19th April 2021 ASX ANNOUNCEMENT

Major Zinc-Lead Discovery at Earaheedy Project Western Australia

Chinook Prospect

 26 drill holes out of 26 intersected visual Zn-Pb mineralisation, 2 holes fast tracked (EHRC050 and EHRC044) have been received confirming a Major Zinc-Lead Discovery

RC Drill Hole EHRC050

- 34m @ 4.22% Zn + Pb from 66m Vertical Hole (True Width)
 - Includes 17m @ 6.65 % Zn + Pb from 73m

With higher grade core zone of

• 14m @ 5.02% Zn, 2.03% Pb (7.05% Zn + Pb) from 76m

RC Drill Hole EHRC044

- 21m @ 4.31% Zn + Pb from 61m Vertical Hole (True Width)
 - Includes 10m @ 5.02 % Zn + Pb from 67m
- Strong continuity of mineralisation EHRC050 and EHRC044 are 500m apart
- Mineralisation is pyrite-sphalerite-galena (sulphide) hosted in siltstone, shale, marl and minor sandstone (basal unit of the Frere Iron Formation)
- The mineralisation is shallow, flat lying, dipping to the northeast open pittable
 - The ratio of Zn:Pb is approximately 3:1 with strongly anomalous Ag (silver) associated with the mineralisation

Large Scale Zn-Pb-Ag 'Tier 1' Deposit Potential at Chinook

- Assays for the remaining twenty-four (24) RC drill holes at Chinook are pending. **Of note**: All holes reported visible Zn + Pb mineralisation, aided by pXRF analysis
- The RC drilling has defined the following mineralisation parameters:
- RC Drill Grid Design 5 drill lines x 500m x 100m intersecting Zinc-Lead over 2km's of strike and over 1.1km's of width (limited to drilling grid) – Open in all directions
- o RC Drilling results indicate true thickness is up to 34m vertical holes
- The Chinook Prospect has the potential to be at the upper end of the existing exploration target for a large-scale, shallow and continuous open-pit deposit

Of note: Prospective mineralised zone has over 45km of strike

Rumble Resources Ltd

Suite 9, 36 Ord Street, West Perth, WA 6005

T +61 8 6555 3980

F +61 8 6555 3981

rumbleresources.com.au

ASX RTR

Executives & Management

Mr Shane Sikora Managing Director

Mr Brett Keillor Technical Director

Mr Matthew Banks Non-executive Director

Mr Michael Smith Non-executive Director

Mr Steven Wood Company Secretary

Mr Mark Carder Exploration Manager

Rumble Resources Limited (ASX: RTR) ("Rumble" or "the Company") is pleased to announce that the assay results of the two RC drillholes fast tracked (EHRC050 and EHRC044) at the Chinook Prospect have confirmed a Major Zinc-Lead Discovery.

The Chinook Prospect has the potential to be at the upper end of the existing exploration target (refer page six of this announcement) based on the consistent grades (4% - 5% Zn + Pb), the true thickness (up to 34m vertical), the intersection of Zn-Pb over 2km of strike, the width over 1.1km and the mineralisation being open in all directions. Of importance is the shallow nature of the Zinc-Lead mineralisation, which is amenable to large scale open cut mining scenarios.

The results have highlighted the potential for a very large-scale (Tier 1) Zinc-Lead System as the Chinook Prospect drilling has only tested 2km of the 45km of prospective mineralised strike underlining the potential to delineate multiple large tonnage, shallow (open pit) deposits throughout the Earaheedy Project.

Image 1 - Massive Sphalerite (Zinc) - RC Chips - EHRC050 (80 - 81m)

Earaheedy RC Drilling Program - Completed

RC drilling is now completed with the total metreage being 3593m for thirty-three (33) holes.

Rumble fast tracked two drillholes (EHRC050 and EHRC044) for multi-element assays (note not four holes as previously announced in ASX Announcement 8th April 2021).

Chinook Prospect – twenty-six (26) holes for 2653m:

- Two RC holes have been assayed (EHRC050 and EHRC044). Twenty-four (24) holes have assays pending
- Drilling at Chinook is on 500m by 100m spacing with 5 traverses completed testing >2000m of strike (see image 4)
- Magazine Prospect seven (7) holes for 940m:
 - All assays are pending
 - Drilling at Magazine was designed to test for potential strike vectors associated with mineralisation defined in 2020 by Rumble. EHRC034(2020) previously returned 12m @ 4.48% Zn + Pb from 88m announced 4th May 2020

Chinook Drill Results – Major Discovery

EHRC050 (Image 2)

- 34m @ 4.22% Zn + Pb from 66m (True Width 1% Zn + Pb cut-off)
 - Includes 17m @ 6.65 % Zn + Pb from 73m

With higher grade core zone of

• 14m @ 5.02% Zn, 2.03% Pb (7.05% Zn + Pb) from 76m

Mineralisation (sulphide) comprises of pyrite-sphalerite-galena with pervasive low temperature silica alteration (crypto-crystalline) hosted in variable siltstone, shale, marl and minor sandstone. The sulphide mineralisation is generally coarse grained with the sphalerite being a low Fe type (yellow – red colour). Associated with the mineralisation is Ag (silver). EHRC050 lies on Section 2 (see image 4 and 5) on 100m spacing between drill holes EHRC054 and EHRC060 (assays pending).

