

Australian Securities Exchange Annoucement

ACN 119 057 457

*** **UPDATED** ***

NEW HIGHLY MINERALISED DISCOVERY AND SUCCESSFUL GRAVITY SURVEY AT MESTERSVIG

HIGHLIGHTS

- Results from the 2020 Mestersvig Project field season have been received;
- Lead results from newly discovered vein reported in CNJ's ASX Announcement (24 November 2020) reported at >10% have now come back with peak assays of 69.5% lead, 0.91% copper and 282g/t silver;
- Gravity survey covering ~4% of the licence area has highlighted anomalies that are coincident with mineralised trends and represent drill targets for the 2021 field season;
- A review of historic¹ diamond drilling, surface sampling and mapping has revealed multiple targets;
- · Licence enlargement has progressed to the next stage; and
- Results for Conico's Ryberg (magmatic Cu-Ni-Co-Pd-Au) and Sortekap (gold) Projects expected in shortly.

Conico Executive Director Mr Guy Le Page said:

"Mestersvig has seen no systematic exploration efforts since the Blyklippen Mine closed in the early 60's (past production 545,000 tonnes @ 9.9% Pb, 9.3% Zn). Our first program consisting of only 4 weeks in the field has revealed the immense opportunity of this project to host a substantial high-grade and large tonnage deposit. Our sights are now firmly set on the 2021 drill program."

SUMMARY

In September 2020, Conico Limited (ASX: CNJ) ("Conico" or "the Company") conducted its first activities at the 100% owned Mestersvig Pb-Zn-Ag Project in East Greenland (Figure 1). The crew collected ground-borne gravity data, surface samples and conducted a review of on-site facilities and material. The licence area contains the historic Blyklippen Mine that produced 545,000 tonnes @ 9.9% zinc & 9.3% lead, hosted within a vein that varies in width from 2 - 50m.

Surface samples identified a newly mineralised occurrence in the east of the licence area, referred to as the 'Nuldal Prospect', with two samples of massive galena collected that grade 60.66% lead, 0.91% copper & 236g/t silver (Sample 4958), and 69.47% lead, 0.77% copper & 282g/t silver (Sample 4959). Historic exploration efforts in this location identified differing mineralisation grading up to 7% copper and 0.4% zinc, further elevating the Nuldal Prospect's status as a priority target.

¹ Cautionary statement. The historic drill-hole and rock-chip data reported has been collated from historic records held by the Geological Survey of Greenland and Denmark (GEUS) in Copenhagen. Conico notes that not original data and procedures have been identified, and some of the reported data is incomplete. As such, Conico intends to use the historic data primarily to guide further exploration. Further details on the data can be found in JORC Table 1 at the end of the document.

A ground-borne gravity survey was conducted at priority areas (Blyklippen, Sortebjerg & Nuldal), covering approximately 4% of the Mestersvig licence. The survey was conducted at 200m line spacing and 50m station spacings. The strongest anomaly was once again at the Nuldal Prospect, with a high-density linear feature following along strike of known vein outcrop.

A thorough review of historic data is detailed in this report and includes assay results for: 15 diamond drill-holes at the Sortebjerg Prospect (over a strike length of 2.9km), and 3 diamond drill-holes beneath the Blyklippen mine, and surface sampling. Work has begun on creating a 3D model of the historic Blyklippen Mine and Sortebjerg Prospect.

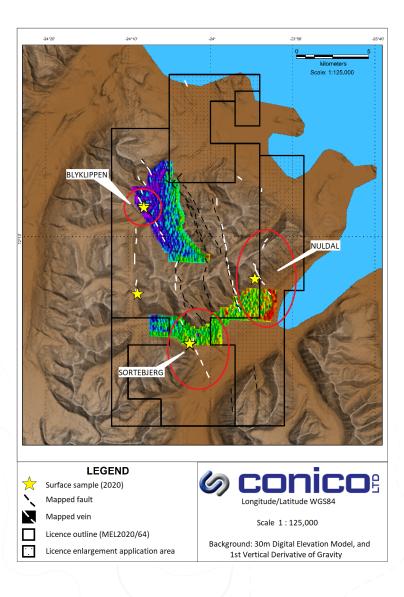


Figure 1: Location map for 2020 field activites.

NULDAL

Field personnel traversed this vein from the coastline, up the mountainside where outcrop was discovered containing massive galena (lead sulphide), hosted in a quartz vein. Two surface rock-chip samples were collected and sent for analysis (table 1, Figure 2).

Sample ID	Easting	Northing	Year	Ag g/t	Cu %	Pb %	S %	Zn %
4958	605,732	8,007,379	2020	236	0.91	60.66	7.32	0.03
4959	605,730	8,007,381	2020	282	0.77	69.47	9.58	0.03

The results are of particular interest as previous explorers collected four surface rock-chip samples2 from the same vein, 200m to the south and identified oxidised sulphides containing significant copper up to 7% (table 2).

The vein also extends to the north into an area referred to as 'Little Lead Valley'. While no analytical results are present, a report from 1952 states "...several small fissure veins outcrop in the steep western walls of Blyryggen, between 600-700m above sea-level. Some of them contain lead sulphide...". The total strike length of the 'Little Lead Valley' veins and Nuldal combined is 4.5km.

S	Sample ID	Sample Type	Cu%
	NG001	Rock chip	0.15
	NG002	Rock chip	7.05
	NG003	Rock chip	2.9
	NG004	Rock chip	1.76

TABLE 2: Assay results for historic (2011) Nuldal surface samples.

Figure 2: Massive galena sampled from the Nuldal Prospect in 2020 (sample 4958).

The gravity survey was extended to the southern extent of the Nuldal Prospect, where the vein becomes obscured by scree. There is a distinct gravity high in this location, showing what appears to be a linear feature that then bends to the southwest and has a strike length of 2km (when combined with the 'Little Lead Valley' and Nuldal veins, this gives a total prospective strike length of 6.5km. The gravity anomaly is in an accessible location on flat ground nearby to Mestersvig Bay. Based on these encouraging results, the Company submitted an application to enlarge the Mestersvig licence area, encompassing all of the geology of interest for the Nuldal Prospect.

2 Cautionary statement. The historic drill-hole and rock-chip data reported has been collated from historic records held by the Geological Survey of Greenland and Denmark (GEUS) in Copenhagen. Conico notes that not original data and procedures have been identified, and some of the reported data is incomplete. As such, Conico intends to use the historic data primarily to guide further exploration. Further details on the data can be found in JORC Table 1 at the end of the document.

Δ

SORTEBJERG

The Sortebjerg Prospect is located 10km south of the Blyklippen Mine and consists of a mineralised quartz vein that contains dominantly sphalerite (zinc sulphide) mineralisation, with subordinate galena and chalcopyrite (copper sulphide). The vein outcrops at surface in four locations, over a strike length of approximately 2.9km.

The field team focussed on taking surface rock-chip samples for scientific analysis to determine ore genesis, however four samples were also sent for assay and the most anomalous results being 8.35% zinc (sample 4954), and 6.96% copper & 3.42% lead (sample 4956). All samples are shown in Table 3, a photo of the sample location in Figure 3, and sample locations in Figure 5.

Sample ID	Sample Type	Cu%	Pb%	Zn%
4954	Rock chip	0.03	0.28	8.35
4955	Rock chip	< 0.01	0.01	0.02
4956	Rock chip	6.96	3.42	0.016
4957	Rock chip	0.03	<0.01	<0.01

Table 3: Assay results for 2020 Sortebjerg surface samples.

Figure 3: Outcropping vein at Sortebjerg containing appreciable zinc, copper and lead.

