard	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard		15	500								
For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted values of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard											
For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard											
01020304050607080For GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard	01020304050607080For GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard		5		• • •		•					
For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample retu Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned above the certified value. All other analyses are within 2SD of the expected value.	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample retu Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned above the certified value. All other analyses are within 2SD of the expected value.			0		20	·••••••••	••••••••••	70			
Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample retur Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard	Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted v samples of drill core to test the precision and accuracy of the analytic procedures and determina the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample retur Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value above the certified value. All other analyses are within 2SD of the expected value. The standard				10 10	50	-10	50 00	,,,	00		
			re Au va ab	eference a u value > 2 alue < 2SD bove the c	nalyses were a 2 standard dev below the ce ertified value.	analysed viations ( rtified va . All othe	in the sa SD) abov lue. For er analys	amples subr ve the certif CRM 3 (gra es are withi	nitted in 2 ied value. phs below n 2SD of t	2019. Fo For CRI v) one sa he expe	or CRM 1 on M 2 one sar ample retur cted value.	ne sample i mple retur rned a Cu v . The stanc

**JORC Code explanation** 



www.challengerex.com

Criteria

**Issued Capital** 648.7.m shares 86.6m options 120m perf shares

16m perf rights

#### Australian Registered Office Level 1

1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Commentary



www.challengerex.com

**Issued Capital** 648.7.m shares 86.6m options 120m perf shares

16m perf rights

Australian Registered Office Level 1

1205 Hay Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Directors

JORC Code explanation	Commentary	
	ALS - CRM4 - Au (ppm) - mean +/- 25D	MSA - CRM4 - Au (ppm) - mean +/- 2SD
	5.60	5.80
	5.40 <b>6 6 6 6 6 6 6 6 6 6</b>	560
	5.20	5.20
	5.00	5.00
	4.80	4.80
	4.50 0 10 20 30 40 50 60	70 0 5 10 15 20 25 30 35 40 45
	ALS - CRM4 - Ag (ppm) - mean +/- 2SD	MSA - CRM4 - Ag (ppm) - mean +/- 2SD
	330	330
	320	320
	290	
	280	280
	270 0 10 20 30 40 50 60	70 0 5 10 15 20 25 30 35 40 45
	ALS - CRM4 - Zn (ppm) - mean +/- 2SD	MSA - CRM4 - Zn (ppm) - mean +/- 2SD
	2200	2200
	2150	2150
	2050	
		1950
	1800	1900 1850
	1800 0 10 20 30 40 50 60	1800         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>
	ALS - CRM5 - Au (ppm) - mean +/- 2SD	MSA - CRM5 - Au (ppm) - mean +/- 2SD
	10.40	10.40
		10.00
	9.80	
	9.60	9.60
	9.20	9.20
	9.00 10 20 30 40 50	60 0 5 10 15 20 25 30 35 40 45
	ALS - CRM5 - Ag (ppm) - mean +/- 2SD	MSA - CRM5 - Ag (ppm) - mean +/- 2SD
	54	54
		52
		48
	45	
	44 0 10 20 30 40 50	60 0 5 10 15 20 25 30 35 40 45
	ALS - CRM5 - Zn (ppm) - mean +/- 2SD	MSA - CRM5 - Zn (ppm) - mean +/- 2SD
	2000	2000
	1900	1900
		1700
	1600	1600
	1500 0 10 20 30 40 50	1500         0         5         10         15         20         25         30         35         40         45
	a ao ao ao 10 30	

#### Australian Registered Office

**Issued Capital** 

648.7.m shares

86.6m options

120m perf shares

16m perf rights

Level 1 1205 Hay Street West Perth WA 6005

### Office Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

#### **JORC Code explanation** Commentary ALS - CRM6 - Au (ppm) - mean +/- 2SD MSA - CRM6 - Au (ppm) - mean +/- 2SD 1.00 0.95 0.95 0.90 0.90 0.95 0.80 ... 0.70 0.70 ALS - CRM6 - Ag (ppm) - mean +/- 2SD MSA - CRM6 - Ag (ppm) - mean +/- 2SD ***.** ALS - CRM6 - Zn (ppm) - mean +/- 2SD MSA - CRM6 - Zn (ppm) - mean +/- 2SD ..... .... •• 10000 ••• . 9500 9500 9000

#### Verification of The verification of significant intersections by either independent or alternative company personnel. sampling and The use of twinned holes. assaying

- Documentation of primary data entry procedures data verification data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data. -

Level 1

1205 Hav Street

West Perth WA 6005

Repeat sampling of 186 coarse reject samples from 2019 drilling has been done to verify sampling. Original samples were from the 2019 DD drilling which were analysed by MSA (San Juan preparation and Vancouver analysis). Repeat samples were analysed by ALS (Mendoza preparation and Vancouver analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate very closely with the original analyses providing a high confidence in the sample preparation and analysis from MSA and ALS. A summary of the results for the 186 sample pairs for key elements is provided below:

	Mean		Median		Std Devia	ation	
Element	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient
Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972
Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903
Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997
Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994
Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997
S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987
Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988
As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983

# **Challenger Exploration Limited**

Criteria

**Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights

## Australian Registered Office

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Directors

Criteria	JORC Code explanation	Commentary								
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994	
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.995	
		Cd values >1000 are set at REE is the sum off Ce, La, S		s set at 50	0. Below	detectior	n is set at zo	ero		
		-			oles to ch	eck the re	esults of pro	evious expl	oration. Ar	
							original file:	s are backe	d-up and tl	
			<ul> <li>REE is the sum off Ce, La, Sc, Y. CE &gt; 500 is set at 500. Below detection is set at zero</li> <li>CEL have sought to twin some of the historic drill holes to check the results of previous exploration. An analysis of the twin holes has yet to be completed.</li> <li>Final analyses are received by digital file in PDF and CSV format. The original files are backed-up and the data copied into a drill hole database for geological modelling.</li> <li>Assay results summarised in the context of this report have been rounded appropriately to 2 significant figures. No assay data have been otherwise adjusted.</li> <li>Following completion of drilling collars are surveyed using a differential GPS (DGPS) relative into the Argentinian SGM survey. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.</li> <li>The drill machine is set-up on the drill pad using hand-held equipment according to the proposed hole design.</li> <li>Diamond core drill holes are surveyed at 30-40m intervals down hole using a Reflex tool. RC drill holes are surveyed down hole every 10 metres using a gyroscope to avoid magnetic influence from the drill rods.</li> </ul>							
Location of data points	<ul> <li>Accuracy and quality of surveys used to locate drill (collar and down-hole surveys) trenches mine work and other locations used in Mineral Resource estim Coordination of the prid autom used</li> </ul>	Argentinian SGM survey.	-		-		-	-		
	<ul> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>	•	on the drill pac	l using ha	nd-held e	quipment	according	to the pro	posed hole	
		are surveyed down hole ev	are surveyed down hole every 10 metres using a gyroscope to avoid magnetic influence from t							
		All current and previous du surveyed using DGPS to pr					gic surface	points have	e been	
Data spacing and distribution	<ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is suffic establish the degree of geological and grade contin appropriate for the Mineral Resource and Ore Rese estimation procedure(s) and classifications applied</li> </ul>	ient to spacing is being applied to nuity to check previous explorat erve establish controls on mine	to check previous exploration, extend mineralisation along strike, and provide some information to							
	- Whether sample compositing has been applied.	Samples have not been co	mposited.							

ersonal use only **Challenger Exploration Limited** 

ACN 123	591	382		
ASX: CEL				

Australian Registered Office Level 1 1205 Hay Street 120m perf shares West Perth WA 6005

**Issued Capital** 

648.7.m shares

86.6m options

16m perf rights

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	<ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material.</li> </ul>	As far as is currently understood the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	- The measures taken to ensure sample security.	Samples were under constant supervision by site security, senior personnel and courier contractors prior to delivery to the preparation laboratory in San Juan or Mendoza.
Audits or reviews	<ul> <li>The results of any audits or reviews of sampling techniques and data.</li> </ul>	There has not yet been any independent reviews of the sampling techniques and data.

