

22 April 2021

Resource drilling at Julimar delivers further growth in high-grade zones

G4 and G11 high-grade zones extended to the north-east while infill drilling continues to demonstrate the large-scale resource potential of the Gonneville deposit

Highlights

Significant new results received from the ongoing ~160,000m step-out and resource definition drilling program at the **~1.8km x >0.9km** Gonneville Intrusion, which continues with 7 drill rigs.

Drilling has expanded the G4-G11 high-grade zones to the north-east and the G1-G2 zones down-dip, while infill drilling continues to confirm the current geological interpretation:

- G4: >1,250m of strike length x up to 600m of dip extent, open north along strike and down-dip;
- G5: >650m of strike length x up to 270m of dip extent, open north along strike;
- G6: >875m of strike length x up to 450m of dip extent, open north along strike and down-dip;
- G9: >500m of strike length x up to 250m of dip extent, open along strike and down-dip; and
- G11: >1,200m of strike length x up to 300m of dip extent, open north along strike and down-dip.

165 new high-grade drill intersections (>1g/t Pd cut-off grade), with highlights including:

- o 13.4m @ 6.3g/t Pd, 1.1g/t Pt, 1.3% Ni, 0.7% Cu, 0.07% Co from 405.7m (JD032, G1 & G2);
- o 13m @ 4.7g/t Pd, 1.0g/t Pt, 0.4g/t Au, 0.2% Ni, 2.2% Cu, 0.02% Co from 144m (JRC163, G11);
- o 12m @ 2.6g/t Pd, 1.4g/t Pt, 0.8g/t Au, 0.2% Ni, 0.9% Cu, 0.01% Co from 138m (JD035, G11);
- **45m @ 1.7g/t Pd**, 0.6g/t Pt, 0.2g/t Au, 0.1% Ni, 0.1% Cu, 0.01% Co from 216m (JD035, G4);
- o **29m @ 1.4g/t Pd**, 0.5g/t Pt, 0.1g/t Au, 0.2% Ni, 0.1% Cu, 0.02% Co from 115m (JD039, G11);
- o 23m @ 1.7g/t Pd, 0.4g/t Pt, 0.2g/t Aυ, 0.2% Ni, 0.2% Cυ, 0.01% Co from 177m (JD039, G4);
- o 17m @ 1.5g/t Pd, 0.2g/t Pt, 0.3g/t Au, 0.2% Ni, 0.4% Cu, 0.02% Co from 207m (JD039, G4); and,
- o **5m@2.5g/t Pd, 0.9g/t Pt**, 0.1g/t Au, 0.2% Ni, 0.2% Cu, 0.02% Co from 67m (JRC148, new zone).
- Assay results pending for a further 94 completed drill holes.
- Given the growth in the mineralised footprint, the quantum of resource drilling required to define the discovery is expected to increase and a maiden Mineral Resource Estimate is now anticipated in late Q3 2021.

Recent land purchases mean the resource drill-out can proceed without access constraints.

Reconnaissance exploration and environmental surveys in the Julimar State Forest are continuing, initial drilling targeted for Q3 2021, subject to access approvals.

A Study Manager for the Project has been appointed and Chalice continues to build its internal management and technical capabilities.

Registered Office ABN 47 116 648 956

Level 2, 1292 Hay Street West Perth, Western Australia GPO Box 2890, Perth WA 6001

Chalice Mining Limited ("Chalice" or "the Company", ASX: CHN | OTCQB: CGMLF) is pleased to report significant new results from ongoing exploration activities at its 100%-owned Julimar Nickel-Copper-Platinum Group Element (PGE) Project, located ~70km north-east of Perth in Western Australia.

Seven rigs (three reverse circulation ("RC") and four diamond) are continuing the ~160,000m step-out and resource definition drill program at the ~1.8km x >0.9km Gonneville Intrusion with over 87,000m of drilling completed to date and a significant number of assay results outstanding.

Recent results have been received for drilling targeting:

- Shallow north-east extensions of the footwall contact (G4 and G11) zones;
- Northern and down-dip extensions to the G1-G10 zones;
- The non-magnetic north-western part of the Gonneville Intrusion (initial wide-spaced lines); and
- Infill of the footwall contact zones (G3 and G11) as well as the G6 and G7 zones.

A total of 72 diamond drill holes (including RC pre-collars with diamond tails) and 253 RC drill holes have been completed to date at the project (~87,000m), of which assay results have now been reported for 40 diamond and 191 RC holes (assay results are pending for a further 94 completed drill holes).

 \overline{W} ithin the 71 new drill holes reported in this announcement, there were:

- 227 mineralised intervals (>4m width and >0.3g/t Pd cut-off grade);
- 165 high-grade palladium intervals (>2m width and >1g/t Pd cut-off grade), including:
 - o 35 high-grade Pd-Ni-Cu intervals (>2m width, >1g/t Pd and >0.5% Ni+Cu cut-off grade).