Conico:

8 December, 2020

These samples are further complimented by 15 historic diamond drill holes at Sortebjerg over two campaigns in 1952 and 2011³. These occurred over a strike length of 2.9km with the following notable results (Figure 5):

BH001	
BH002	5.17m @ 12.58% zinc & 1.77% lead, from 40m downhole
	1.55m @ 15.87 zinc, from 122.75m downhole
BH003	1.05m @ 7.13% zinc, from 13.15m downhole 4.03m @ 9.11% zinc, 1.28% lead & 0.21% copper, from 51.85m downhole
BH010	1.55m @ 18.21% zinc, 7.34% lead & 0.8% copper, from 40.2m downhole
BH012 SB017	3.1m @ 12.62% zinc, 8.46% lead & 3.04% copper, from 46.15m downhole
	2.5m @ 16.11% zinc, from 8.25m downhole
SB018	1.0m @ 17.95% zinc & 8.53% lead, from 21.8m downhole
SB019	
	 1.0m @ 17.33% zinc, from 53.8m downhole

The summary drill results use length weighted average, over a minimum drilled intercept of 1.0m, and a minimum grade of either 1% copper, lead or zinc. Full assay results and collar details are in Appendices 2 and 3.

Figure 4: Outcropping vein at Sortebjerg containing sphalerite.

The gravity survey conducted in 2020 covers the northern extent of the Sortebjerg Prospect, including the northern most drill-hole (SB019). There are gravity lows (blue purple) and highs (red) that may represent targets worthy of follow up exploration. It does however appear that the survey does not readily discern a density contrast between the host rock and abundance of sulphide minerals (notably sphalerite: Figure 4) where the vein outcrops, nor where it has been encountered in drilling. This suggests that the survey may be too broadly spaced and higher resolution required in this location.

³ Cautionary statement. The historic drill-hole and rock-chip data reported has been collated from historic records held by the Geological Survey of Greenland and Denmark (GEUS) in Copenhagen. Conico notes that not original data and procedures have been identified, and some of the reported data is incomplete. As such, Conico intends to use the historic data primarily to guide further exploration. Further details on the data can be found in JORC Table 1 at the end of the document.

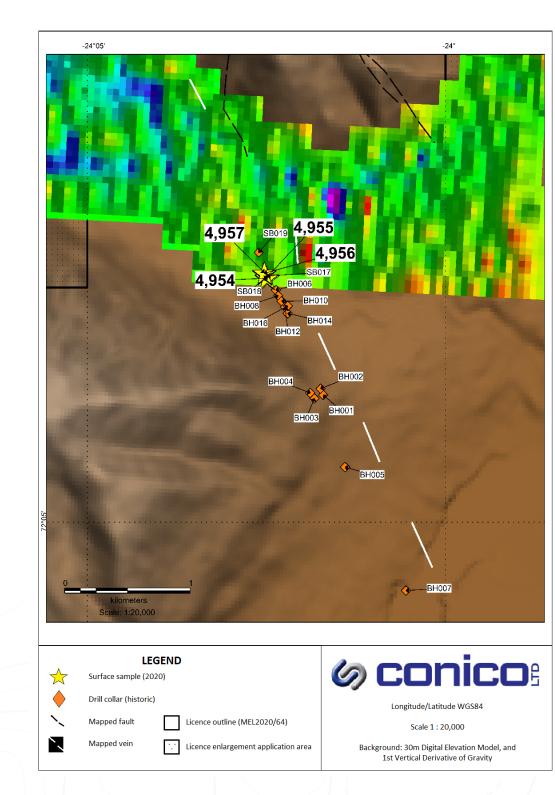


Figure 5: Location for Sortebjerg 2020 surface samples, and historic drill collars⁴.

BLYKLIPPEN

Activities at Blyklippen included the gravity survey and collecting samples of host rock for ore genesis research. An unexpected and welcome discovery was finding the historic mine's core storage facility that contains surface and underground drill core the mine and surrounds that is remarkably intact (Figure 6). It is the Company's intention to re-log this core and conduct technical analysis that will aid in understanding ore genesis, and pathfinders for locating additional mineralisation.

Figure 6: The Blyklippen core storage facility.

The gravity response at Blyklippen has a pronounced gravity low which is likely due to the historic mining operation where the opencut and underground operations removed the mineralised vein.

A review of 2011 historic diamond drilling⁴ has been conducted, where three diamond drill-holes were placed beneath the historic mine workings (Figure 7). While the drill-holes did intersect mineralisation, our review has highlighted that they may not have been sufficiently deep to intersect the steeply dipping Blyklippen vein, only intersecting minor parallel vein(s) located prior. This reinvigorates the potential for additional high-grade ore to be discovered at depth.

⁴ Cautionary statement. The historic drill-hole and rock-chip data reported has been collated from historic records held by the Geological Survey of Greenland and Denmark (GEUS) in Copenhagen. Conico notes that not original data and procedures have been identified, and some of the reported data is incomplete. As such, Conico intends to use the historic data primarily to guide further exploration. Further details on the data can be found in JORC Table 1 at the end of the document.

A summary of the drill-holes is as follows:

	1	n	റ	1
- DI	n	U	U	

BK002	0	No significant intercepts
	0	1.0m @ 3.66% zinc, from 321.9m downhole
BK003	0	1.4m @ 5.96% zinc & 4.97% lead, from 263.0m downhole

The summary drill results use length weighted average, over a minimum drilled intercept of 1.0m, and a minimum grade of either 1% copper, lead or zinc. Full assay results and collar details are in Appendices 2 and 3.

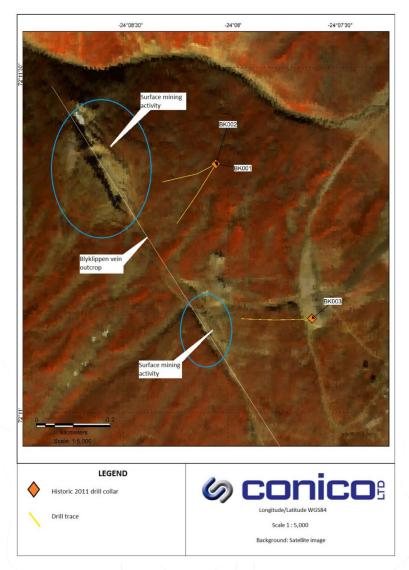


Figure 7: Historic Blyklippen drill collars and traces⁴, relative to mine workings.

MESTERSVIG PROJECT SUMMARY

Figure 10: Northerly view from the Blyklippen mine, toward the harbour and military base.

HISTORY AND LOCATION

The project area is located in east Greenland, approximately 200km NNW of the nearest settlement at Ittoqqortoormiit. Immediately to the south of the licence area is Greenland Resources' Malmbjerg molybdenum project, and to the north is Greenfield Exploration & IGO's Frontier copper project. Adjacent to the Mestersvig Project is the Mestersvig Danish military base, complete with airstrip and harbour.

Between 1956-1962, the Blyklippen Mine produced a total of 545,000 tons of ore grading 9.3% Pb and 9.9% Zn. This was an opencut and underground operation with ore extracted from 3 adits using the cut and fill method, the width of the stopes being the same as the width of the mineralised veins. The mill with all processing facilities (crushing, grinding, flotation, thickeners, filters, drying furnaces), are underground in chambers excavated in the sandstone below the ore body and are still present today. The mill was designed for a daily production of 350 tons ore corresponding to an annual production (11 month) of about 90,000 tons.

MINERALISATION

Mineralisation at Blyklippen is hosted in quartz veins developed along a normal fault, hosted in Permo-Carboniferous sandstones. Thickness of the vein varies from a few metres, up to 50m wide. The mined-out sulphide lens was 2-10m thick, 300 m long and 160 m high. It consisted of 65% quartz, 15% sphalerite, 10% galena, 5-10% baryte with trace amounts of pyrite, chalcopyrite and tetrahedrite.