### Australian Registered Office

**Issued Capital** 

648.7.m shares

86.6m options

120m perf shares

16m perf rights

Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com.au

### Section 2 Reporting of Exploration Results

### (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary					
Mineral tenement and land tenure status	- Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental	extensions). This co There are no royalt Definitive Feasibilit	overs approximatel ies on the project. y Study (DFS).	s 15 Minas (equivalent c y 4 km of strike and inclu CEL is earning a 75% in adas) at the Hualilan Pro	udes all of the terest in the P	currently defined	mineralization.
	settings. <ul> <li>The security of the tenure held at the time of</li> </ul>	Name	Number	Current Owner	Status	Grant Date	Area (ha)
	reporting along with any known impediments to obtaining a licence to operate in the area.	Cerro Sur					
		Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Cerro Norte					
		La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

#### **Challenger Exploration Limited** ACN 123 591 382 ASX: CEL

**Issued Capital** 648.7.m shares 86.6m options 120m perf shares 16m perf rights

#### Australian Registered Office Level 1

1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Pique de Ortega Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Descrubidora	E 4 40 NA 40CO				
	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		·			
	Sanchez Andacollo	Sanchez         5448-M-1960           Andacollo         5448-M-1960	Sanchez 5448-M-1960 CIA GPL S.R.L.	Sanchez5448-M-1960CIA GPL S.R.L.GrantedAndacollo5448-M-1960CIA GPL S.R.L.Granted	Sanchez5448-M-1960CIA GPL S.R.L.Granted30/04/2015Andacollo5448-M-1960CIA GPL S.R.L.Granted30/04/2015

Name	Number	Current Owner	Status	Grant date	Area (ha)
Cerro Sur					
North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	05/12/2014	1.9
Cerro Norte					
South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	05/12/2014	1.9

Additional to the Minas and Demasias an application for an Exploration Licence covering 26 km2 surrounding the 15 Minas has been accepted by the San Juan Department of Mines and is currently being processed.

### Exploration licence application surrounding the Minas and Demasias at the Hualilan Project

Name	Number	Status	Grant Date	Expiry Date	Area (ha)
Josefina	30.591.654	Pending	-	5 year application	2570

There are no know impediments to obtaining the exploration license or operating the Project.

Intermittent sampling dating back over 500 years has produced a great deal of information and data including sampling geologic maps reports trenching data underground workings drill hole results geophysical surveys resource estimates plus property examinations and detailed studies by several geologists. Prior to the current exploration no work has been completed since 2006.

There is 6 km of underground workings that pass through mineralised zones. Records of the underground

#### **Challenger Exploration Limited** ACN 123 591 382 ASX: CEL

**Exploration done** 

by other parties

Issued Capital 648.7.m shares 86.6m options 120m perf shares

16m perf rights

-

other parties.

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Acknowledgment and appraisal of exploration by

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		geology and sampling are currently being compiled and digitised as are sample data geological mapping trench data adit exposures and drill hole results. Geophysical surveys exist but have largely yet to be check located and digitised.
		Drilling on the Hualilan Project (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key historical exploration drilling and sampling results are listed below.
		<ul> <li>1984 – Lixivia SA channel sampling &amp; 16 RC holes (AG1-AG16) totalling 2040m</li> <li>1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1500 samples</li> <li>1998 – Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and channel sampling</li> <li>1999 – Compania Mineral El Colorado SA ("CMEC") 59 core holes (DDH-20 to 79) plus 1700m RC program</li> <li>2003 – 2005 – La Mancha (TSE Listed) undertook 7447m of DDH core drilling (HD-01 to HD-48)</li> <li>Detailed resource estimation studies were undertaken by EPROM Ltda. (EPROM) in 1996 and CMEC (1999 revised 2000) both of which were written to professional standards and La Mancha 2003 and 2006.</li> <li>The collection of all exploration data by the various operators was of a high standard and had appropriate sampling techniques intervals and custody procedures were used.</li> </ul>
Geology	- Deposit type geological setting and sty mineralisation.	
		The mineralisation has previously been classified as a Zn-Cu distal skarn (or manto-style skarn) with vein-hosted Au-Ag mineralisation. It has been divided into three phases – prograde skarn retrograde skarn and a late quartz– galena event the evolution of the hydrothermal system and mineral paragenesis is the subject of more detailed geometallurgical work.
		Gold occurs in native form and as inclusions with sulphide and pyroxene. The mineralisation also commonly contains pyrite, chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.
		Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matric within fractured dacitic intrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at a high angle. The faults have thicknesses of 1–4 m and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important in localising the mineralisation.
Drill hole Information	- A summary of all information material understanding of the exploration result tabulation of the following information	equivalent (calculated using a price of US\$1,300/oz for Au, \$15/oz for Ag and \$2,500/t. for Zn) has been used
Illenger Exploration Limited N 123 591 382 S: CEL	Issued Capital         Australian Registered Offic           648.7.m shares         Level 1           86.6m options         1205 Hay Street           120m perf shares         West Perth WA 6005           16m perf eights         Kest Perth WA 6005	e     Directors     Contact       Mr Kris Knauer, MD and CEO     T: +61 8 6380 9235       Mr Scott Funston, Finance Director     E: admin@challengerex.com.au       Mr Fletcher Quinn, Chairman     Kreat State

16m perf rights

Criteria	JORC Code explanation	Commentary					
	Material drill holes:	been allowed. No met	allurcial or rec	overy factors hav	ve been used.	Drill collar lo	cation is provided
	- easting and northing of the drill hole collar	previous section.					
	- elevation or RL (Reduced Level – elevation above se	⁷ Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)
	level in metres) of the drill hole collar	AG16	38.6	1.2	0.1	28.6	1.7
	- dip and azimuth of the hole	MG10	108.0	3.0	1.3	No assay	No assay
	- down hole length and interception depth	DDH36	24.7	9.3	1.6	46.3	1.2
	- hole length.	DDH53	17.3	1.4	1.0	1.7	0.00
	<ul> <li>If the exclusion of this information is justified on the</li> </ul>	DDH53	24.0	8.9	3.7	239.5	0.03
	basis that the information is not Material and this	DDH53	35.7	3.9	3.9	87.8	0.06
	exclusion does not detract from the understanding o	of DDH53	41.0	3.0	2.6	7.6	0.20
	the report the Competent Person should clearly	DDH54	20.0	1.1	1.2	0.7	0.00
	explain why this is the case.	DDH54	31.1	8.3	3.9	32.1	0.80
		DDH65	62.0	8.2	11.0	60.6	1.2
		DDH65	82.0	1.0	1.8	33.4	0.30
		DDH66	83.1	7.2	23.7	42.9	2.4
		DDH66	87.9	2.4	69.9	114.4	2.2
		DDH66	104.9	2.8	1.8	29.0	0.10
		DDH67	98.7	1.3	0.2	7.8	1.3
		DDH68	4.0	17.9	2.2	6.3	0.20
		DDH68	73.7	0.5	0.8	9.0	1.2
		DDH69	4.0	16.1	2.3	1.6	0.10
		DDH69	76.9	0.3	0.1	7.0	28.0
		DDH69	79.7	0.8	1.3	120.0	4.5
		DDH70	84.0	7.0	5.2	13.5	0.70
		DDH71	11.0	2.0	0.5	218.0	0.06
		DDH71	39.9	1.0	1.3	6.0	0.03
		DDH71	45.5	1.1	0.4	22.8	0.60
		DDH71	104.0	10.0	33.5	126.7	7.9
		DDH72	26.0	11.7	3.8	14.1	1.3
		DDH72	52.7	6.3	1.5	30.4	0.04
		DDH73	62.5	3.5	0.5	15.6	0.60
		DDH74	119.9	0.5	7.3	98.5	2.6
		DDH76	61.3	0.7	4.0	11.1	0.50
		DDH76	74.4	4.0	0.8	8.8	0.30
		DDH76	84.8	1.2	1.4	10.9	2.0
		DDH78	109.1	0.7	1.1	13.4	1.9
		03HD01A	90.1	1.7	2.1	37.4	2.4
nger Exploration Limit	ted Issued Capital Australian Registered Office Dir	ectors	Contact				
23 591 382 EL	86.6m options 1205 Hay Street Mr	Kris Knauer, MD and CEO Scott Funston, Finance Director Eletcher Quinn, Chairman	T: +61 8 6380 93 E: admin@challe				