EHRC044 (Image 3)

• 21m @ 4.31% Zn + Pb from 61m (True Width – 2% Pb + Zn cut-off)

• Includes 10m @ 5.02 % Zn + Pb from 67m

Drill hole EHRC044 was located approximately 500m southeast along strike from drill hole EHRC050. Mineralisation is similar to EHRC044. EHRC044 lies on Section 3 (images 4 and 5).

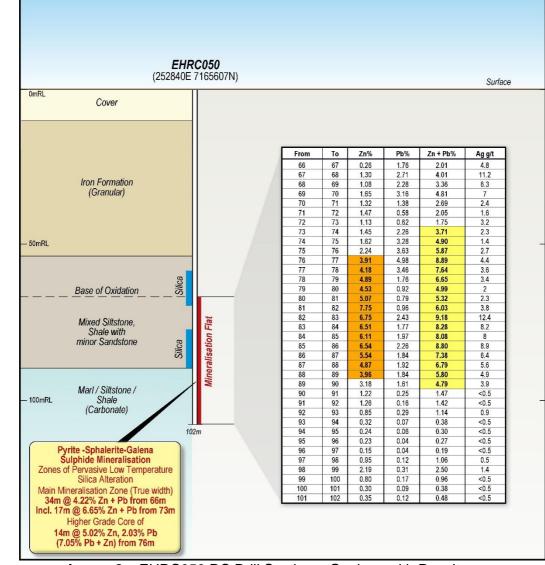


Image 2 - EHRC050 RC Drill Section - Geology with Results

Geology Overview

Mineralisation is interpreted to lie immediately above the unconformity between the overlying Frere Iron Formation and the underlying Yelma Formation. The basal unit to the Frere Iron Formation is a highly variable (multiple facies) siltstone, shale, marl and sandstone (including grit) zone which represents the initial sedimentation cycle (Frere Iron Formation). The unconformity is interpreted as a hiatus (approximately 30 million years) between the underlying Yelma Formation (carbonate dominant - shallow sea shelf environment) and the overlying Frere Iron Formation (clastic and granular iron - shallow fresh water - oxidized environment). The unconformity likely presents a regional scale conduit for metal bearing brines. Multiple late block faults (normal faults – east-west and northwest strike) are interpreted to be north side up which lifts the gently northeast dipping mineralisation closer to the surface allowing for large scale open cut mining.

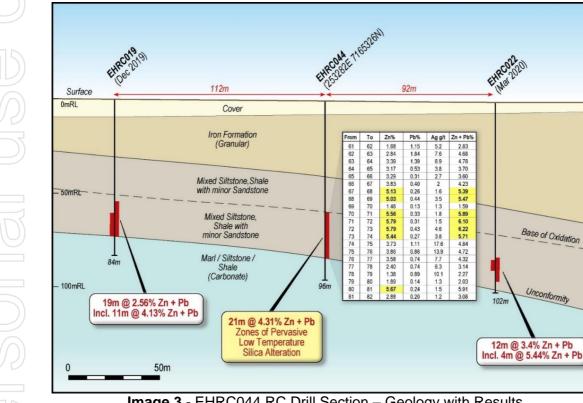


Image 3 - EHRC044 RC Drill Section – Geology with Results

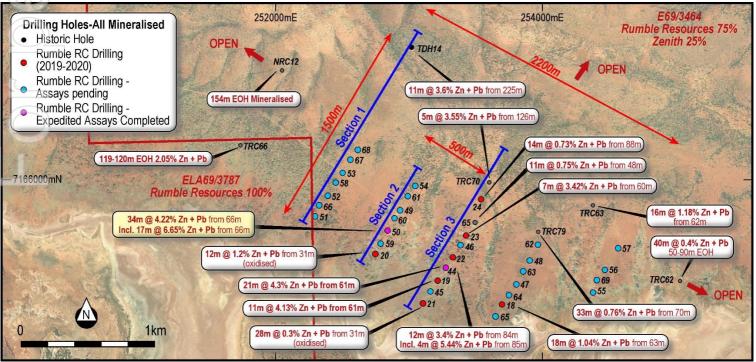


Image 4 – Chinook Prospect – Location Plan with Drill Hole Status and Intersections