For and on behalf of the board,

Geny Le Tage

Guy T Le Page, FFIN, MAUSIMM Executive Director

COMPETENT PERSONS STATEMENT

The information contained in this report relating to exploration results relates to information compiled or reviewed by Thomas Abraham-James, a full-time employee of Longland Resources Ltd. Mr. Abraham-James has a B.Sc Hons (Geol) and is a Chartered Professional (CPGeo) and Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM). Mr. Abraham-James has sufficient experience of relevance to the styles of mineralisation and the types of deposit under consideration, and to the activities undertaken to qualify as a Competent Person as defined in the 2012 edition of the Joint Ore Reserve Committee (JORC) "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Abraham-James consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

FORWARD-LOOKING STATEMENTS

This announcement contains forward-looking statements that involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward-looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

CAUTIONARY STATEMENT

The historic drill-hole and rock-chip data reported has been collated from historic records held by the Geological Survey of Greenland and Denmark (GEUS) in Copenhagen. Conico notes that not original data and procedures have been identified, and some of the reported data is incomplete. As such, Conico intends to use the historic data primarily to guide further exploration. Further details on the data can be found in JORC Table 1 at the end of the document.

JORC Code, 2012 Edition

Section 1: Sampling Techniques and Data

- *1: Conico Ltd 2020 gravity survey
- *2: Conico Ltd 2020 surface sampling
- *3: Ironbark Zinc Ltd 2011 surface sampling
- *4: Ironbark Zinc Ltd 2011 diamond drilling
- *5: Nordisk Mineselskab A/S 1952 diamond drilling

	JORC Code Explanation	Commentary
Sampling	Nature and quality of sampling (e.g. cut	• 1: Ground gravity survey with the following survey
techniques	channels, random chips, or specific specialised industry standard measurement tools	details: - 50m spaced stations on 200m spaced lines (2,342
	appropriate to the minerals under investigation, such as down hole gamma	stations) - Scintrex CG5 digital gravity meter and a Lacoste
	sondes, or handheld XRF instruments, etc.).	and Romburg G series meter
	These examples should not be taken as	- Leica GS15 RTK DGPS
	limiting the broad meaning of sampling.	- Accuracy <0.02 mGal
		 Elevation accuracy <2cm
		• 2 & 3: Surface reconnaissance rock-chip samples
		taken from outcrop.
		• 4 & 5: Diamond drilling for the retrieval of core
		samples, conducted using industry standard drill rigs.
	Include reference to measures taken to ensure	 1: The data were tide and drift corrected with
	sample representivity and the appropriate	additional repeat readings taken to establish the
	calibration of any measurement tools or	survey accuracy.
	systems used.	• 2 & 3: Rock-chip samples were chosen based upon
	,	geological features relevant to the target
		mineralisation.
		 4 & 5: Drill targets were selected based on
		geological features relevant to the target
		mineralisation.
	Aspects of the determination of mineralisation	 1: The gravity survey was chosen as a method for
	that are Material to the Public Report. In cases	delineating the presence of sulphide mineralisation
	where 'industry standard' work has been done	due to the high density of lead/zinc sulphide relative
	this would be relatively simple (e.g. 'reverse	to host rock lithologies.
	circulation drilling was used to obtain 1 m	• 2: Rock-chip samples were collected from the
	samples from which 3 kg was pulverised to	field, placed into sample bags, and then submitted
	produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such	to SGS Laboratories, Spain and crushed, split and a portion pulverised to produce a representative sub-
	as where there is coarse gold that has inherent	sample for analysis by aqua regia digest and
	sampling problems. Unusual commodities or	Inductively Coupled Atomic Emission Spectrometry
	mineralisation types (e.g. submarine nodules)	(ICP-AES) for the following elements: Ag, Co, Cu, Ni,
	may warrant disclosure of detailed	Pb, S, Zn. Follow up analysis was then conducted at
	information.	SGS Canada Inc., where pulps were delivered by SGS
		Laboratories Spain, for analysis by borate fusion and
		XRF for the following element: Pb; and aqua regia
		digest and Inductively Coupled Optical Emission
		Spectrometry (ICP-OES) for the following elements:
		Ag, Cu, S, Zn.
		• 3: Rock-chip samples were collected from the
		field, placed into sample bags, and then submitted
		to ALS Chemex, Sweden and crushed, split and a
		portion pulverised to produce a representative sub-
		sample for analysis by four-acid digest and
		Inductively Coupled Plasma Mass Spectrometry
		(ICP-MS) for the following elements: Al2O3, As, CaO, Co, Cr, Cu, Fe, K, MgO, MnO, Ni, Pb, S, SiO2, TiO2,

Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 4: Sample intervals ranged from 0.3m - 1.0m (averaging 0.61m within mineralised zones and 0.85m outside) and were based on logging. Samples were half core. Samples were submitted to ALS Chemex, Sweden and crushed, split and a portion pulverised to produce a representative sub-sample for analysis by four-acid digest and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for the following elements: Al203, As, CaO, Co, Cr, Cu, Fe, K, MgO, MnO, Ni, Pb, S, SiO2, TiO2, Zn. Atomic Absorption Spectrometry (AAS) was used for Au & Ag. 5: Sample intervals ranged from 0.11m - 2.03m (averaging 0.68m within mineralised zones and 1.06m outside) and were based on logging. It is unknown whether half. Quarter, or whole core was submitted for analysis. Samples from were submitted to Bolidens Gruvaktiebolag's laboratory in Rönnskärsverken, Sweden. Due to the incomplete nature of the historic drill data and records, including procedures, a comment on the sample representativity system used cannot be made. The data cannot be considered 'industry standard' by modern standards. It has been assumed that all reported assays are representative of technology available at the time, but no reliance has been put on it. 1, 2 & 3: N/A 4: Drilling was conducted using 1x Hydracore HC1800 Diamond coring drill rig. The core diameter is BQ (36.5mm). No orientations were conducted. Down-hole surveys were taken for holes BK001-003 only, using an unknown instrument. 5: Drilling was via 2 x chuck mounted hydraulic coring diamond drills supplied by Svenska Diamantbergborrnings AB. The hole diameters are 46mm, with some holes reduced to 36mm when casing was required to drill through broken ground. No orientations or down-hole surveys were
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 conducted. 1, 2 & 3: N/A 4 & 5: No records of core recovery have been identified from the historic data. The absence of drill recovery data means that reported grades may be subject to either over or underreporting. No assessment or estimation of these effects has been made due to the lack of data.
	Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 1, 2 & 3: N/A 4: No records of measures to maximise sample recovery have been identified from the historic data. 5: Reports state that when broken ground or clay was encountered, shorter drill runs were taken (1.5-2.0m) and the hole was cased using casing pipe. 1, 2 & 3: N/A 4 & 5: Given the absence of core recovery data, it is not possible to assess the potential of a relationship between sample recovery and grade.

Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 1, 2 & 3: N/A 4 & 5: Geological logs have been identified for all drill-holes. They include reference to lithology and the presence of visible mineralisation. No geotechnical logs have been identified. The drillhole
		information reported here is not of a sufficient level of detail to support a Mineral Resource estimation, mining study or metallurgical study.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	 1, 2 & 3: N/A 4 & 5: All core logging is qualitative. Core photography has been identified for holes BK001, BK002, BK003, SB017, SB018 and SB019.
	The total length and percentage of the relevant intersections logged.	 1, 2 & 3: N/A 4 & 5: Geological logs have been identified for all drillholes reported, in their entirety.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	 1, 2 & 3: N/A 4: Core was sawn in half along the drill core axis using a diamond saw. 5: No details of the sub-sampling or sample preparation techniques have been identified from the historic records, and no supporting sampling procedures have been identified. It is not known whether ¼, ½ or whole core was submitted for analysis.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	• 1,2, 3, 4 & 5: N/A
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 1: N/A 2 & 3: Sample preparation comprised industry standard oven drying, crushing, and pulverising. Homogenised pulp material was used for assaying. 4: The sample preparation technique is judged appropriate for the sample type and mineralisation style being tested. All core was marked up for sampling by qualified geologists prior to core cutting. Sample widths range from 0.3 to 1.0m.
		 Sample preparation comprised industry standard oven drying, crushing, and pulverising. Homogenised pulp material was used for assaying. 5: Due to the lack of available data it is not possible to make comment on the quality and appropriateness of the sample preparation
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	 technique for DD core. 1: N/A 2: No sub-sampling occurred. 3, 4 & 5: There is no evidence of sub-sampling having occurred.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	 1: N/A 2: No field duplicates or second half sampling occurred. 3, 4 & 5: There is no evidence of duplicate or second half sampling having occurred at either the Nordisk Mineselskab A/S or Ironbark Zinc Ltd drill programmes.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	 1: N/A 2: Sample weights ranged between 0.5 – 2.5kg, and are deemed appropriate for the mineralisation style. 3, 4 & 5: sample weights are unknown; therefore, no comment can be made on their appropriateness.

Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used	 1: N/A 2: Samples were assayed by independent certified
laboratory tests	and whether the technique is considered partial or total.	commercial laboratories (SGS Laboratories Spain & SGS Canada Inc.). The laboratories are experienced in the preparation and analysis of base and precious metal sulphide ores. Samples were analysed via aqua regia ICP-AES & ICP-OES, which are considered partial. Pb was analysed via borate fusion / XRF which is considered total. • 3 & 4: Samples were assayed by an independent certified commercial laboratory (ALS Chemex, Sweden). The laboratory is experienced in the preparation and analysis of base and precious meta sulphide ores. Samples were analysed via ICP Fusion, which is considered total, and mineralised samples also via aqua regia digest for Ag & Au, which is considered partial. • 5: No descriptions of the assaying and laboratory procedures used have been found. It is not known
	For geophysical tools, spectrometers,	whether the techniques used are partial or total.
	handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	• 1,2 ,3 ,4 & 5: N/A
	Nature of quality control procedures adopted	• 1: N/A
Verification of	(e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 2: Internal laboratory checks were used, and an acceptable level of accuracy was achieved (i.e., 2 standard deviations). 3 & 4: A certified laboratory standard (GBM906-15) was submitted together with the samples. The standard came back within acceptable limits (i.e., 2 standard deviations). 5: No descriptions of quality control procedures adopted by the laboratory, nor any results of any related Quality Control data, has been identified. Therefore, comment on whether acceptable accuracy and precision of results had been established has not been made. 1: N/A
sampling and assaying	either independent or alternative company personnel.	 2: Verification was made by alternative company personnel who viewed the sample photographs and concurred with the presence of visible lead, zinc an copper bearing minerals. 3, 4 & 5: Due to the historic nature of the results reported, it has not been possible to verify significant intersections. No core from these programmes has been examined by Conico personnel. Mineralisation evident in core photos from the Ironbark Zinc Ltd drilling correlate with anomalous assay result intercepts.
	The use of twinned holes.	 1, 2 & 3: N/A 4 & 5: There is no evidence of twinned holes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 1: N/A 2: All sample data was recorded on site via notebook and GPS, then transferred to Microsoft Excel spreadsheet at the end of day. Original assay

		 certificates from the laboratory are digital and have been stored on secure server. 3 & 4: Annual geological reports and associated assay certificates and core photos are held in digital format, obtained from the Geological Survey of Denmark and Greenland (GEUS). Original drill core is stored at Ironbark's Citronen Project in Greenland. 5: Information is in digital format only and includes scans of original assay certificates and logs written in pencil at site. Data was obtained directly from the Geological Survey of Denmark and Greenland (GEUS). Comment: Conico has stored all drill-hole, rock-chip, assay and geophysical data on a secure server, backed up to the cloud.
	Discuss any adjustment to assay data.	 1: N/A 2: No adjustments have been made. 3, 4 & 5: Given the absence of detailed historical information relating to the assay data, no adjustment to the assay data has been made. The data has been reported as it was recorded in the original documentation.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 1, 2 & 3: N/A 4: Drill hole collar locations were recorded using a Garmin handheld GPS which has an accuracy of <8m. Down hole survey information is available only for holes BK001, BK002 & BK003, however no information is available regarding the tool used, therefore no comment can be made on its accuracy or quality. 5: No down hole survey information is available. Drill hole collar locations have been established using historic drill plans and conversion from the local grid used at the time. Due to the historic nature of the data, no comment can be made on its accuracy or quality.
	Specification of the grid system used.	 1, 2, 3 & 4: The Grid System used for all location data points is UTM WGS 84 Zone 26N. 5: A local grid was used, and historic plans used to convert points into UTM WGS 84 Zone 26N co- ordinates.
	Quality and adequacy of topographic control.	 1: Survey elevations established by post processed Kinematic GPS. Topographic corrections used a merged gravity elevation and ALOS DEM dataset. 2: Topographic information was sourced from the Greenland Mapping Project (GIMP) digital elevation model (30m accuracy). 3 & 4: Topographic information sourced from the Geological Survey of Denmark and Greenland. 5: No details on topographic control have been located, therefore no comment can be made.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 1: N/A 2, 3, 4 & 5: Surface samples and drill-holes are not located in a grid pattern, they were selected based on specific technical and access controls.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 1, 2 & 3: N/A 4 & 5: The data spacing is not deemed to be sufficient for this criterion. Drill spacing was based on geological criteria and exploratory in nature.

	Whether sample compositing has been	• 1: N/A
	applied.	• 2, 3, 4, & 5: No sample compositing has been
Orientation of	Whether the orientation of sampling	applied. • 1, 2 & 3: N/A
data in relation	achieves unbiased sampling of possible	• 4 & 5: The orientation of the drilling is
to geological	structures and the extent to which this is	approximately perpendicular to the strike and dip of
structure	known, considering the deposit type.	the mineralisation and therefore should not be
Structure	known, considering the deposit type.	biased.
	If the relationship between the drilling	• 1, 2 & 3: N/A
	orientation and the orientation of key	• 4 & 5: There are no known biases caused by the
	mineralised structures is considered to have	orientation of the drill holes.
	introduced a sampling bias, this should be	
	assessed and reported if material.	
Sample security	The measures taken to ensure sample	• 1: N/A
	security.	• 2: Samples were taken from the field to storage
		on site, and then flown to secure storage in Iceland.
		They were then transported by DHL to Longland Resources Ltd director Thomas Abraham-James in
		Portugal, who then personally drove them to the laboratory. The samples were then moved internally
		from SGS Laboratories Spain to SGS Canada Inc.
		• 3 & 4: Personnel oversaw the samples move from
		the field to storage on site, to freight to ALS Labs.
		• 5: No records relating to the sample security have
		been identified, therefore no comment can be
		made.
Audits or	The results of any audits or reviews of	• 1: N/A
reviews	sampling techniques and data.	 2, 3, 4 & 5: No audits or reviews of the sampling
		techniques and data have been undertaken.
Section 2: Repo	orting of Exploration Results	
Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number, location and	• The Mestersvig Project is wholly within Mineral
tenement and	ownership including agreements or material	Exploration Licence 2020/64, located on the east
land tenure	issues with third parties such as joint	coast of Greenland. It is held 100% by Longland