Reconnaissance soil sampling, ground gravity and environmental surveys are also continuing in the Julimar State Forest to the north of Gonneville.

Chalice Managing Director, Alex Dorsch, said: "Even after 87,000m over more than 13 months of continuous drilling, we continue to expand of the footprint of our major Julimar discovery; a quite remarkable result that demonstrates the potential world-class nature of the discovery.

"The new intersections at the north-east extension of Gonneville are promising, as the previously identified discrete pods of high-grade mineralisation appear to be associated with a newly identified pyroxenite host unit. This new ultramatic unit appears to continue further to the north-east, and the recently secured property acquisitions will allow us to test this potential shortly.

"Given the continued expansion of the Gonneville deposit, in particular the growth of the high-grade zones, the quantum of drilling required to define the maiden Mineral Resource is likely to grow. We are now anticipating resource definition drilling will continue into Q3 2021 and the maiden Mineral Resource will be released in late Q3 2021.

"Concurrently with the 7-rig resource drill-out, we are continuing our comprehensive metallurgical testwork program on both the sulphide and oxide mineralisation, and we have commenced several other preliminary studies that will guide the scoping and feasibility stages.

"We are also nearing completion of initial on-ground activities within the Julimar State Forest to the north of Gonneville. Flora and fauna surveys are currently underway in the area, ahead of proposed initial drilling, which is targeted for Q3 2021, subject to access approval."

Zone	Previous strike extent	Previous dip-extent	Current strike extent	Current dip-extent	Status
G1	450m	390m	450m	390m	Merges with G2 at depth
G2	690m	490m	690m	490m	Open to the north and down-dip
G3	465m	280m	465m	280m	Open to the north
G4	1000m	430m	1250m	600m	Open to the north and down-dip
G5	450m	270m	650m	270m	Open to the north
G6	300m	450m	875m	450m	Open to the north and down-dip

Table 1. Maximum dimensions and status of high-grade zones at Gonneville.

Zone	Previous strike extent	Previous dip-extent	Current strike extent	Current dip-extent	Status
G7	500m	350m	500m	350m	Closed off
G8	350m	250m	350m	250m	Open to the north and down-dip
G9	350m	200m	500m	250m	Open along strike and down-dip
G10	400m	300m	400m	300m	Open to the north and down-dip
G11	1000m	300m	1200m	300m	Open to the north and down-dip

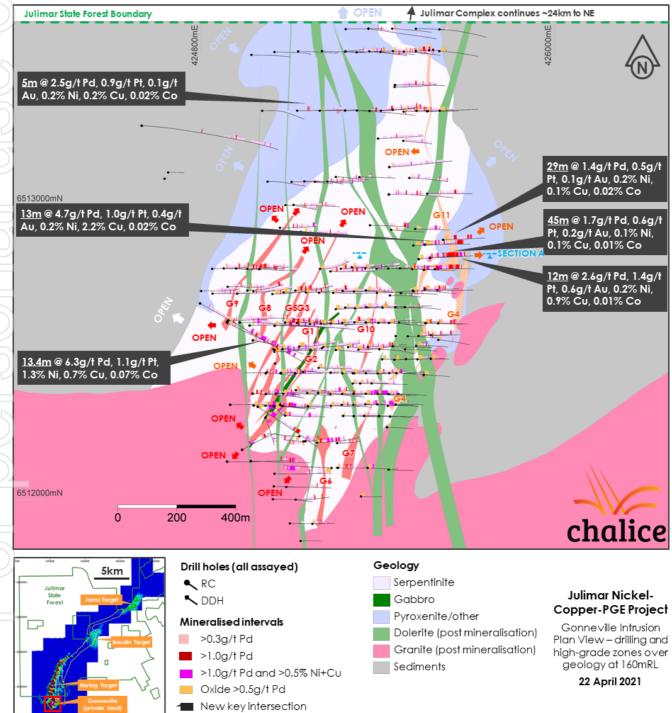


Figure 1. Gonneville Intrusion Plan View – new key drill results and high-grade G1-G11 zone outlines over interpreted geology at 160m RL (~80m below surface).

Figure 2. Gonneville 3D View (looking North-West) - high-grade G1-G11 zones and new drill intersections.