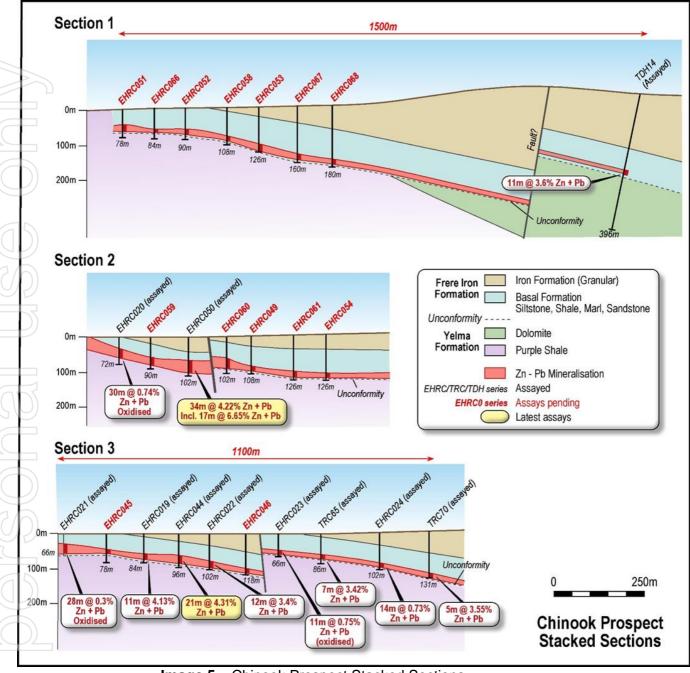


Image 5 – Chinook Prospect Stacked Sections

Chinook Exploration Potential

The expedited assay results for EHRC050 and EHRC044 along with the previous RC drilling completed by Rumble has highlighted the very-large scale of continuous Zn - Pb (with Ag) mineralisation which is completely open along strike and down dip at Chinook. Image 4 presents the drill hole locations (including all holes awaiting assay results in red) and shows that the mineralisation is open to the northwest with two historic drill holes ending in mineralisation (i.e.TRC66 – 119-120 EOH 2.05% Zn + Pb). Hole TRC66 is 750m along strike from Section 1.

The system is open to the southeast (image 4), however, it is interpreted that block faulting has lifted the mineralisation along strike and the zone has moved to the northeast. RC drilling by Rumble has confirmed > 2km of mineralised strike (completely open).

The three sections (image 5) highlight the continuity of mineralisation down dip. Section 1 reported visible Zn-Pb mineralisation in all seven holes (awaiting results) over a down dip length of 600m. To the northeast, historic drill hole TDH14 (11m @ 3.6% Zn + Pb from 225m) is interpreted to be the same mineralisation zone which infers the down dip length to be 1500m.

About Earaheedy Project

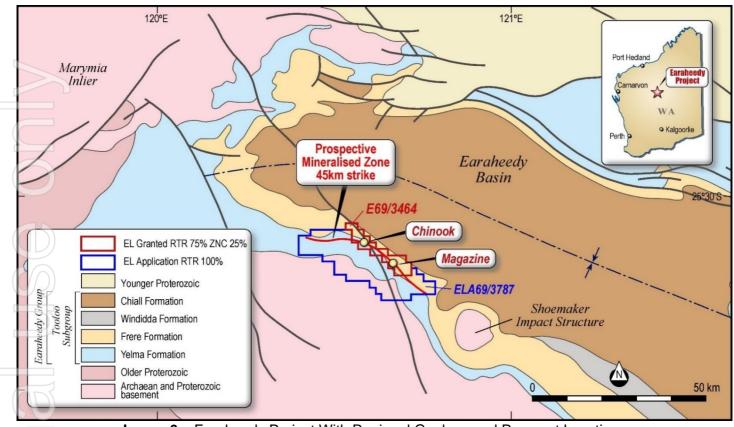


Image 6 - Earaheedy Project With Regional Geology and Prospect Locations

The Earaheedy project is located approximately 110km north of Wiluna, Western Australia. Rumble owns 75% of E69/3464 and Zenith Minerals Ltd (ASX: ZNC) owns 25%. Rumble has a single contiguous exploration license application ELA69/3787 (100% RTR) covering the known strike extent. The project area covers the inferred unconformity contact between the overlying Frere Iron Formation and underlying Yelma Formation of the Palaeoproterozoic Earaheedy Basin.

RC and diamond core drilling by Rumble has defined two areas of significant Zn-Pb mineralisation with anomalous Ag (see image 6). Within EL69/3464, Chinook and Magazine lie 12km apart. Within the project area, Rumble controls 45km of prospective strike which has the potential for multiple large tonnage Zn – Pb deposits.

Exploration Target

Rumble's Zn-Pb exploration target at the Earaheedy Project is between 40 to 100 million tonnes at a grade ranging between 3.5% Zn-Pb to 4.5% Zn-Pb. The exploration target is at a shallow depth (80m), and over 40kms of prospective strike (completely open) has been defined within the Earaheedy Project. The potential quantity and grade of the exploration target is conceptual in nature, there has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The exploration target, being conceptual in nature, takes no account of geological complexity, possible mining method or metallurgical recovery factors. The exploration target has been estimated in order to provide an assessment of the potential for large-scale Zn-Pb deposits within the Earaheedy Project. The exploration target has been prepared and reported in accordance with the 2012 edition of the JORC Code.

Earaheedy Zn-Pb Project – Exploration Target						
Range	Tonnes	Grade				
Upper	100,000,000	4.5% Zn+Pb				
Lower	40,000,000	3.5% Zn+Pb				

 Table 1: Near surface exploration target down to 100 metre - shallow depth

The exploration target is based on the current geological understanding of the mineralisation geometry, continuity of mineralisation and regional geology. This understanding is provided by an extensive drill hole database, regional mapping, coupled with understanding of the host stratigraphic sequence and a feasibility study completed at the nearby Paroo Pb deposit. Included in the data on which this exploration target has been prepared is recent RC drilling of 30 holes for 2690m (three RC stages), 33 holes for 3593m recently completed (assays returned for 2 and 31 holes assays pending) and diamond drilling of 4 holes for 1199.8m completed by Rumble along with 64 historic RC drill holes completed within the project area (E69/3464) by previous explorers (refer historical exploration results in previous ASX announcements dated 5 February 2019 and 12 October 2017, 23rd January 2020 which continue to apply and have not materially changed). Some of the considerations in respect of the estimation of the exploration target include:

- Drilling results have demonstrated strong continuity of shallow, flat lying mineralisation;
- Over 40km's of prospective strike and open (refer image 6);
- Minimum 600m of width (based on shallow 7.5° and shallow depth to 120m, based on drilling results.
- o True width (thickness) of mineralisation up to 34 metres received in drilling results; and
- Specific gravity (SG) of 2.5 (world average SG of sandstone not accounting for metal).