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number, location and	 The Mestersvig Project is wholly within Mineral
tenement and	ownership including agreements or material	Exploration Licence 2020/64, located on the east
land tenure	issues with third parties such as joint	coast of Greenland. It is held 100% by Longland
status	ventures, partnerships, overriding royalties,	Resources Ltd, a wholly owned subsidiary of Conico
	native title interests, historical sites,	Ltd.
	wilderness or national park and	 Mineral Exploration Licence 2020/64 lies within
	environmental settings.	the Northeast Greenland National Park.
	The security of the tenure held at the time of	 The tenure is secure and in good standing at the
	reporting along with any known	time of writing. There are no known impediments.
	impediments to obtaining a licence to	
	operate in the area.	
Exploration	Acknowledgment and appraisal of	 The data referenced in this report refers to
done by other	exploration by other parties.	exploration undertaken by historic mining and
parties		exploration companies operating the Project from
		1952 to 2011. The previous workers include Nordisk
		Mineselskab A/S and Ironbark Zinc Ltd.
		 The historic data referenced in this report
		includes diamond drilling, surface sampling and
		mining.
Geology	Deposit type, geological setting and style of	 The type is likely that of a Mississippi Valley Type
	mineralisation.	(MVT) Pb-Zn-Ag deposit where mineralisation has
		been re-mobilised by fluids along faults.
		Mineralisation is present as massive galena-
		sphalerite, with associated chalcopyrite.
		Mineralisation is present within quartz-barite veins,
		hosted within sandstone and conglomerates.
		Known mineralisation is within the fault and vein
		systems associated with a Devonian graben system.
Drill hole	A summary of all information material to the	Refer to Appendix 2.
Information	understanding of the exploration results	

	including a tabulation of the following	
	information for all Material drill holes:	
	- easting and northing of the drill hole collar	
	- elevation or RL (Reduced Level – elevation	
	above sea level in metres) of the drill hole	
	collar	
	- dip and azimuth of the hole	
	- down hole length and interception depth	
	- hole length.	
	If the exclusion of this information is justified	 This is not the case.
	on the basis that the information is not	
	Material and this exclusion does not detract	
	from the understanding of the report, the	
	Competent Person should clearly explain why	
	this is the case.	
Data	In reporting Exploration Results, weighting	 Reported assays in the body of the report have
aggregation	averaging techniques, maximum and/or	been length weight averaged and use a cut-off of
methods	minimum grade truncations (e.g. cutting of	>1% either lead, zinc or copper, over a minimum
	high grades) and cut-off grades are usually	intercept length of 1.0m.
	Material and should be stated.	 Assays are reported in their entirety in Appendix
	Where aggregate intercepts incorporate	3.
	short lengths of high-grade results and	
	longer lengths of low-grade results, the	
	procedure used for such aggregation should	
	be stated and some typical examples of such	
	aggregations should be shown in detail.	
	The assumptions used for any reporting of	 Metal equivalents have not been used.
	metal equivalent values should be clearly	
	stated.	
Relationship	- These relationships are particularly	 Due to the absence of the use of orientated core,
between	important in the reporting of Exploration	true widths of the mineralisation reported for the
mineralisation	Results.	historic drilling data has not been estimated.
widths and	- If the geometry of the mineralisation with	 Interval widths reported refer to downhole
intercept	respect to the drill hole angle is known, its	length.
lengths	nature should be reported.	
	- If it is not known and only the down hole	
	lengths are reported, there should be a clear	
	statement to this effect (e.g. 'down hole	
	length, true width not known').	
Diagrams	Appropriate maps and sections (with scales)	 Refer to Figures 1, 5 and 7.
	and tabulations of intercepts should be	
	included for any significant discovery being	
	reported These should include, but not be	
	limited to a plan view of drill hole collar	
	locations and appropriate sectional views.	
Balanced	Where comprehensive reporting of all	 All assay data that has been identified is reported
reporting	Exploration Results is not practicable,	in Appendix 3.
	representative reporting of both low and	
	high grades and/or widths should be	
	practiced to avoid misleading reporting of	
	Exploration Results.	
Other	Other exploration data, if meaningful and	 The drill core stored on site is from underground
substantive	material, should be reported including (but	and surface mine development drilling. No details
exploration	not limited to): geological observations;	on this drill core have been identified at the time of
data	geophysical survey results; geochemical	writing, therefore no comment can be made as to
	survey results; bulk samples – size and	whether it is meaningful.
	method of treatment; metallurgical test	 Regional aeromagnetic data was acquired by the
	results; bulk density, groundwater,	Greenland government and covers the licence area.
	geotechnical and rock characteristics;	It was flown at 400m line spacing, and altitude of
	potential deleterious or contaminating	approximately 300m.
	substances.	

Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 The Company intends to acquire high-resolution (100m line spacing) aeromagnetic data to have tighter control on fault locations. This is deemed essential due to mineralisation being fault controlled. Diamond drilling of known targets identified in the gravity survey, surface sampling and historic diamond drilling is also proposed to occur.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	• Refer to Figures 1, 5 and 7.

Appendix 3 - Surface sampling

DETAILS F SURFACE SAMPLING AT THE MESTERVIG PROJECT

Sample ID	Easting	Northing	Year	Ag g/t	Al2O3	As %	CaO %	Co %	Cr %	Cu %	Fe %	Fe2O3 %
4951	597,800	8,012,023	2020	<100	N.A.	N.A.	N.A.	< 0.001	N.A.	<0.01	N.A.	N.A.
4952	597,800	8,012,025	2020	<100	N.A.	N.A.	N.A.	<0.001	N.A.	<0.01	N.A.	N.A.
4953	597,803	8,011,905	2020	<100	N.A.	N.A.	N.A.	< 0.001	N.A.	< 0.01	N.A.	N.A.
4954	601,451	8,002,654	2020	<100	N.A.	N.A.	N.A.	0.001	N.A.	0.03	N.A.	N.A.
4955	601,448	8,002,662	2020	<100	N.A.	N.A.	N.A.	0.004	N.A.	< 0.01	N.A.	N.A.
4956	601,427	8,002,691	2020	<100	N.A.	N.A.	N.A.	< 0.001	N.A.	6.96	N.A.	N.A.
4957	601,427	8,002,697	2020	<100	N.A.	N.A.	N.A.	0.004	N.A.	0.03	N.A.	N.A.
4958	605,732	8,007,379	2020	236	N.A.	N.A.	N.A.	< 0.001	N.A.	0.91	N.A.	N.A.
4959	605,730	8,007,381	2020	282	N.A.	N.A.	N.A.	< 0.001	N.A.	0.77	N.A.	N.A.
4960	597,645	8,005,944	2020	<100	N.A.	N.A.	N.A.	< 0.001	N.A.	< 0.01	N.A.	N.A.
NG001	605,901	8,007,165	2011	N.A.	1.37	0.01	<0.05	< 0.002	0.04	0.15	3.53	5.04
NG002	605,864	8,007,241	2011	N.A.	0.75	0.01	0.06	0.002	0.14	7.05	8.44	12.05
NG003	605,869	8,007,245	2011	N.A.	1.45	<0.01	0.15	< 0.002	0.03	2.90	3.14	4.49
NG004	605,870	8,007,230	2011	N.A.	1.88	<0.01	0.12	<0.002	0.03	1.76	3.15	4.51

Sample ID	Easting	Northing	Year	К%	MgO %	MnO %	Ni %	Pb %	S %	SiO2 %	TiO2 %	Zn %
4951	597,800	8,012,023	2020	N.A.	N.A.	N.A.	< 0.001	0.02	<0.1	N.A.	N.A.	0.270
4952	597,800	8,012,025	2020	N.A.	N.A.	N.A.	< 0.001	0.17	<0.1	N.A.	N.A.	0.800
4953	597,803	8,011,905	2020	N.A.	N.A.	N.A.	< 0.001	< 0.01	<0.1	N.A.	N.A.	0.560
4954	601,451	8,002,654	2020	N.A.	N.A.	N.A.	< 0.001	0.28	4.1	N.A.	N.A.	8.350
4955	601,448	8,002,662	2020	N.A.	N.A.	N.A.	0.004	0.01	0.1	N.A.	N.A.	0.020
4956	601,427	8,002,691	2020	N.A.	N.A.	N.A.	0.002	3.42	6.0	N.A.	N.A.	0.016
4957	601,427	8,002,697	2020	N.A.	N.A.	N.A.	0.034	< 0.01	0.1	N.A.	N.A.	< 0.01
4958	605,732	8,007,379	2020	N.A.	N.A.	N.A.	< 0.001	60.66	7.32	N.A.	N.A.	0.030
4959	605,730	8,007,381	2020	N.A.	N.A.	N.A.	< 0.001	69.47	9.58	N.A.	N.A.	0.030
4960	597,645	8,005,944	2020	N.A.	N.A.	N.A.	< 0.001	0.05	<0.1	N.A.	N.A.	< 0.01
NG001	605,901	8,007,165	2011	0.3	0.07	< 0.01	N.A.	81.00	N.A.	88.2	0.04	8.350
NG002	605,864	8,007,241	2011	0.1	0.03	0.07	N.A.	78.00	N.A.	72.0	0.02	0.020
NG003	605,869	8,007,245	2011	0.3	0.04	0.01	N.A.	87.00	N.A.	90.3	0.05	0.016
NG004	605 <i>,</i> 870	8,007,230	2011	0.4	0.04	0.13	N.A.	82.00	N.A.	91.8	0.13	<0.01