Mr Fletcher Quinn, Chairman

120m perf shares

. 16m perf rights West Perth WA 6005

Criteria	JORC Code expla	anation	Commentary						
			03HD03	55.0	2.4	2.5	25.6	2.3	
			04HD05	80.3	2.0	0.9	42.7	0.02	
			04HD05	97.5	1.8	1.9	35.0	0.04	
			04HD05	102.0	1.0	1.3	42.1	0.01	
			04HD05	106.0	1.0	0.7	28.0	0.05	
			04HD05	108.0	5.6	2.8	19.9	1.2	
			04HD06	65.4	1.2	46.6	846.0	0.50	
			04HD06	75.0	1.0	1.0	2.9	0.01	
			04HD06	104.5	7.6	1.8	5.0	1.2	
			04HD06	115.1	0.9	16.4	23.1	7.7	
			04HD07	98.3	2.2	1.4	32.5	0.90	
			04HD10	44.3	0.2	3.9	81.5	5.6	
			04HD10	55.5	0.5	1.3	11.5	0.46	
			04HD10	78.6	1.7	4.8	93.7	2.4	
			04HD11	28.0	1.0	0.1	9.3	1.4	
			04HD12	49.3	0.7	1.5	16.1	0.10	
			04HD13	61.5	1.0	0.8	7.9	0.20	
			04HD15	103.7	0.3	1.7	32.9	0.80	
			04HD16C	107.5	6.8	8.6	117.1	9.1	
			04HD16C	111.8	2.5	7.6	75.6	11.5	
			04HD16C	144.9	1.9	9.1	31.2	5.5	
			04HD16C	171.1	0.4	0.5	9.4	1.7	
			04HD17	134.9	0.7	2.5	14.3	4.1	
			04HD17	139.1	0.5	10.5	9.4	0.20	
			04HD17	199.6	0.2	0.8	3.5	5.9	
			04HD17	202.1	1.9	4.5	1.5	0.70	
			04HD20	43.2	1.8	0.9	83.9	0.20	
			04HD21	70.1	0.2	4.8	60.6	6.4	
			04HD21	141.1	0.6	12.9	105.0	4.8	
			04HD24	72.0	2.0	2.5	3.2	0.04	
			04HD24	83.0	2.0	3.1	25.3	0.04	
			04HD24	94.0	4.2	0.7	21.2	0.10	
			04HD25	92.0	1.7	2.4	51.5	6.3	
			04HD26	21.7	2.3	1.5	32.5	3.0	
			04HD28	42.8	0.4	1.9	4.5	0.10	
			04HD29	37.0	1.0	0.1	112.0	0.01	
			05HD42	90.5	1.0	1.9	6.1	0.03	
nger Exploration Limite		Australian Registered Office	Directors	Contact					
23 591 382 EL	648.7.m shares 86.6m options 120m porf charge	Level 1 1205 Hay Street Wort Porth WA 6005	Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Eletcher Quinn, Chairman	T: +61 8 6380 9235 E: admin@challengere	x.com.au				

Mr Fletcher Quinn, Chairman

www.challengerex.com

120m perf shares

16m perf rights

West Perth WA 6005

Criteria	JORC Code explanation	Commentary					
		05HD42	115.0	3.0	29.0	103.1	0.20
		05HD43	69.0	1.0	1.8	2.3	0.01
		05HD43	81.0	3.0	2.8	51.5	0.50
		05HD43	90.7	2.3	1.4	29.6	0.30
		05HD44	87.5	1.1	3.8	3.4	0.01
		05HD44	91.2	1.4	0.0	3.6	2.8

From GNDD001 the following significant assay results have been received reported to a cut-off of 1 g/t Au (equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.

Drilling in 2019:

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	
GNDD001	10.00	27.00	0.94	4.9	0.33	1.3	(2)
inc	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	5.00	31.00	0.74	2.7	0.67	1.1	
and	3.00	81.50	3.1	8.6	5.8	5.9	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)
GNDD004	20.50	5.50	1.1	5.3	0.45	1.4	(2)
inc	8.47	6.03	2.0	7.8	0.68	2.4	
and	3.43	18.67	1.2	3.2	0.26	1.3	
GNDD005	19.00	29.00	1.3	8.1	0.62	1.6	(2)
inc	2.00	29.00	0.79	18	3.3	2.6	
and	4.00	43.00	5.1	22	0.49	5.6	
and	7.00	59.00	7.8	72	1.4	9.3	
inc	3.00	61.00	16.5	135	1.6	18.8	(1)
and	10.00	75.00	0.75	38	0.27	1.3	(2)
inc	3.00	77.00	1.7	39	0.43	2.3	
inc	1.00	83.00	1.2	156	0.72	3.2	
GNDD006	6.50	78.50	4.2	21	0.29	4.6	
inc	3.80	78.50	6.8	34	0.41	7.4	
and	1.45	90.00	2.1	41	0.92	3.0	

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued CapitalAustralian Registered Office648.7.m sharesLevel 186.6m options1205 Hay Street120m perf sharesWest Perth WA 6005