The Company intends to test the exploration target with drilling and this further drilling is expected to extend over approximately 12 months. Grade ranges have been either estimated or assigned from lower and upper grades of mineralisation received in drilling results. A classification is not applicable for an exploration target.

Authorisation

This announcement is authorised for release by Shane Sikora, Managing Director of the Company.

-	Ę	n	d	S	

For further information visit rumbleresources.com.au or contact enquiries@rumbleresources.com.au.

About Rumble Resources Ltd

Rumble Resources Ltd is an Australian based exploration company, officially admitted to the ASX on the 1st July 2011. Rumble was established with the aim of adding significant value to its current mineral exploration assets and will continue to look at mineral acquisition opportunities both in Australia and abroad.

Competent Persons Statement

The information in this report that relates to Exploration Results and the Exploration Target is based on and fairly represents information compiled by Mr Brett Keillor, who is a Member of the Australasian Institute of Mining & Metallurgy and the Australian Institute of Geoscientists. Mr Keillor is an employee of Rumble Resources Limited. Mr Keillor has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Keillor consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Previously Reported Information

The information in this report that references previously reported exploration results is extracted from the Company's ASX market announcements released on the date noted in the body of the text where that reference appears. The previous market announcements are available to view on the Company's website or on the ASX website (www.asx.com.au). The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Disclaimer

This report contains certain forward-looking statements and forecasts, including possible or assumed reserves and resources, production levels and rates, costs, prices, future performance or potential growth of Rumble Resources Ltd, industry growth or other trend projections. Such statements are not a guarantee of future performance and involve unknown risks and uncertainties, as well as other factors which are beyond the control of Rumble Resources Ltd. Actual results and developments may differ materially from those expressed or implied by these forward looking statements depending on a variety of factors. Nothing in this report should be construed as either an offer to sell or a solicitation of an offer to buy or sell securities. This document has been prepared in accordance with the requirements of Australian securities laws, which may differ from the requirements of United States and other country securities laws. Unless otherwise indicated, all ore reserve and mineral resource estimates included or incorporated by reference in this document have been, and will be, prepared in accordance with the JORC classification system of the Australasian Institute of Mining, and Metallurgy and Australian Institute of Geoscientists.

Table 2. RC Drill Hole Location Table All Holes Vertical – GDA94Z51

Hole_ID	Max_Depth	Orig_East	Orig_North	Comment
EHRC040	30	259870	7163469	Water Bore
EHRC041	126	262434	7159980	Magazine
EHRC042	114	262620	7159760	Magazine
EHRC043	102	262103	7159950	Magazine
EHRC044	96	253282	7165326	Chinook
EHRC045	78	253167	7165149	Chinook
EHRC046	118	253389	7165496	Chinook
EHRC047	89	253813	7165202	Chinook
EHRC048	90	253914	7165383	Chinook
EHRC049	108	252934	7165761	Chinook
EHRC050	102	252840	7165608	Chinook
EHRC051	78	252293	7165716	Chinook
EHRC052	90	252386	7165874	Chinook
EHRC053	126	252500	7166047	Chinook
EHRC054	126	253046	7165947	Chinook
EHRC055	96	254390	7165140	Chinook
EHRC056	78	254484	7165313	Chinook
EHRC057	84	254585	7165477	Chinook
EHRC058	108	252449	7165974	Chinook
EHRC059	90	252785	7165510	Chinook
EHRC060	102	252894	7165702	Chinook
EHRC061	126	252990	7165870	Chinook
EHRC062	90	253975	7165502	Chinook
EHRC063	72	253864	7165299	Chinook
EHRC064	90	253757	7165119	Chinook
EHRC065	84	253656	7164960	Chinook
EHRC066	84	252326	7165799	Chinook
EHRC067	160	252559	7166143	Chinook
EHRC068	180	252614	7166224	Chinook
EHRC069	108	254422	7165230	Chinook
EHRC070	144	262214	7160116	Magazine
EHRC071	150	262318	7160291	Magazine
EHRC072	160	262597	7160224	Magazine
EHRC073	144	262743	7159933	Magazine