Appendix 2 - Collar details

FULL COLLAR DETAILS OF 19 HISTORIC SURFACE DRILL-HOLES AT THE MESTERSVIG PROJECT

Hole ID	Prospect	Company	Year	Easting	Northing	RL	Dip	Azimuth	Depth (m)
BH001	Sortebjerg	Nordisk Mineselskab	1952	601,944	8,001,753	255	<u> </u>	248	167.40
BH002	Sortebjerg	Nordisk Mineselskab	1952	601,920	8,001,801	255	-45	248	160.90
BH003	Sortebjerg	Nordisk Mineselskab	1952	601,875	8,001,722	275	-45	248	66.49
BH004	Sortebjerg	Nordisk Mineselskab	1952	601,839	8,001,763	280	-45	248	67.47
BH005	Sortebjerg	Nordisk Mineselskab	1952	602,146	8,001,190	149	-50	248	92.04
BH006	Sortebjerg	Nordisk Mineselskab	1952	601,525	8,002,564	190	-50	248	57.11
BH007	Sortebjerg	Nordisk Mineselskab	1952	602,680	8,000,236	30	-55	248	78.30
BH008	Sortebjerg	Nordisk Mineselskab	1952	601,546	8,002,520	200	-50	248	67.70
BH010	Sortebjerg	Nordisk Mineselskab	1952	601,575	8,002,478	210	-50	248	82.04
BH012	Sortebjerg	Nordisk Mineselskab	1952	601,605	8,002,433	220	-50	248	76.09
BH014	Sortebjerg	Nordisk Mineselskab	1952	601,628	8,002,384	230	-55	248	74.55
BH016	Sortebjerg	Nordisk Mineselskab	1952	601,627	8,002,443	220	-65	248	96.00
BK001	Blyklippen	Ironbark Zinc Ltd	2011	597,800	8,012,381	415	-67	233	396.50
BK002	Blyklippen	Ironbark Zinc Ltd	2011	597,800	8,012,381	415	-57	212	362.00
BK003	Blyklippen	Ironbark Zinc Ltd	2011	598,081	8,011,977	335	-57	264	364.60
BK003A	Blyklippen	Ironbark Zinc Ltd	2011	598,081	8,011,977	335	-55	249	36.00
SB017	Sortebjerg	Ironbark Zinc Ltd	2011	601,451	8,002,671	214	-50	220	47.00
SB018	Sortebjerg	Ironbark Zinc Ltd	2011	601,451	8,002,671	214	-70	220	80.00
SB019	Sortebjerg	Ironbark Zinc Ltd	2011	601,374	8,002,855	245	-70	220	122.00

Appendix 3 - Assay Details

FULL ASSAY DETAILS OF 19 HISTORIC SURFACE DRILL-HOLES AT THE MESTERSVIG PROJECT

N.A = Not assayed.

N.R. = No record.

1	HoleID	Sample_id	From	То	Туре	Al2O3 %	As %	CaO %	Co %	Cr %	Cu %	Fe %	Fe2O3 %	K %
	BH001	Nr34	40.00	41.38	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH001	Nr35	41.38	42.27	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH001	Nr36	42.27	43.95	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH001 BH001	Nr37 Nr38	43.95 132.52	45.17 133.40	N.R. N.R.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
	BH001	Nr39	137.30	138.00	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH002	Nr40	122.75	123.60	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH002	Nr41	123.60	124.30	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH002	Nr42	128.75	130.04	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH002 BH003	Nr43 Nr01	130.50 13.15	130.85 14.20	N.R. N.R.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
	BH003	Nr01	17.30	17.45	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH003	Nr03	17.60	18.10	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH003	Nr04	21.57	22.52	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH003	Nr05	51.26	51.50	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH003 BH003	Nr06 Nr07	51.85 52.83	52.83 53.20	N.R. N.R.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	0	N.A. N.A.	N.A. N.A.	N.A. N.A.
	BH003	Nr08	53.20	54.12	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	0.27	N.A.	N.A.	N.A.
	BH003	Nr09	54.12	55.30	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	0.26	N.A.	N.A.	N.A.
	BH003	Nr10	55.30	55.80	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	0	N.A.	N.A.	N.A.
	BH004	Nr11	38.40	38.80	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH004 BH006	Nr12 Nr13	39.48 33.38	39.75 33.60	N.R. N.R.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. 0.27	N.A. N.A.	N.A. N.A.	N.A. N.A.
	BH006	Nr14	35.89	36.10	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	0.27	N.A.	N.A.	N.A.
	BH006	Nr15	36.48	36.60	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH006	Nr16	37.70	38.00	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	0.19	N.A.	N.A.	N.A.
	BH008	Nr17	33.77	34.17	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	0.49	N.A.	N.A.	N.A.
	BH008 BH010	Nr18 Nr19	34.17 40.20	34.63 40.95	N.R. N.R.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	0.17 0.71	N.A. N.A.	N.A. N.A.	N.A. N.A.
	BH010 BH010	Nr20	40.20	40.93	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	0.95	N.A.	N.A.	N.A.
	BH010	Nr21	43.92	44.52	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH010	Nr22	56.10	58.13	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH010	Nr23	58.13	59.92	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH010 BH010	Nr24 Nr25	59.92 61.30	61.30 61.90	N.R. N.R.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
	BH010 BH010	Nr26	61.90	62.95	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH010	Nr27	62.95	64.00	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH010	Nr28	64.00	65.67	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH010	Nr29	66.99	67.97	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH012 BH012	Nr30	43.16	43.48	N.R.	N.A.	N.A. N.A.	N.A.	N.A.	N.A. N.A.	N.A. 6.6	N.A. N.A.	N.A. N.A.	N.A.
	BH012 BH012	Nr31 Nr32	46.15 47.55	47.55 48.40	N.R. N.R.	N.A. N.A.	N.A.	N.A. N.A.	N.A. N.A.	N.A.	0.21	N.A.	N.A.	N.A. N.A.
	BH012	Nr33	48.40	49.25	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	BH016	Nr44	91.01	91.91	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	5.37	N.A.	N.A.	N.A.
	BH016	Nr45	92.35	92.45	N.R.	N.A.	N.A.	N.A.	N.A.	N.A.	1.93	N.A.	N.A.	N.A.
	BH016 BK001	Nr46 BK001	94.22 280.30	94.74 280.70	N.R. Half BQ	N.A. 2.88	N.A. 0.01	N.A. 1.27	N.A. 0.002	N.A. 0.02	0.1	N.A. 0.32	N.A. 0.46	N.A. 0.6
	BK001 BK001	BK001 BK002	280.30	280.70	Half BQ	10.65	0.01	0.11	0.002	0.02	0.027	0.52	0.46	2.3
	BK001	BK003	304.60	305.00	Half BQ	2.99	0.01	0.13	0.002	0.02	0.005	0.26	0.37	0.6
	BK002	BK004	321.90	322.90	Half BQ	0.69	0.01	0.39	0.002	0.02	0.01	0.2	0.28	0.1
	BK003	BK005	263.00	263.30	Half BQ	1.81	0.01	0.38	0.002	0.02	0.005	0.29	0.41	0.4
	BK003	BK006	263.30	263.70	Half BQ	4.13	0.01	0.19	0.002	0.02	0.005	0.26	0.37	0.9
	BK003 BK003	BK007 BK008	263.70 264.10	264.10 264.40	Half BQ Half BQ	2.37 0.67	0.01	2.65 3.25	0.002	0.01	0.069	0.32	0.46	0.5
	BK003	BK009	264.40	265.40	Half BQ	8.41	0.01	0.93	0.002	0.02	0.005	0.4	0.58	1.8
	BK003	BK010	269.00	269.30	Half BQ	0.38	0.01	30.1	0.002	0.01	0.006	0.66	0.95	0.1
	BK003	BK011	289.70	290.40	Half BQ	0.94	0.01	1.73	0.002	0.02	0.013	0.4	0.57	0.2
	BK003 BK003	BK012 BK013	290.40 290.80	290.80 291.80	Half BQ Half BQ	2.95 0.97	0.01	1.41 1.6	0.002	0.02	1.25 0.027	1.43 0.53	2.04 0.76	0.6
	BK003	BK015 BK014	290.80	291.80	Half BQ	2.88	0.01	3.03	0.002	0.02	0.627	1.46	2.09	0.2
	SB017	SB001	5.80	6.45	Half BQ	6.15	0.01	1.21	0.002	0.01	0.011	0.42	0.6	1.4
	SB017	SB002	6.45	7.25	Half BQ	6.58	0.01	1.84	0.002	0.04	0.005	0.44	0.63	1.6
	SB017	SB003	7.25	8.25	Half BQ	6.73	0.01	1.86	0.002	0.02	0.006	0.42	0.61	1.5
	SB017	SB004	8.25	9.15	Half BQ	2.58	0.01	1.44	0.004	0.01	0.088	0.63	0.9	0.6
	SB017 SB017	SB005 SB006	9.15 9.75	9.75 10.75	Half BQ Half BQ	3.06 0.59	0.01	3.84 0.1	0.002	0.03	0.03	0.46	0.65 0.74	0.7
	SB017 SB017	SB000	10.75	11.75	Half BQ	8.81	0.01	0.55	0.004	0.02	0.001	0.51	0.83	1.9
	SB018	SB008	6.40	6.90	Half BQ	5.13	0.01	0.62	0.004	0.02	0.059	0.92	1.32	1.2
	SB018	SB009	20.80	21.80	Half BQ	11.15	0.01	4.68	0.002	0.01	0.005	3.58	5.11	2.3
	SB018	SB010	21.80	22.80	Half BQ	2.21	0.01	0.56	0.007	0.02	0.016	0.49	0.7	0.5
	SB018 SB019	SB011 SB012	22.80 53.00	23.80 53.80	Half BQ Half BQ	11.7 9.15	0.01	0.37	0.007	0.02	0.005	1.02 0.54	1.45 0.77	2.6 1.8
	SB019 SB019	SB012 SB013	53.00	53.80	Half BQ	9.15	0.01	0.09	0.002	0.02	0.005	0.54	0.77	0.3
	SB019	SB013	54.30	54.80	Half BQ	4.65	0.01	0.83	0.003	0.02	0.005	0.71	1.01	1
	SB019	SB015	54.80	55.60	Half BQ	6.03	0.01	1.11	0.002	0.02	0.005	0.94	1.35	1.5
	SB019	SB017	60.70	61.10	Half BQ	1.14	0.01	1.2	0.002	0.02	0.137	0.39	0.55	0.2
	SB019	SB018	61.80	62.10	Half BQ	0.51	0.01	0.15	0.003	0.02	0.109	0.43	0.61	0.1
	SB019	SB019	84.20	84.60	Half BQ	1.03	0.01	8.72	0.003	0.02	0.047	0.83	1.19	0.2