16m perf rights

ice Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

Criteria	JORC Code expl	lanation	Commentary							
			GNDD007	45.92	13.00	0.43	7.8	0.12	0.57	(2)
			inc	3.00	45.00	1.9	5.2	0.26	2.0	
			inc	3.00	55.00	2.3	35	0.54	2.9	
			GNDD007A	27.00	25.00	0.43	7.2	0.09	0.55	(2)
			inc	1.80	46.00	2.4	3.1	0.12	2.5	
			and	0.70	60.30	0.8	25	0.21	1.1	
			and	6.70	149.00	14.3	140	7.3	19.3	
			inc	3.06	150.60	27.5	260	12.9	36.5	(1)
			GNDD007A	0.60	176.40	1.9	6.7	0.99	2.4	
			GNDD008	35.50	16.50	0.33	8.1	0.10	0.46	(2)
			inc	1.00	36.00	1.7	6.2	0.08	1.8	
			inc	1.63	43.37	1.7	8.4	0.14	1.9	
			inc	1.15	47.85	1.2	16	0.56	1.7	
			and	5.70	91.00	12.3	182	0.67	14.7	(1)
			and	1.00	99.70	0.93	43	0.52	1.6	
			and	2.40	107.00	6.3	222	1.9	9.7	
			GNDD008A	35.50	17.50	0.24	13	0.08	0.41	(2)
			and	20.00	95.00	3.3	45	0.55	4.1	(2)
			inc	2.64	96.60	22.8	218	0.68	25.5	(1)
			inc	10.00	105.00	0.6	28.2	0.71	1.2	
			GNDD009	7.00	72.00	2.3	102	0.08	3.5	
			and	3.00	100.00	0.85	50	0.02	1.4	
			and	10.32	109.10	10.4	28	4.6	12.9	
			inc	4.22	115.20	21.9	58	8.7	26.7	(1)
			GNDD010	32.00	27.00	0.29	8.6	0.13	0.45	(2)
			inc	5.00	30.00	0.65	21	0.09	0.92	
			and	1.30	55.00	1.1	30	0.80	1.8	
			and	7.22	136.00	7.5	60	1.1	8.7	(2)
			inc	3.00	139.00	17.7	143	2.5	20.5	
Ilenger Exploration Limit 123 591 382	ed Issued Capital 648.7.m shares	Australian Registered Office Level 1 1205 Hay Street	<b>Directors</b> Mr Kris Knauer, MD and CEO	<b>Contact</b> T: +61 8 638			_ 10		20.0	

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com.au

www.challengerex.com

86.6m options

120m perf shares

16m perf rights

1205 Hay Street

West Perth WA 6005

ASX: CEL

Criteria

JORC Code explanation

#### Commentary

(1) cut-off of 10 g/t Au equivalent (2) cut-off of 0.2 g/t Au equivalent

### Drilling in 2020:

Hole_id	from (m)	interval (m)	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	Cu (%)	Pb (%)	Note
GNDD011	81.00	1.00	1.9	43	0.13	2.4	0.01	0.06	
and	139.80	4.80	1.4	5.7	2.6	2.7	0.02	0.02	
and	147.20	0.70	9.4	13	6.6	12.6	0.07	0.00	1
and	151.40	0.50	1.2	5.5	0.25	1.4	0.00	0.00	
GNDD012	40.70	1.00	6.3	290	0.12	9.6	0.18	1.2	
GNDD013	116.40	6.93	1.3	12	2.7	2.7	0.05	0.18	
inc	122.50	0.83	4.0	61	10.1	9.4	0.21	1.2	
GNDD014	118.50	7.55	2.4	15	3.6	4.3	0.05	0.16	
GNDD015	54.00	1.00	0.69	8.6	0.39	1.0	0.03	0.24	
and	156.00	1.90	1.0	31	2.8	2.7	0.02	0.79	
GNDD016	64.00	1.00	0.80	27	0	1.1	0.02	0.06	
and	109.50	5.00	1.8	27	8.3	6.0	0.16	0.01	
and	116.55	4.45	6.0	83	3.9	8.8	0.13	0.02	
GNDD017	34.30	1.7	0.31	24	2.0	1.5	0.06	1.0	
GNDD018	37.75	0.85	1.1	3.6	0.1	1.1	0.01	0.05	
and	63.20	3.75	7.1	78	3.6	9.6	0.28	3.6	
inc	64.40	2.55	10.3	114	4.9	13.9	0.41	5.2	1
GNDD019	24.00	1.90	1.0	5.3	5.3	3.5	0.12	0.03	
GNDD020	71.25	8.25	17.7	257	0.30	20.7	0.60	0.68	
inc	74.00	5.50	26.0	355	0.42	30.1	0.05	0.21	1
GNDD020	83.30	0.65	0.03	2.7	10.70	5.1	0.00	0.02	

**Challenger Exploration Limited** ACN 123 591 382 ASX: CEL

**Issued Capital** 648.7.m shares Level 1 86.6m options 1205 Hay Street 120m perf shares West Perth WA 6005

16m perf rights

Australian Registered Office

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Directors

Criteria	JORC Code expla	anation	Commentary									
			GNDD021	14.80	1.20	11.0	9.0	0.39	11.3	0.01	0.08	1
			and	31.50	0.35	28.1	104	5.8	32.0	0.35	0.12	1
			and	98.20	19.80	0.29	2.2	3.4	1.9	0.01	0.04	2
			inc	98.20	9.80	0.40	4.4	6.8	3.6	0.01	0.07	
			inc	104.20	0.80	0.88	13	22.7	11.7	0.02	0.30	1
			GNDD022	NSI								
			GNDD023	58.00	5.00	0.32	3.7	0.1	1.3	0.01	0.09	
			GNDD024	85.00	6.00	2.5	19	0.15	3.4	0.40	1.4	
			inc	88.00	1.00	14.9	107	0.46	16.3	2.4	8.3	1
			GNDD025	53.00	88.00	0.94	2.3	0.10	1.0	0.00	0.08	2
			inc	61.00	14.00	3.1	5.3	0.19	3.2	0.01	0.11	
			inc	79.00	11.00	1.3	4.1	0.16	1.4	0.00	0.25	
			inc	93.00	1.00	1.1	2.5	0.09	1.1	0.00	0.37	
			inc	113.00	2.00	1.2	4.4	0.02	1.2	0.00	0.01	
			inc	139.00	2.00	0.99	0.50	0.01	1.0	0.00	0.00	
			GNDD027	NSI								
			GNDD029	36.00	12.00	0.17	2.1	0.39	0.38	0.01	0.16	2
			GNDD030	33.00	3.00	0.95	53	0.05	1.6	0.01	0.05	
			GNDD031	32.00	28.00	0.43	5.7	0.15	0.56	0.01	0.04	2
			inc	48.00	1.10	3.3	17	0.34	3.7	0.02	0.33	
			inc	53.00	1.00	4.2	54	0.92	5.3	0.12	0.22	
			GNDD032	9.00	20.00	0.16	6.7	0.09	0.28	0.00	0.02	2
			GNDD032	49.00	116.00	1.05	4.0	0.20	1.2	0.01	0.07	2
			inc	77.00	3.00	0.93	33.7	2.1	2.3	0.09	0.02	
			and	101.00	10.00	6.1	18.1	0.11	6.4	0.04	0.47	
			inc	101.00	6.00	9.6	18.7	0.15	9.9	0.05	0.61	1
			and	136.00	4.00	9.8	18.5	1.5	10.7	0.06	0.27	
			GNDD034	47.60	0.30	0.03	1.4	24.4	11.6	0.34	0.04	
			GNDD035	88.75	5.75	9.5	28.7	3.5	11.5	0.10	0.44	
enger Exploration Limite 123 591 382	ed Issued Capital 648.7.m shares	Australian Registered Office Level 1	<b>Directors</b> Mr Kris Knauer, MD and CEO		ntact +61 8 6380 9235	i						