Table 3. RC Drill Hole EHRC050 Assay Results

Hole ID	mFrom	mTo	Zn_%	Pb_%	Zn+Pb%	Ag_ppm	S_%	As_ppm	Ca_%	Cd_ppm	Cu_ppm	Fe_%	Mg_%	Mn_ppm
EHRC050	0	4	0.01	0.01	0.01	<0.5	0.07	43	0.13	<0.5	24	22.7	0.22	436
EHRC050	4	8	0.00	0.00	0.01	<0.5	0.03	47	0.05	<0.5	25	22.3	0.15	200
EHRC050	8	12	0.00	0.00	0.01	<0.5	0.02	45	0.06	<0.5	23	22.3	0.32	589
EHRC050	12	16	0.01	0.00	0.01	<0.5	0.02	57	0.06	<0.5	15	27.7	0.4	566
EHRC050	16	20	0.00	0.00	0.01	<0.5	0.03	9	0.24	<0.5	12	6.59	0.68	329
EHRC050	20	24	0.00	0.00	0.01	<0.5	0.05	<5	6.66	5.3	7	2.54	4.27	194
EHRC050	24	28	0.02	0.01	0.03	<0.5	0.07	14	12.1	13.8	11	6.3	7.82	507
EHRC050	28 32	32 36	0.10	0.03	0.13	<0.5	0.13	40	0.44	0.7	34 32	17.2	0.52	811 176
EHRC050 EHRC050	32	40	0.05	0.02	0.07	<0.5 <0.5	0.11	33 50	0.07	<0.5 <0.5	63	4.49 9.96	0.23	176
EHRC050	40	40	0.10	0.01	0.11	<0.5	0.09	65	0.08	0.7	194	13.4	0.4	423
EHRC050	40	44	0.13	0.02	0.13	<0.5	0.03	83	0.03	<0.5	216	13.45	0.13	1555
EHRC050	48	52	0.05	0.03	0.08	< 0.5	0.11	32	0.03	<0.5	92	5.18	0.17	1015
EHRC050	52	54	0.06	0.05	0.11	<0.5	0.13	38	0.19	<0.5	96	6.81	0.37	1485
EHRC050	54	55	0.02	0.05	0.07	<0.5	0.13	8	0.05	<0.5	52	1.8	0.57	1515
EHRC050	55	56	0.02	0.04	0.06	<0.5	0.1	9	0.02	<0.5	43	1.14	0.65	1015
EHRC050	56	57	0.09	0.10	0.19	<0.5	0.18	70	0.19	<0.5	219	6.65	0.44	3140
EHRC050	57	58	0.04	0.12	0.15	<0.5	0.15	23	0.06	<0.5	101	2.09	0.59	2510
EHRC050	58	59	0.03	0.07	0.11	<0.5	0.11	20	0.02	<0.5	90	1.65	0.59	757
EHRC050	59	60	0.03	0.15	0.18	<0.5	0.15	17	0.05	<0.5	87	1.54	0.46	441
EHRC050	60	61	0.03	0.12	0.15	<0.5	0.16	15	0.3	<0.5	68	3.21	0.49	1100
EHRC050	61	62	0.02	0.09	0.11	0.5	0.06	19	0.19	<0.5	79	2.52	0.41	372
EHRC050 EHRC050	62 63	63 64	0.01 0.02	0.02	0.04	<0.5 <0.5	0.08	32 49	0.06	<0.5 <0.5	68 79	1.35 1.21	0.28	101 81
EHRC050	64	65	0.02	0.02	0.04	<0.5	0.08	49 35	0.05	<0.5	100	2.07	0.27	156
EHRC050	65	66	0.03	0.03	0.10	0.6	0.13	48	0.00	1.1	180	2.07	0.35	176
EHRC050	66	67	0.26	1.76	2.01	4.8	1.03	48	0.12	9.1	286	3.14	0.53	353
EHRC050	67	68	1.30	2.71	4.01	11.2	8.84	124	0.06	53.5	592	7.16	0.29	47
EHRC050	68	69	1.08	2.28	3.36	6.3	3.16	107	0.06	48.8	200	2.27	0.42	49
EHRC050	69	70	1.65	3.16	4.81	7	3.41	93	0.07	43.5	191	10.3	0.44	11750
EHRC050	70	71	1.32	1.38	2.69	2.4	1.12	38	0.11	24	92	19.25	0.49	24700
EHRC050	71	72	1.47	0.58	2.05	1.6	0.96	49	0.11	24.7	70	24.6	0.57	23500
EHRC050	72	73	1.13	0.62	1.75	3.2	1.91	89	0.08	18.5	104	22.2	0.53	18950
EHRC050	73	74	1.45	2.26	3.71	2.3	2.88	134	0.08	36.2	96	21.3	0.55	17600
EHRC050	74	75	1.62	3.28	4.90	1.4	4.06	218	0.09	40.9	94	20.8	0.5	20400
EHRC050	75	76	2.24	3.63	5.87	2.7	4.49	220	0.09	55.5	86	21.1	0.49	22200 21800
EHRC050 EHRC050	76 77	77 78	3.91 4.18	4.98 3.46	8.89 7.64	4.4 3.6	5.54 4.85	230 236	0.08	100 105	91 80	19.7 21.6	0.5	21800
EHRC050	78	78	4.18	1.76	6.65	3.4	4.85	230	0.12	105	63	21.8	0.51	27400
EHRC050	79	80	4.07	0.92	4.99	2	3.28	261	0.12	73.5	37	21.7	0.49	29500
EHRC050	80	81	4.53	0.79	5.32	2.3	3.47	252	0.15	78.9	46	18.65	0.49	25700
EHRC050	81	82	5.07	0.96	6.03	3.8	4.88	235	0.15	91.6	51	18.4	0.44	24400
EHRC050	82	83	6.75	2.43	9.18	12.4	>10.0	187	0.13	128	181	24.2	0.27	16250
EHRC050	83	84	6.51	1.77	8.28	8.2	>10.0	233	0.13	137	112	15.75	0.39	12800
EHRC050	84	85	6.11	1.97	8.08	8	8.15	246	0.13	123	88	15.25	0.43	16050
EHRC050	85	86	6.54	2.26	8.80	8.9	7.8	258	0.12	153	102	9.54	0.44	8110
EHRC050	86	87	5.54	1.84	7.38	6.4	5.45	174	0.11	193	74	5.8	0.41	4990
EHRC050	87	88	4.87	1.92	6.79	5.6	4.65	167	0.13	165	64 50	6.42	0.47	6710
EHRC050 EHRC050	88 89	89 90	3.96 3.18	1.84 1.61	5.80 4.79	4.9 3.9	3.86 2.66	143 112	0.1	137.5 114.5	50 38	6.04 4.76	0.46	6940 6050
EHRC050 EHRC050	90	90 91	1.22	0.25	1.47	<0.5	0.54	50	8.15	32.4	13	3.53	0.52 5.23	8930
EHRC050	90	91	1.22	0.25	1.47	<0.5	0.34	42	12	26.7	20	4.46	7.35	8550
EHRC050	92	93	0.85	0.10	1.42	0.9	0.75	53	12	20.7	43	3.64	7.33	4540
EHRC050	93	94	0.32	0.07	0.38	<0.5	0.27	56	14.85	7.4	149	1.75	8.95	2820
EHRC050	94	95	0.24	0.06	0.30	<0.5	0.24	29	14.9	6.3	93	1.52	9.05	2460
EHRC050	95	96	0.23	0.04	0.27	<0.5	0.26	41	14	6.7	205	1.42	8.54	2170
EHRC050	96	97	0.15	0.04	0.19	<0.5	0.21	13	14.05	4.6	174	1.39	8.45	2280
EHRC050	97	98	0.95	0.12	1.06	0.5	0.84	18	12.3	24.3	144	1.85	7.41	2790
EHRC050	98	99	2.19	0.31	2.50	1.4	2.21	62	11.2	49.3	130	3.67	6.58	4520
EHRC050	99	100	0.80	0.17	0.96	<0.5	1.02	32	13.9	18.1	35	2.72	8.16	3740
EHRC050	100	101	0.30	0.09	0.38	<0.5	0.48	41	9.6	7.2	129	1.91	5.72	2890
EHRC050	101	102	0.35	0.12	0.48	<0.5	0.5	18	10.55	8.5	45	2.48	6.19	3920