HoleID	Sample_id	From	То	Туре	MgO %	MnO %	Ni %	Pb %	S %	SiO2 %	TiO2 %	Zn %	Au g/t	Ag g/t
BH001	Nr34	40.00	41.38	N.R.	N.A.	N.A.	N.A.	0.02	1.7	N.A.	N.A.	2.33	N.A.	N.A.
BH001	Nr35	41.38	42.27	N.R.	N.A.	N.A.	N.A.	10.2	12.4	N.A.	N.A.	29.9	N.A.	N.A.
BH001	Nr36	42.27	43.95	N.R.	N.A.	N.A.	N.A.	0.02	0.2	N.A.	N.A.	2.74	N.A.	N.A.
BH001	Nr37	43.95	45.17	N.R.	N.A.	N.A.	N.A.	0.02	14.4	N.A.	N.A.	25.1	N.A.	N.A.
BH001	Nr38	132.52	133.40	N.R.	N.A.	N.A.	N.A.	0.2	11.5	N.A.	N.A.	21.7	N.A.	N.A.
BH001	Nr39	137.30	138.00	N.R.	N.A.	9.71	N.A.	N.A.						
BH002	Nr40	122.75	123.60	N.R.	N.A.	N.A.	N.A.	0.02	1.7	N.A.	N.A.	2.5	N.A.	N.A.
BH002	Nr41	123.60	124.30	N.R.	N.A.	N.A.	N.A.	0.03	16.6	N.A.	N.A.	32.1	N.A.	N.A.
BH002	Nr42	128.75	130.04	N.R.	N.A.	N.A.	N.A.	0.03	0.3	N.A.	N.A.	0.23	N.A.	N.A.
BH002	Nr43	130.50	130.85	N.R.	N.A.	N.A.	N.A.	0.02	0.6	N.A.	N.A.	0.6	N.A.	N.A.
BH003	Nr01	13.15	14.20	N.R.	N.A.	N.A.	N.A.	N.A.	3.3	N.A.	N.A.	7.13	N.A.	N.A.
BH003	Nr02	17.30	17.45	N.R.	N.A.	N.A.	N.A.	N.A.	4.6	N.A.	N.A.	9.56	N.A.	N.A.
BH003	Nr03	17.60	18.10	N.R.	N.A.	N.A.	N.A.	N.A.	6.8	N.A.	N.A.	14.1	N.A.	N.A.
BH003	Nr04	21.57	22.52	N.R.	N.A.	N.A.	N.A.	0.02	3.3	N.A.	N.A.	7.15	N.A.	N.A.
BH003	Nr05	51.26	51.50	N.R.	N.A.	N.A.	N.A.	N.A.	5	N.A.	N.A.	10	N.A.	N.A.
BH003	Nr06	51.85	52.83	N.R.	N.A.	N.A.	N.A.	0	1	N.A.	N.A. N.A.	1.71	N.A.	N.A.
BH003	Nr07	52.83	53.20 54.12	N.R.	N.A. N.A.	N.A. N.A.	N.A. N.A.	4.16 3.84	1 6.7	N.A. N.A.	N.A.	0.75	N.A. N.A.	N.A. N.A.
BH003 BH003	Nr08 Nr09	53.20 54.12	55.30	N.R. N.R.	N.A.	N.A.	N.A.	0.05	4.3	N.A.	N.A.	7.95	N.A.	N.A.
BH003	Nr10	55.30	55.80	N.R.	N.A.	N.A.	N.A.	0.03	4.5	N.A.	N.A.	26.8	N.A.	N.A.
BH003	Nr11	38.40	38.80	N.R.	N.A.	N.A.	N.A.	N.A.	2.8	N.A.	N.A.	8.08	N.A.	N.A.
BH004	Nr11 Nr12	39.40	38.80	N.R.	N.A.	N.A.	N.A.	N.A.	2.8	N.A.	N.A.	4.62	N.A.	N.A.
BH004	Nr13	33.38	33.60	N.R.	N.A.	N.A.	N.A.	N.A.	2.3	N.A.	N.A.	4.02	N.A.	N.A.
BH006	Nr14	35.89	36.10	N.R.	N.A.	N.A.	N.A.	N.A.	17.8	N.A.	N.A.	33.1	N.A.	N.A.
BH006	Nr15	36.48	36.60	N.R.	N.A.	N.A.	N.A.	N.A.	14.5	N.A.	N.A.	26.9	N.A.	N.A.
BH006	Nr16	37.70	38.00	N.R.	N.A.	N.A.	N.A.	4.44	7.6	N.A.	N.A.	13.1	N.A.	N.A.
BH008	Nr17	33.77	34.17	N.R.	N.A.	N.A.	N.A.	N.A.	3.8	N.A.	N.A.	5.37	N.A.	N.A.
BH008	Nr18	34.17	34.63	N.R.	N.A.	N.A.	N.A.	N.A.	7.1	N.A.	N.A.	13.7	N.A.	N.A.
BH010	Nr19	40.20	40.95	N.R.	N.A.	N.A.	N.A.	4.39	7.9	N.A.	N.A.	11.6	N.A.	N.A.
BH010	Nr20	40.95	41.75	N.R.	N.A.	N.A.	N.A.	10.1	17	N.A.	N.A.	24.4	N.A.	N.A.
BH010	Nr21	43.92	44.52	N.R.	N.A.	N.A.	N.A.	0.03	8.4	N.A.	N.A.	15.7	N.A.	N.A.
BH010	Nr22	56.10	58.13	N.R.	N.A.	0.07	N.A.	N.A.						
BH010	Nr23	58.13	59.92	N.R.	N.A.	0.15	N.A.	N.A.						
BH010	Nr24	59.92	61.30	N.R.	N.A.	0.55	N.A.	N.A.						
BH010	Nr25	61.30	61.90	N.R.	N.A.	0.16	N.A.	N.A.						
BH010	Nr26	61.90	62.95	N.R.	N.A.	0.09	N.A.	N.A.						
BH010	Nr27	62.95	64.00	N.R.	N.A.	0.14	N.A.	N.A.						
BH010	Nr28	64.00	65.67	N.R.	N.A.	0.95	N.A.	N.A.						
BH010	Nr29	66.99	67.97	N.R.	N.A.	0.09	N.A.	N.A.						
BH012	Nr30	43.16	43.48	N.R.	N.A.	N.A.	N.A.	19	18.4	N.A.	N.A.	29.4	N.A.	N.A.
BH012	Nr31	46.15	47.55	N.R.	N.A.	N.A.	N.A.	0.89	12.2	N.A.	N.A.	8.98	N.A.	N.A.
BH012	Nr32	47.55	48.40	N.R.	N.A.	N.A.	N.A.	1.57	4	N.A.	N.A.	6.35	N.A.	N.A.