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com.au

16m perf rights
www.challengerex.com

86.6m options

120m perf shares

1205 Hay Street

West Perth WA 6005

ASX: CEL

Criteria	JORC Code explana	tion	Commentary									
			inc	88.75	3.15	17.1	28.8	5.6	20.1	0.14	0.56	1
			GNDD046	82.90	0.45	4.1	27	0.06	4.5	0.01	0.03	
			GNDD046	124.15	2.85	29.5	522	10.8	40.3	0.41	0.25	1
			GNDD047	61.00	38.50	1.3	1.2	0.04	1.3	0.00	0.02	2
			inc	62.50	6.00	6.3	3.5	0.15	6.4	0.01	0.10	
			and	74.10	1.50	1.0	1.9	0.00	1.0	0.00	0.00	
			and	83.55	0.45	7.3	12.2	0.00	7.4	0.00	0.00	
			and	98.50	1.00	1.2	0.8	0.00	1.2	0.00	0.00	
			GNRC052	69	6	1.7	4.4	0.32	1.9	0.03	0.00	
			GNRC053	NSI								
			GNRC054	13	7	0.22	3.9	0.03	0.27	0.00	0.01	2
			and	66	15	0.53	4.0	0.66	0.88	0.01	0.13	2
			inc	77	3	1.3	8.5	1.9	2.3	0.02	0.31	
			GNRC055	18	7	0.28	6.9	0.04	0.37	0.00	0.01	2
			GNRC056	56	1	2.3	138	0.08	3.8	0.01	0.07	
			GNRC057	37	12	0.06	2.4	0.58	0.36	0.01	0.06	2
			GNRC058	NSI								
			GNRC059	NSI								
			GNRC061	NSI								
			GNRC062	17	3	3.8	7.9	2.7	5.1	0.24	0.17	
			GNRC063	19	1	0.01	0.46	2.8	1.4	0.04	0.01	
			GNRC064	22	1	0.01	4.2	3.8	1.8	0.00	0.00	
			and	27	1	0.69	27	1.2	1.6	0.35	0.23	
			GNRC065	33	6	0.00	2.1	4.9	1.6	0.05	0.01	
			GNRC066	NSI								
			GNRC067	NSI								
			GNRC068	9	69	3.4	8.3	2.8	4.8	0.23	0.08	2
			inc	9	27	7.9	16	7.0	11.4	0.59	0.16	
			and	51	1	1.0	40	0.93	1.9	0.08	0.12	

ACN 123 591 382 ASX: CEL

648.7.m shares 86.6m options 120m perf shares 16m perf rights

Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

T: +61 8 6380 9235 E: admin@challengerex.com.au

Criteria	JORC Code expla	nation	Commentary									
			and	59	1	1.3	4.9	0.09	1.4	0.00	0.02	
			and	66	2	1.6	1.2	0.02	1.7	0.01	0.00	
			and	72	4	1.9	3.0	0.06	1.9	0.01	0.04	
			GNDD077	169	14	0.68	5.9	0.64	1.0	0.01	0.01	2
			inc	169	1	1.5	59.3	6.6	5.3	0.13	0.08	
			inc	181	2	1.8	4.9	0.78	2.2	0.02	0.01	
			and	193	1	0.70	5.5	0.61	1.0	0.02	0.00	
			GNDD079	21.00	61.00	1.1	1.1	0.11	1.2	0.00	0.02	2
			inc	21.00	9.00	1.9	1.9	0.09	2.0	0.00	0.02	
			inc	40.00	2.00	2.7	1.7	0.08	2.8	0.00	0.06	
			inc	46.00	6.00	5.0	1.2	0.07	5.1	0.00	0.01	
			inc	74.00	3.00	1.0	0.86	0.17	1.1	0.00	0.12	
			GNDD082	168.00	15.00	0.68	0.39	0.04	0.70	0.00	0.01	2
			inc	168.00	1.00	2.4	0.46	0.11	2.4	0.00	0.02	
			inc	175.00	0.50	10.0	5.6	0.44	10.0	0.01	0.20	
			and	193.40	34.10	1.45	1.0	0.25	0.54	0.02	0.13	2
			inc	193.40	1.00	2.2	7.9	1.6	2.3	0.14	1.7	
			inc	203.50	0.90	2.6	10.6	2.9	4.5	0.16	1.4	
			inc	209.80	2.20	0.59	4.5	0.74	1.6	0.03	0.25	
			and	235.00	31.00	0.4	0.6	0.08	0.4	0.00	0.00	
			inc	242.50	1.50	1.0	2.1	0.21	1.1	0.01	0.01	
			GNDD083	11.00	21.00	0.22	10.0	0.15	0.40	0.00	0.01	2
			inc	19.20	1.80	1.0	6.1	0.10	1.1	0.00	0.00	
			and	170.00	1.00	1.3	3.6	0.22	1.4	0.02	0.26	
			GNDD088	45.05	23.45	0.07	0.23	0.53	0.33	0.00	0.01	2
			and	90.50	1.50	1.8	0.10	0.01	1.8	0.00	0.00	
			and	224.00	39.00	5.5	2.0	0.30	5.7	0.01	0.00	2
			incl	231.50	14.40	14.4	3.3	0.67	14.8	0.00	0.00	
			incl	238.50	7.40	23.4	5.7	1.27	24.1	0.01	0.01	1
enger Exploration Limite	ed Issued Capital 648.7.m shares	Australian Registered Office Level 1	<b>Directors</b> Mr Kris Knauer, MD and CEO	Cont	<b>act</b> 1 8 6380 9235							