Table 4 RC Drill Hole EHRC044 Assay Results

Hole_ID	mFrom	mTo	Zn_%	Pb_%	Zn+Pb%	Ag_ppm	S_%	As_ppm	Ca_%	Cd_ppm	Cu_ppm	Fe_%	Mg_%	Mn_p
EHRC044	0	4	0.01	0.01	0.02	<0.5	0.06	30	0.15	0.5	29	20	0.5	919
EHRC044	4	8	0.01	0.01	0.01	<0.5	0.05	36	0.03	0.5	22	27.4	0.22	480
EHRC044	8	12	0.04	0.01	0.04	<0.5	0.06	32	0.03	1.2	23	18.8	1.24	1320
EHRC044 EHRC044	12 16	16 20	0.02	0.00	0.02	<0.5 <0.5	0.04	7 9	0.02	<0.5 5.8	10 10	3.52 4.09	0.39	325
EHRC044 EHRC044	20	20	0.02	0.00	0.02	<0.5	0.04	16	9.75	12.9	10	3.68	6.27	572
EHRC044	20	24	0.03	0.01	0.04	<0.5	0.16	28	1.2	3.4	29	7.78	1.23	312
EHRC044	28	30	0.08	0.01	0.09	<0.5	0.13	24	0.6	1.1	17	8.56	0.59	884
EHRC044	30	31	0.08	0.01	0.09	<0.5	0.17	35	0.19	<0.5	14	10.2	0.31	559
EHRC044	31	32	0.07	0.01	0.08	<0.5	0.13	31	0.14	<0.5	11	7.43	0.16	19
EHRC044	32	33	0.03	0.01	0.04	0.5	0.08	14	0.02	<0.5	11	2.79	0.06	130
EHRC044	33	34	0.03	0.02	0.05	<0.5	0.1	11	0.04	<0.5	11	2.84	0.09	13
EHRC044	34	35	0.14	0.03	0.17	<0.5	0.12	129	0.03	<0.5	61	31.5	0.13	199
EHRC044	35	36	0.13	0.03	0.16	<0.5	0.1	100	0.02	<0.5	55	46.2	0.13	195
EHRC044 EHRC044	36	37 38	0.18	0.03	0.21	<0.5	0.17	62	0.04	<0.5	36 14	31.8	0.27	285
EHRC044 EHRC044	37 38	38	0.14	0.01	0.16 0.13	<0.5 <0.5	0.19	25 25	0.03	<0.5 <0.5	14	11.55 14.6	0.62	55
EHRC044 EHRC044	39	40	0.12	0.01	0.13	<0.5	0.15	72	0.02	<0.5	117	33.9	0.48	395
EHRC044	40	40	0.20	0.02	0.27	<0.5	0.13	31	0.02	<0.5	28	26.1	0.57	443
EHRC044	41	42	0.20	0.03	0.23	< 0.5	0.18	33	0.04	<0.5	30	38.1	0.34	732
EHRC044	42	43	0.17	0.02	0.19	<0.5	0.18	21	0.03	<0.5	19	35.3	0.29	308
EHRC044	43	44	0.11	0.01	0.13	<0.5	0.13	14	0.02	<0.5	12	23.9	0.17	147
EHRC044	44	45	0.08	0.01	0.09	<0.5	0.1	15	0.01	<0.5	8	15.3	0.13	108
EHRC044	45	46	0.07	0.03	0.10	<0.5	0.11	14	0.02	<0.5	24	6.86	0.29	92
EHRC044	46	47	0.04	0.05	0.09	<0.5	0.11	15	0.02	<0.5	19	4.92	0.56	114
EHRC044	47	48	0.07	0.10	0.17	<0.5	0.12	29	0.02	<0.5	35	7.86	0.54	405
EHRC044	48 49	49	0.08	0.09	0.17	<0.5 <0.5	0.13	35 36	0.02	0.6	37 39	10.65	0.64	249
EHRC044 EHRC044	49 50	50 51	0.11 0.21	0.08	0.20	<0.5	0.12	36 134	0.02	1.5 3.5	39 59	8.26 17.9	0.58	332 816
EHRC044	51	52	0.21	0.30	0.31	<0.5	0.13	94	0.02	<0.5	41	12.95	0.40	299
EHRC044	52	53	0.21	0.15	0.35	<0.5	0.18	104	0.03	<0.5	57	15.45	0.47	119
EHRC044	53	54	0.27	0.20	0.47	<0.5	0.19	102	0.04	<0.5	65	15.3	0.5	105
EHRC044	54	55	0.22	0.18	0.40	<0.5	0.17	93	0.03	<0.5	56	13.7	0.49	75
EHRC044	55	56	0.42	0.25	0.66	<0.5	0.14	138	0.04	<0.5	83	34.1	0.28	30
EHRC044	56	57	0.36	0.18	0.54	8	0.54	126	0.07	1.6	58	19.5	0.39	29
EHRC044	57	58	0.43	0.22	0.65	6.3	0.37	112	0.04	0.6	50	27.1	0.32	200