BH012	Nr33	48.40	49.25	N.R.	N.A.	N.A.	N.A.	27.8	18.4	N.A.	N.A.	24.9	N.A.	N.A.
BH016	Nr44	91.01	91.91	N.R.	N.A.	N.A.	N.A.	0.03	6.6	N.A.	N.A.	1.98	N.A.	N.A.
BH016 BH016	Nr45 Nr46	92.35 94.22	92.45 94.74	N.R. N.R.	N.A. N.A.	N.A. N.A.	N.A. N.A.	1.35 1.17	17.5 6.9	N.A. N.A.	N.A. N.A.	26.2 12	N.A. N.A.	N.A. N.A.
BH016 BK001	BK001	280.30	280.70	Half BQ	0.14	0.03	0.005	2.33	3.26	58.2	0.12	0.02	0.01	4.2
BK001	BK001 BK002	280.30	280.70	Half BQ	0.14	0.03	0.005	1.29	0.54	71.3	0.12	0.02	0.01	1.3
BK001	BK002 BK003	304.60	305.00	Half BQ	0.07	0.01	0.005	0.01	0.34	85.5	0.15	1.52	0.01	0.2
BK001 BK002	BK003	321.90	322.90	Half BQ	0.01	0.01	0.005	0.01	1.79	84.8	0.02	3.66	0.01	0.2
BK002 BK003	BK004 BK005	263.00	263.30	Half BQ	0.01	0.01	0.005	1.05	2.98	78.2	0.02	5.03	0.01	1.9
BK003	BK005	263.30	263.70	Half BQ	0.14	0.01	0.005	0.01	0.37	62.7	0.22	0.69	0.01	0.2
BK003	BK007	263.70	264.10	Half BQ	0.08	0.05	0.005	16.2	9.72	36.8	0.12	14.45	0.02	20.9
BK003	BK008	264.10	264.40	Half BQ	0.01	0.06	0.005	0.53	2.77	37.4	0.04	2.6	0.01	2
BK003	BK009	264.40	265.40	Half BQ	0.22	0.02	0.005	0.11	0.75	74.1	0.39	0.44	0.01	0.5
BK003	BK010	269.00	269.30	Half BQ	0.17	0.21	0.005	1.46	1.43	33.8	0.03	2.42	0.01	1.4
BK003	BK011	289.70	290.40	Half BQ	0.19	0.02	0.005	0.01	0.17	87	0.04	0.25	0.01	0.2
BK003	BK012	290.40	290.80	Half BQ	0.17	0.02	0.005	0.03	1.52	79.5	0.12	0.51	0.01	3.7
BK003	BK013	290.80	291.80	Half BQ	0.29	0.03	0.005	0.01	0.5	83.5	0.04	0.92	0.01	0.3
BK003	BK014	296.00	296.40	Half BQ	0.66	0.05	0.005	0.66	0.96	78.1	0.12	0.09	0.01	3.4
SB017	SB001	5.80	6.45	Half BQ	0.26	0.01	0.005	0.01	0.26	83.3	0.3	0.46	0.03	8.1
SB017	SB002	6.45	7.25	Half BQ	0.27	0.01	0.005	0.05	0.17	83.5	0.34	0.14	0.01	0.6
SB017	SB003	7.25	8.25	Half BQ	0.25	0.02	0.005	0.05	0.22	82.7	0.34	0.14	0.01	0.8
SB017	SB004	8.25	9.15	Half BQ	0.21	0.01	0.005	0.01	9.55	62.6	0.14	19.75	0.01	3.7
SB017	SB005	9.15	9.75	Half BQ	0.19	0.02	0.005	0.01	0.2	85.3	0.12	0.18	0.01	0.2
SB017	SB006	9.75	10.75	Half BQ	0.04	0.01	0.005	0.01	11.2	62.3	0.02	22.4	0.01	4.2
SB017	SB007	10.75	11.75	Half BQ	0.41	0.01	0.008	0.05	0.2	75.2	0.45	0.1	0.01	0.2
SB018	SB008	6.40	6.90	Half BQ	0.18	0.01	0.005	0.01	6.19	65.1	0.21	11.45	0.01	5.4
SB018	SB009	20.80	21.80	Half BQ	2.08	0.1	0.005	0.02	0.42	57.1	1.63	0.28	0.01	0.2
SB018	SB010	21.80	22.80	Half BQ	0.2	0.01	0.019	0.22	8.53	63.2	0.12	17.95	0.01	4.2
SB018	SB011	22.80	23.80	Half BQ	0.59	0.01	0.008	0.12	0.33	68.1	0.58	0.02	0.01	0.7
SB019	SB012	53.00	53.80	Half BQ	0.25	0.01	0.005	0.11	0.51	74.1	0.47	0.45	0.01	0.4
SB019	SB013	53.80	54.30	Half BQ	0.02	0.01	0.005	0.01	15.65	44.1	0.06	32.88	0.02	4.9
SB019 SB019	SB014	54.30	54.80 55.60	Half BQ	0.2	0.01	0.006	0.01 0.05	1.29 0.82	79.7 80.6	0.2	1.77	0.01	0.6
SB019 SB019	SB015 SB017	54.80 60.70	55.60 61.10	Half BQ Half BQ	0.16	0.02	0.005	2.03	0.82	80.6 84.9	0.24	0.03	0.01	0.3 7.1
SB019 SB019	SB017 SB018	61.80	62.10	Half BQ Half BQ	0.07	0.02	0.005	0.01	2.88	84.9 78.8	0.04	5.65	0.01	2.8
SB019 SB019	SB018 SB019	84.20	62.10 84.60	Half BQ Half BQ	0.02	0.01	0.005	0.01	2.88	78.8	0.02	13.35	0.01	2.8 5.7
28019	20013	04.20	04.00	Hall BQ	0.39	0.07	0.005	0.01	0.57	55.5	0.05	10.30	0.01	J./