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com.au

ASX: CEL

www.challengerex.com

86.6m options

120m perf shares

16m perf rights

1205 Hay Street

West Perth WA 6005

JORC Code explanation	Commentary									
	GNDD089	20.00	30.00	0.95	1.69	0.09	1.0	0.00	0.02	2
	inc	22.00	2.00	1.4	2.7	0.18	1.5	0.00	0.00	
	inc	30.50	1.70	2.9	2.3	0.12	3.0	0.00	0.01	
	inc	40.00	10.00	1.4	0.55	0.09	1.4	0.00	0.02	
	and	94.50	21.70	0.88	1.59	0.43	1.1	0.00	0.04	2
	inc	94.50	5.10	2.4	1.6	0.06	2.4	0.01	0.07	
	inc	102.50	1.50	1.9	1.5	0.15	2.0	0.01	0.03	
	inc	109.00	1.50	1.8	11.3	0.32	2.0	0.01	0.16	
	GNDD092	164.50	9.00	0.29	0.72	0.12	0.36	0.00	0.05	2
	and	213.00	17.00	0.23	0.63	0.06	0.27	0.00	0.04	2
	and	257.50	1.00	3.6	5.9	0.60	3.9	0.05	0.21	
	Met:									
	GMDD039	18.00	8.00	0.15	1.9	0.60	0.45	0.01	0.07	2
	GMDD039	67.60	1.00	24.5	58	3.9	27.0	0.27	1.8	1
	GMDD040	116.72	8.68	5.5	12	2.2	6.7	0.06	0.00	
	inc	122.50	2.90	11.8	24	4.2	14.1	0.14	0.00	1
	GMDD041	31.00	16.0	2.6	4.9	0.27	2.8	0.01	0.25	2
	inc	41.70	2.0	20.0	29	1.2	20.8	0.06	1.7	
	GMDD041	63.50	5.1	7.9	83	7.9	12.5	0.47	0.21	
	GMDD043	18.00	10.00	0.09	1.7	0.48	0.34	0.01	0.10	2
	GMDD043	70.50	0.30	25.9	81	9.4	31.2	0.33	3.1	1
	(2) cut of	f 0.2 g/t Au e	quivalent	t						
techniques maximum and/or minimum gra truncations (eg cutting of high grades) and grades are usually Material and should be - Where aggregate intercepts incorporate sh	averaging Weighted aver de off grade of a l cut-off between sam stated. between sam nort lengths gold grade eq	erage signific 1.0 g/t Au e ples above t ples above t	ant interce quivalent a ne cut-off § ne cut-off §	nd 10 g, grade an grade. Ti	/t Au equ d 0.2 g/t he follow	uivalent all Au equivating metals	owing for alent allow and meta	up to 2n ring up to al prices	n of interi o 4m of ir	nal dilution ternal dilution
	<ul> <li>In reporting Exploration Results weighting techniques maximum and/or minimum gro truncations (eg cutting of high grades) and grades are usually Material and should be</li> <li>Where aggregate intercepts incorporate sl</li> </ul>	GNDD089 inc inc inc and inc inc GNDD092 and and Met: GMDD039 GMDD039 GMDD039 GMDD039 GMDD039 GMDD040 inc GMDD041 inc GMDD041 inc GMDD041 inc GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMDD043 GMD043 GMD043 GMD043 GMD043 GMD043 GMD043 GMD043 GMD043	<ul> <li>GNDD089 20.00 inc 22.00 inc 30.50 inc 40.00 and 94.50 inc 102.50 inc 102.50 inc 109.00 GNDD092 164.50 and 213.00 and 257.50 Met: GMDD039 18.00 GMDD039 67.60</li> <li>Met: GMDD039 67.60</li> <li>GMDD040 116.72 inc 122.50 GMDD041 16.72 inc 122.50 GMDD041 63.50 GMDD041 63.50 GMDD041 63.50 GMDD041 63.50 GMDD043 70.50</li></ul>	GNDD089         20.00         30.00           inc         22.00         2.00           inc         30.50         1.70           inc         40.00         10.00           and         94.50         21.70           inc         102.50         1.50           inc         109.00         1.50           GNDD092         164.50         9.00           and         213.00         17.00           and         213.00         17.00           and         257.50         1.00           Met:         GMDD039         18.00         8.00           GMDD039         67.60         1.00         16.72         8.68           inc         122.50         2.90         GMDD041         11.00         16.0           inc         122.50         2.90         GMDD041         31.00         16.0           inc         41.70         2.0         GMDD041         31.00         16.0           inc         41.70         2.0         GMDD043         18.00         10.00           GMDD043         18.00         10.00         GMDD043         18.00         10.00           GMDD043         18.00	GNDD089         20.00         30.00         0.95           inc         22.00         2.00         1.4           inc         30.50         1.70         2.9           inc         40.00         10.00         1.4           and         94.50         21.70         0.88           inc         94.50         5.10         2.4           inc         102.50         1.50         1.9           inc         109.00         1.50         1.8           GNDD092         164.50         9.00         0.29           and         213.00         17.00         0.23           and         257.50         1.00         3.6           Met:	GNDD089         20.00         30.00         0.95         1.69           inc         22.00         2.00         1.4         2.7           inc         30.50         1.70         2.9         2.3           inc         40.00         10.00         1.4         0.55           and         94.50         21.70         0.88         1.59           inc         102.50         1.50         1.9         1.5           inc         102.50         1.50         1.9         1.5           inc         102.50         1.00         0.29         0.72           and         213.00         17.00         0.23         0.63           and         213.00         17.00         0.23         0.63           and         257.50         1.00         3.6         5.9           Met:         GMDD039         18.00         8.00         0.15         1.9           GMDD041         16.72         8.68         5.5         12         inc         122.50         2.90         11.8         24           GMDD041         63.50         5.1         7.9         83         GMDD043         18.00         10.00         0.09         1.7<	GNDD089       20.00       30.00       0.95       1.69       0.09         inc       22.00       2.00       1.4       2.7       0.18         inc       30.50       1.70       2.9       2.3       0.12         inc       40.00       10.00       1.4       0.55       0.09         and       94.50       5.10       2.4       1.6       0.06         inc       102.50       1.50       1.9       1.5       0.15         inc       109.00       1.50       1.8       11.3       0.32         GNDD092       164.50       9.00       0.29       0.72       0.12         and       213.00       17.00       0.23       0.63       0.06         Met:       GMDD039       18.00       8.00       0.15       1.9       0.60         GMDD039       18.00       8.00       0.15       1.9       0.60         Met:       GMDD041       116.72       8.68       5.5       12       2.2         inc       122.50       2.90       11.8       24       4.2         GMDD041       16.72       8.68       5.5       12       2.2         inc	GNDD089       20.00       30.00       0.95       1.69       0.09       1.0         inc       22.00       2.00       1.4       2.7       0.18       1.5         inc       30.50       1.77       2.9       2.3       0.12       3.0         inc       40.00       10.00       1.4       0.55       0.09       1.4         and       94.50       5.10       2.4       1.6       0.06       2.4         inc       102.50       1.50       1.9       1.5       0.15       2.0         inc       102.50       1.50       1.8       11.3       0.32       2.0         GNDD092       164.50       9.00       0.29       0.72       0.12       0.36         and       257.50       1.00       3.6       5.9       0.60       0.45         GMDD039       18.00       8.00       0.15       1.9       0.60       0.45         GMDD039       18.00       8.00       0.15       1.9       0.60       0.45         GMDD041       116.72       8.68       5.5       12       2.2       6.7         inc       122.50       2.90       11.8       24       4.2 <td>GNDD089         20.00         30.00         0.95         1.69         0.09         1.0         0.00           inc         22.00         2.00         1.4         2.7         0.18         1.5         0.00           inc         30.50         1.70         2.9         2.3         0.12         3.0         0.00           inc         40.00         10.00         1.4         0.55         0.09         1.4         0.00           and         94.50         21.70         0.88         1.59         0.43         1.1         0.00           inc         102.50         1.50         1.9         1.5         0.15         2.0         0.01           inc         109.00         1.50         1.8         11.3         0.32         2.0         0.00           GNDD092         164.50         9.00         0.29         0.72         0.12         0.36         0.00           and         257.50         1.00         3.6         5.9         0.60         0.45         0.01           GMDD039         67.60         1.00         2.4         5.8         3.9         2.7.0         0.27           GMDD041         165.75         5.10         2.</td> <td>GND089         20.00         30.00         0.95         1.69         0.09         1.0         0.00         0.02           inc         22.00         2.00         1.4         2.7         0.18         1.5         0.00         0.00           inc         30.50         1.70         2.9         2.3         0.12         3.0         0.00         0.00           inc         40.00         1.4         2.7         0.18         1.5         0.00         0.00         0.00           and         94.50         21.70         0.88         1.59         0.43         1.1         0.00         0.04           inc         102.50         1.50         1.9         1.5         0.15         2.0         0.01         0.03           inc         102.50         1.50         1.9         1.5         0.15         0.00         0.05         0.00         0.05         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.07         0.00         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.01         0.07         0.04</td>	GNDD089         20.00         30.00         0.95         1.69         0.09         1.0         0.00           inc         22.00         2.00         1.4         2.7         0.18         1.5         0.00           inc         30.50         1.70         2.9         2.3         0.12         3.0         0.00           inc         40.00         10.00         1.4         0.55         0.09         1.4         0.00           and         94.50         21.70         0.88         1.59         0.43         1.1         0.00           inc         102.50         1.50         1.9         1.5         0.15         2.0         0.01           inc         109.00         1.50         1.8         11.3         0.32         2.0         0.00           GNDD092         164.50         9.00         0.29         0.72         0.12         0.36         0.00           and         257.50         1.00         3.6         5.9         0.60         0.45         0.01           GMDD039         67.60         1.00         2.4         5.8         3.9         2.7.0         0.27           GMDD041         165.75         5.10         2.	GND089         20.00         30.00         0.95         1.69         0.09         1.0         0.00         0.02           inc         22.00         2.00         1.4         2.7         0.18         1.5         0.00         0.00           inc         30.50         1.70         2.9         2.3         0.12         3.0         0.00         0.00           inc         40.00         1.4         2.7         0.18         1.5         0.00         0.00         0.00           and         94.50         21.70         0.88         1.59         0.43         1.1         0.00         0.04           inc         102.50         1.50         1.9         1.5         0.15         2.0         0.01         0.03           inc         102.50         1.50         1.9         1.5         0.15         0.00         0.05         0.00         0.05         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.07         0.00         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.01         0.07         0.04