EHRC044	58	59	0.42	0.21	0.63	4	0.26	93	0.05	<0.5	65	29.2	0.34	25
EHRC044 EHRC044	59 60	60 61	0.32	0.16	0.48	5.5 4.5	0.32	70 69	0.07	<0.5 11.5	46 64	22.2 13.05	0.36	33
EHRC044 EHRC044	61	62	1.68	1.15	2.83	4.5 5.2	4.02	99	0.05	30.6	72	13.05	0.48	16
EHRC044	62	63	2.84	1.13	4.68	7.6	4.32	200	0.03	54.2	54	6.62	0.72	10
EHRC044	63	64	3.39	1.39	4.78	6.9	3.55	169	0.14	60.3	46	10.7	0.67	692
EHRC044	64	65	3.17	0.53	3.70	3.8	1.64	94	0.18	60.4	24	24	0.53	2470
EHRC044	65	66	3.29	0.31	3.60	2.7	0.64	88	0.19	65.4	21	25	0.49	288
EHRC044	66	67	3.83	0.40	4.23	2	1.5	75	0.2	75.7	18	28.9	0.46	3320
EHRC044	67	68	5.13	0.26	5.39	1.6	0.47	76	0.19	124	12	26.2	0.5	376
EHRC044	68	69	5.03	0.44	5.47	3.5	2.02	114	0.17	122.5	21	25.8	0.54	326
EHRC044	69	70	1.46	0.13	1.59	1.3	0.64	85	0.17	33.9	22	16.8	0.35	952
EHRC044	70	71	5.56	0.33	5.89	1.8	0.58	88	0.21	184	18	22.8	0.5	361
EHRC044 EHRC044	71 72	72 73	5.79 5.79	0.31 0.43	6.10 6.22	1.5 4.6	0.36	57 127	0.24	164.5 164.5	10 27	23.7 25.1	0.54	387 347
EHRC044 EHRC044	72	73	5.79	0.43	5.71	4.6 3.8	1.9	127	0.19	164.5	31	25.1	0.44	347
EHRC044	73	75	3.73	1.11	4.84	17.6	3.78	103	0.10	77.3	40	14.4	0.54	218
EHRC044	75	76	3.86	0.86	4.72	13.9	3.57	91	0.16	74.9	36	15.85	0.69	256
EHRC044	76	77	3.58	0.74	4.32	7.7	2.5	97	0.2	93.1	30	13.55	0.65	233
EHRC044	77	78	2.40	0.74	3.14	6.3	1.9	118	0.15	53.1	28	6.92	0.7	117
EHRC044	78	79	1.38	0.89	2.27	10.1	1.41	124	0.13	26.4	25	2.81	0.67	337
EHRC044	79	80	1.89	0.14	2.03	1.3	0.36	121	0.13	25.5	12	10.6	0.78	162
EHRC044	80	81	5.67	0.24	5.91	1.5	0.36	51	0.19	138.5	8	26.5	0.44	405
EHRC044	81	82	2.88	0.20	3.08	1.2	0.34	120	0.14	75.5	13	12.5	0.57	192
EHRC044 EHRC044	82 83	83 84	0.97	0.06	1.02 1.00	<0.5 <0.5	0.17	65 71	0.11 0.62	27.7 21.6	5 5	4.98 3.79	0.67	787
EHRC044 EHRC044	84	85	0.91	0.08	0.61	0.9	0.35	40	13.55	7.6	6	1.35	8.59	241
EHRC044	85	86	0.49	0.12	0.01	0.9	0.42	40	13.55	6.8	6	1.35	8.67	312
EHRC044	86	87	0.46	0.04	0.50	0.7	0.4	50	15.85	7.3	9	1.21	9.68	209
EHRC044	87	88	0.81	0.08	0.89	1.1	0.52	23	12.85	15	11	2.69	8.15	265
EHRC044	88	89	0.54	0.07	0.60	0.9	0.33	15	13.55	10.1	7	1.56	8.3	265
EHRC044	89	90	0.48	0.05	0.52	0.9	0.29	27	12.4	8.7	9	1.69	7.84	286
EHRC044	90	91	0.16	0.04	0.19	<0.5	0.21	36	10.3	2.7	11	3.83	6.52	190
EHRC044	91	92	0.49	0.04	0.53	0.9	0.42	101	9.36	10.4	59	2.54	6.04	368
EHRC044	92	93	0.25	0.03	0.29	0.7	0.25	21	14.6	4.9	61	1.93	9.09	276
	93	94	0.42	0.06	0.48	1	0.5	127	12.55 4.88	7.8	159	2.12	7.72	311 204
EHRC044 EHRC044	94	95	0.42	0.07	0.48	0.9	0.55	26		7.9	184	3.11	3.31	