ACN 123 591 382 ASX: CEL

Level 1 86.6m options 1205 Hay Street 120m perf shares West Perth WA 6005 16m perf rights

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	<ul> <li>results the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>	Metallurgical recoveries for Au, Ag and Zn are assumed to be the same and so no factors have been applied to calculate the Au equivalent values. Accordingly, the formula used is AuEq $(g/t) = Ag (g/t) + Au (g/t)x (16/1450) + Zn (%) x 2.12$ . Previous metallurgical test work and geological and petrographic descriptions suggest all the elements included in the metal equivalents calculation have a reasonable potential of eventual economic recovery. While Cu and Pb are reported in the table above, these metals are not used in the Au equivalent calculation at this early stage of the Project.
		No top cuts have been applied to the reported grades.
Relationship between mineralisation	<ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to</li> </ul>	The mineralisation is moderately or steeply dipping and strikes strike NNE and ENE. There is insufficient information in most cases to confidently establish the true width of the mineralized intersections at this stage of the exploration program.
widths and intercept lengths	the drill hole angle is known its nature should be reported. - If it is not known and only the down hole lengths are	Apparent widths may be thicker in the case where bedding-parallel mineralisation may intersect ENE-striking cross faults and veins.
	reported there should be a clear statement to this effect (eg 'down hole length true width not known').	Cross section diagrams have been provided with release of significant intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	<ul> <li>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</li> </ul>	Representative maps and sections are provided in the body of report.
Balanced reporting	<ul> <li>Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.</li> </ul>	All available data have been reported.
Other substantive exploration data	<ul> <li>Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results;</li> </ul>	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report.
	geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock	229 specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates.
	characteristics; potential deleterious or contaminating substances.	Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing.

OGTSONAI USE ONIY

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

**Issued Capital** 

648.7.m shares

86.6m options

120m perf shares

16m perf rights

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

Criteria	JORC Code explanation	Commentary
Further work	<ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive.</li> </ul>	<ul> <li>CEL Plans to undertake the following over the next 12 months         <ul> <li>Additional data precision validation and drilling as required;</li> <li>Detailed interpretation of known mineralized zones;</li> <li>Geophysical tests for undercover areas.</li> <li>Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation.</li> <li>Field mapping program targeting extensions of known mineralisation.</li> <li>Investigate further drilling requirements to upgrade both the unclassified mineralisation and mineralisation in the existing historical resources to meet JORC 2012 requirements;</li> <li>Initial drill program comprising verification (twin holes) and targeting extensions of the historically defined mineralisation;</li> <li>Metallurgical test work.</li> </ul> </li> </ul>

Issued Capital 648.7.m shares 86.6m options 120m perf shares 16m perf rights

Australian Regis Level 1 1205 Hay Street

West Perth WA 6005

Australian Registered Office

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Directors

Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

### Section 3 Estimation and Reporting of Mineral Resources

### (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	<ul> <li>Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes.</li> <li>Data validation procedures used.</li> </ul>	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs. Assay data is received in digital format. Backup copies are kept and the data is copied into the drill hole database.
		The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	<ul> <li>Comment on any site visits undertaken by the Competent Person and the outcome of those visits.</li> <li>If no site visits have been undertaken indicate why this is the case.</li> </ul>	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological interpretation	<ul> <li>Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit.</li> <li>Nature of the data used and of any assumptions made.</li> <li>The effect if any of alternative interpretations on Mineral Resource estimation.</li> </ul>	The interpretation is considered appropriate given the stage of the project and the nature of activities that have been conducted. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities.
	<ul> <li>The use of geology in guiding and controlling Mineral Resource estimation.</li> <li>The factors affecting continuity both of grade and geology.</li> </ul>	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource
		blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for the application of these tonnage reduction factors was not outlined in the resource report. It is noted that at the time of this report La Mancha was in a legal dispute concerning the project with its joint venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project was likely no longer a core asset for La Mancha at that time. Additionally, under the original acquisition agreement La Mancha had to issue additional acquisition shares based on resource
		targets. The effect of removing the assumptions relating to application of the arbitrary tonnage reduction factors applied increases the overall resource tonnage by in excess of 50%. Removing these correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996)

**Challenger Exploration Limited** ACN 123 591 382 ASX: CEL

www.challengerex.com

**Issued Capital** 648.7.m shares Level 1 86.6m options 1205 Hay Street 120m perf shares West Perth WA 6005

16m perf rights

Australian Registered Office

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it. The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.
Dimensions	- The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource.	For the historic resource no, reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.
Estimation and modelling techniques	- The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamond drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections.
	<ul> <li>The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.</li> <li>The assumptions made regarding recovery of by-products.</li> <li>Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage</li> </ul>	Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate.
	<ul> <li>characterisation).</li> <li>In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.</li> <li>Any assumptions behind modelling of selective mining units.</li> </ul>	It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a saleable zinc concentrate.
	<ul> <li>Any assumptions about correlation between variables.</li> <li>Description of how the geological interpretation was used to control the resource estimates.</li> </ul>	Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variables of economic significance was not required.
	<ul> <li>Discussion of basis for using or not using grade cutting or capping.</li> <li>The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available</li> </ul>	The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
<b>hallenger Exploration Limited</b> CN 123 591 382 SX: <b>CEL</b>	Issued Capital         Australian Registered Office         Directors           648.7.m shares         Level 1         Mr Kris Knauer, MD and CEO           86.6m options         1205 Hay Street         Mr Scott Funston, Finance Directors           120m perf shares         West Perth WA 6005         Mr Fletcher Quinn, Chairman	Contact T: +61 8 6380 9235 ector E: admin@challengerex.com.au

16m perf rights

Criteria	JORC Code explanation	Commentary
		No assumptions were made regarding correlation between variables.
		The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plan maps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins and skarn were taken and sampling was plotted and the blocks outlined considering this.
		Grade cutting was not used in the calculation of the resource and no discussion was given as to why it was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied No data is available on the process of validation.
Moisture	- Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content.	No data is available.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.
Mining factors or assumptions	<ul> <li>Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made.</li> </ul>	<ul> <li>The Mineral Resource Estimate considered the assumptions outlined below which are considered appropriate; <ul> <li>Metal prices: Au US\$550 Oz Ag US\$10 Oz</li> <li>Metallurgical Recovery; Au – 80% Ag – 70% Zn - nil</li> <li>Operating cost: US\$55t based on underground cut and fill mining and flotation and cyanidation combined</li> </ul> </li> <li>The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.</li> </ul>
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made.	<ul> <li>Historical metallurgical test-work is currently under review however the assumptions used (80% recovery for Au, Ag and Zn) based on initial test results seem conservative.</li> <li>The most recent test work was conducted in 1999 by Lakefield Research (cyanidation) and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals and so can be considered primary, partial oxide or fracture oxide samples.</li> <li>The test work was conducted using a 150 micron grind which would appear to coarse base on petrography conducted by CEL which shows that the gold particles average 30-40 microns.</li> <li>Rougher flotation tests were performed with a 20 minute and 30 minute floatation time. Generally, the longer residence time improved recovery. Recoveries to concentrate for gold range from 59.6% - 80.6% and for silver from 63.1% - 87.2%.</li> </ul>

ASX: CEL

**Challenger Exploration Limited** ACN 123 591 382

**Issued Capital** 648.7.m shares Level 1 86.6m options 1205 Hay Street 120m perf shares West Perth WA 6005

16m perf rights

Australian Registered Office

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

Criteria	JORC Code explanation	Commentary
		<ul> <li>Knelson concentrate tests with floatation of tailings were also completed. Applying a joir process Knelson concentrator and floatation of the tailings of the concentrator it is found that the global recovery is approximately 80% for gold.</li> <li>While the testwork was focused predominantly on gold recovery some rougher flotation testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades in excess of 50% Zn in comcentrate expected with additional floatation stages.</li> <li>The report concluded that it was possible to produce a commercial Au-Ag concentrate ar a Zn concentrate.</li> <li>Extraction of gold and silver by cyanidation was tested on 3/8 and ¾ inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanide consumption. No tests have been done on material at a finer grind size.</li> </ul>
Environmental factors or assumptions	<ul> <li>Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.</li> </ul>	It is considered that there are no significant environmental factors which would prevent the event extraction of gold from the project. Environmental surveys and assessments will form a part of fut pre-feasibility.
Bulk density	<ul> <li>Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples.</li> <li>The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit.</li> <li>Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.</li> </ul>	<ul> <li>Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock.</li> <li>No data of how densities were determined is available.</li> <li>The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project.</li> <li>CEL is collecting specific gravity measurements from drill core recovered in 2019 and 2020 drilling programs, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates.</li> <li>For RC drilling, the weights of material recovered from the drill hole is able to be used as a measur of the bulk density.</li> </ul>

**Issued Capital** 648.7.m shares Level 1 86.6m options 1205 Hay Street 120m perf shares West Perth WA 6005 16m perf rights

Australian Registered Office

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com.au

Criteria	JORC Code explanation	Commentary
Classification	<ul> <li>The basis for the classification of the Mineral Resources confidence categories.</li> <li>Whether appropriate account has been taken of all rele relative confidence in tonnage/grade estimations reliab data confidence in continuity of geology and metal valu quantity and distribution of the data).</li> <li>Whether the result appropriately reflects the Competen of the deposit.</li> </ul>	under the National Instrument 43-101 code and is considered foreign. These classifications are considered appropriate given the confidence that can be gained from the existing data and results from drilling. <i>equality</i> The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in
		The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated) estimate for the Hualilan Project is measured resource of 164294 tonnes averaging 12.6 grams per tonne gold and 52.1 g/t silver and 2.5% zinc plus an indicated resource of 51022 tonnes averaging 12.4 grams per tonne gold and 36.2 g/t silver and 2.6% zinc plus an inferred resource of 213952 tonnes grading 11.7 grams per tonne gold and 46.6 g/t silver and 2.3% zinc. (Source La Mancha resources Toronto Stock Exchange Release April 7 2007 - Interim Financials) – See Table 1.
		The 2006 estimate did not include the east-west mineralised Magnata Vein despite the known mineralisation in the Magnata Vein being drilled on a 25 x 50-metre spacing. The 2003 NI43-101 (non-JORC Code compliant) estimate attributed approximately half of its measured and indicated tonnage to the Magnata Vein. The 2006 estimate also included arbitrary tonnage reduction factors of 25% for indicated category 50% for inferred category and 75% for potential category.
		The 2006 estimate also included a significant tonnage of Potential Category Resources which have not been reported.
		The reported 2003 NI43-101 (non-JORC Code compliant) estimate for the Hualilan project is a measured resource of 299578 tonnes averaging 14.2 grams per tonne gold plus an indicated resource of 145001 tonnes averaging 14.6 grams per tonne gold plus an inferred resource of 976539 tonnes grading 13.4 grams per tonne gold representing some 647809 ounces gold. (Source La Mancha resources Toronto Stock Exchange Release May 14 2003 - Independent Report on Gold Resource Estimate) – See Table 1.
		The 2003 Mineral Resource classification and results appropriately reflect the Competent Person's view of the deposit and the current level of risk associated with the project to date.
<b>Challenger Exploration Limite</b> ACN 123 591 382 ASX: <mark>CEL</mark>	648.7.m sharesLevel 1Mr Kri86.6m options1205 Hay StreetMr Sci	sContactinauer, MD and CEOT: +61 8 6380 9235Funston, Finance DirectorE: admin@challengerex.com.aueer Quinn, ChairmanE: admin@challengerex.com.au

Criteria	JORC Code explanation	Сог	mmentary				
		н	Historic 2003 NI43-101 (non-JORC Code compliant):				
		C/	ATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%
		N	leasured	299578	14.2		
		In	dicated	145001	14.6		
		In	ferred	976539	13.4		
		н	Historic 2006 NI43-101 (non-JORC Code compliant) CATEGORY TONNES Au (g/t) Ag (g/t) Zn%				
		C					
		N	leasured	164294	12.5	52.1	2.5
		In	dicated	51022	12.4	36.2	2.6
		In	ferred	213952	11.7	46.6	2.3
Audits or reviews	- The results of any audits or reviews of Mineral Resource	estimates. The	e historic resource e	estimate has not been aud	lited.		
		res rep	ource report. This in ource released t	2000) Mineral Resource Es ndependent report was do to the TSX. This report cor are seen to be realistic.	one to NI-43-101 s	tandard and th	ne results of this
Discussion of	- Where appropriate a statement of the relative accuracy		0 1	fidence in the data quality	drilling methods a	and analytical I	results that they
relative accuracy/	level in the Mineral Resource estimate using an approac	h or procedure be	relied upon. The av	ailable geology and assay	data correlate we	ll. The approac	h or procedure a
confidence	deemed appropriate by the Competent Person. For exan application of statistical or geostatistical procedures to relative accuracy of the resource within stated confidence	quantify the acc	emed appropriate g curacy is grade cont	viven the confidence limits inuity and top cut.	s. The main two fac	ctors which co	uld affect relative
	<ul> <li>such an approach is not deemed appropriate a qualitativithe factors that could affect the relative accuracy and constimate.</li> <li>The statement should specify whether it relates to global estimates and if local state the relevant tonnages which</li> </ul>	ve discussion of Gra onfidence of the and stri I or local are	d closer spaced drill ke and dip direction	riable in nature in this styl- ling is required to improve ns. It is noted that the resu ms of grade repeatability.	the understandin ults from the twin	g of the grade	continuity in bot
	relevant to technical and economic evaluation. Documer include assumptions made and the procedures used.	ntation should The not	ted that an arbitrary	very high grades and there y grade reduction factor o	•		•
	<ul> <li>These statements of relative accuracy and confidence of should be compared with production data where available</li> </ul>		oorted. production data is	available for comparison			
hallenger Exploration Limited CN 123 591 382 SX: CEL		<b>ors</b> Knauer, MD and CEO tt Funston, Finance Director	<b>Contact</b> T: +61 8 6380 923 E: admin@challend				

Mr Fletcher Quinn, Chairman

120m perf shares

16m perf rights

West Perth WA 6005

#### **Issued Capital** 648.7.m shares 86.6m options

120m perf shares

16m perf rights

Level 1 1205 Hay Street West Perth WA 6005

#### Australian Registered Office

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

#### **Contact** T: +61 8 6380 9235 E: admin@challengerex.com.au