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 RC sampling completed on 1m intervals using Metzke Static cone splitter is dry. If wet, sample collected in large polywoven, then allowed to dry for 24 hrs. Sampling was by spear along inside of bag. Weight of sample was on average >2kg. Samples sent to ALS, Malaga, Perth, WA and are being assayed using a four acid digest and read by ICP-AES analytical instrument.
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.)	 RC face hammer sampling (5.5in diameter). Rig used was an Atlas Copco 220 with 1250cfm air and 435psi compressor.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC drilling cuttings were collected as 1 metre intervals with corresponding chip tray interval kept for reference. In general the dry sample versus the wet sample weight did not vary as the wet sample was collected in a polyweave bag which allowed excess water to seep and kept the drill cutting fines intact in the bag.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Each metre was geologically logged with a magsus reading and pXRF reading. All drill cuttings logged.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, 	 Each metre was analysed by a Vanta pXRF. The Vanta used standards (CRM). If the assay response was >1000ppm Zn, a sample (>2kg) was taken and delivered to ALS for wet analysis. Sampling QA/QC involved a duplicate taken every 20m, and a standard taken every 20m. 4 standards (OREAS CRMs) levels and one blank were used randomly.

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain	
	size of the material being sampled.	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The assigned assaying methodolog (4 acid) is total digest. As discussed, the Vanta pXR analyser was used to threshold th collection of samples for we analysis. In addition to Rumbles QA/Q methods (duplicates, standards an blanks), the laboratory has additionation checks.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections reported b company personnel only. No twin holes were completed. Documentation and review ongoing. Prior to final vetting entered into database.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drillhole collars surveyed usin handheld GPS – Datum is MGA9 Zone 51.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 No resource work completed. The drilling is reconnaissance by nature with drill hole spacing on average 500m x 100m apart. Single metre and composites used.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Previous drilling (and historic) has defined a consistent flat lying sedimentary package. Drilling is normal (90°) to the mineralised intersections. True width reported. No bias.
Sample security	The measures taken to ensure sample security.	 All sampling packaging and securit completed by Rumble personnel, from collection of sample to deliver at laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Earaheedy Project comprises of a granted exploration license – E69/3464 (75% Rumble and 25% Zenith Minerals) and one exploration license application ELA69/3787 (100% Rumble) E69/3464 is in a state of good standing and has no known impediments to operate in the area.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Exploration solely completed by Rumble Resources
Geology	 Deposit type, geological setting and style of mineralisation. 	• The Earaheedy Project Deposit type is unconformity related sandstone hosted Zn-Pb type. Also MVT (Mississippi Valley Type) style associated with carbonates has been identified. Current work by Rumble has identified unconformity related sandstone hosted Zn Pb type.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly and the information is does not detract from the understanding of the report, the Competent Person should clearly and the information is information is information. 	 Table 1 – Exploration Target Table 2 – RC Drill Hole Location Table 3 – RC Drill Hole EHRC050 Geology and Results Table 4 – RC Drill Hole EHRC044 Geology and Results ASX – Drilling Commenced at Earaheedy Zinc Project – 25th March 2021
Data aggregation methods	 explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Historic drilling cut-off grades used include: 0.5% Zn 0.5% Zn + Pb >0.1% Zn The Zn:Pb ratio is variable over the project area. On average the Zn:Pb ratio is 3. >0.1% Zn cutoff was used to demonstrated continuity of mineralised trends. Note – exploration is reconnaissance and initially testing undrilled areas. Historic drilling – if diamond drilling or RC composite – weighted average used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to 	 Drilling is vertical. Mineralisation is flat. Width of mineralisation is true width

Criteria	JORC Code explanation	Commentary
	this effect (e.g. 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Image 1 - Massive Sphalerite – RC Chips – EHRC050 (80 – 81m) Image 2 - EHRC050 RC Dril Section – Geology with Results Image 3 - EHRC044 RC Dril Section – Geology with Results Image 4 - Chinook Prospect – Location Plan with Drill Hole Status and Intersections Image 5 - Chinook Prospec Stacked Sections Image 6 - Earaheedy Project With Regional Geology and Prospect Locations
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Tables 3 and 4 present all assays for drill holes EHRC050 and EHRC044
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 pXRF analyser is used only to gauge >1000ppm Zn. If sample is >1000ppm Zn and/or within a mineralised section, 1m RC samples are sent for wet analysis (4 acid digest multi-element)
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Diamond drilling planned to follow up current RC drill program RC drilling programme to extend mineralisation along strike