Chalice Mining Limited ABN 47 116 648 956

(7

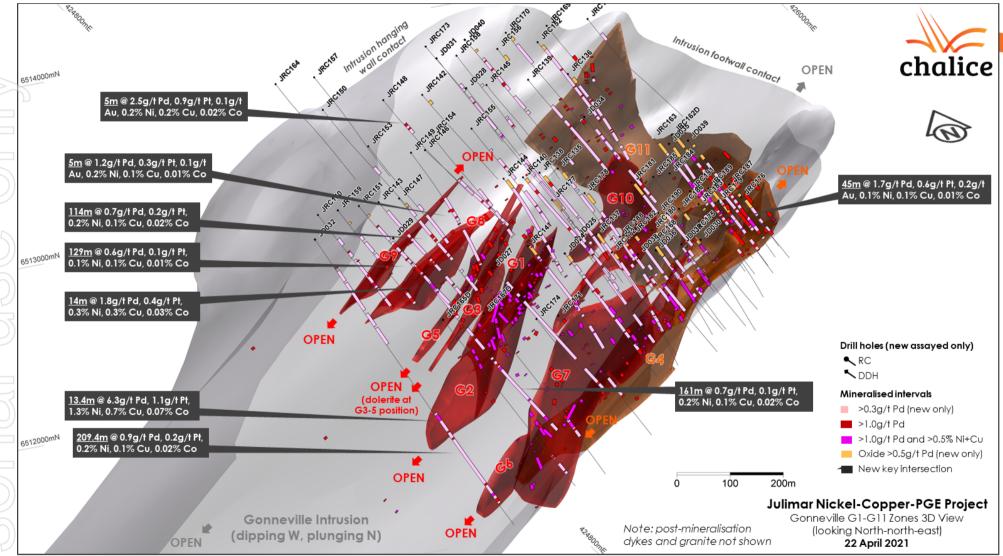


Figure 3. Gonneville 3D View (looking North-North-East) - high-grade G1-G11 zones and new drill intersections.

Chalice Mining Limited ABN 47 116 648 956

G4 and G11 Zones

Infill drilling targeting the high-grade G4 and G11 zones has confirmed wide zones of high-grade mineralisation along the footwall contact at the north-east part of the Gonneville Intrusion (**Figure 4**).

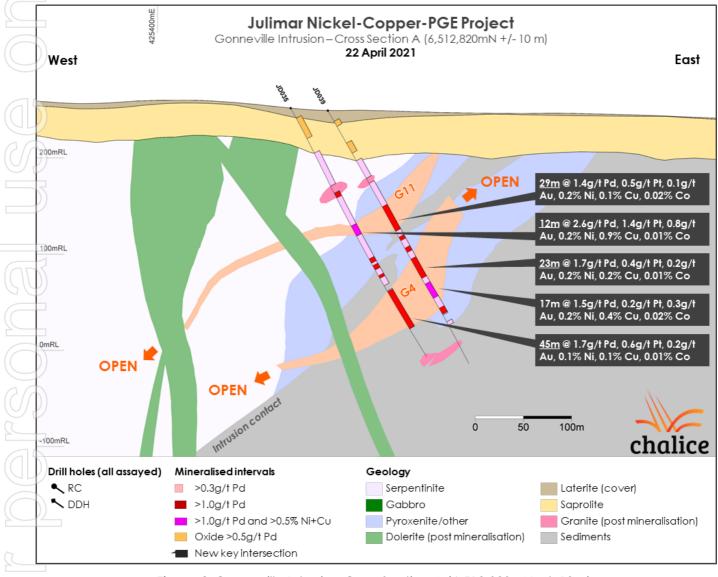


Figure 4. Gonneville Intrusion Cross Section A (6,512,820mN +/- 10m).

Significant new drill results include;

- 12m @ 2.6g/t Pd, 1.4g/t Pt, 0.8g/t Au, 0.2% Ni, 0.9% Cu, 0.01% Co from 138m (JD035, G11)
- 29m @ 1.4g/t Pd, 0.5g/t Pt, 0.1g/t Au, 0.2% Ni, 0.1% Cu, 0.02% Co from 115m (JD039, G11)
- 6m @ 1.3g/t Pd, 0.4g/t Pt, 0.2% Ni, 0.1% Cu, 0.02% Co from 124m (JRC162D, G11)
- 13m @ 4.7g/t Pd, 1.0g/t Pt, 0.5g/t Au, 0.2% Ni, 2.2% Cu, 0.02% Co from 144m (JRC163, G11)
- 45m @ 1.7g/t Pd, 0.6g/t Pt, 0.2g/t Au, 0.1% Ni, 0.1% Cu, 0.01% Co from 216m (JD035, G4)
- 23m @ 1.7g/t Pd, 0.4g/t Pt, 0.2g/t Au, 0.2% Ni, 0.2% Cu, 0.01% Co from 177m (JD039, G4)
- 17m @ 1.5g/t Pd, 0.2g/t Pt, 0.3g/t Au, 0.2% Ni, 0.4% Cu, 0.02% Co from 207m (JD039, G4)

- 7m @ 2.1g/t Pd, 0.6g/t Pt, 0.1g/t Au, 0.1% Ni, 0.1% Cu, 0.01% Co from 236m (JD039, G4)
- 36m @ 1.0g/t Pd, 0.2g/t Pt, 0.1% Ni, 0.1% Cu, 0.01% Co from 210m (JRC162D, G4)

These mineralised zones are largely hosted in pyroxenite (amphibole-rich) in an area where the footwall contact of the intrusion is flattening against the underlying footwall sediments. Pyroxenite has also been intersected at the north-west and northern end of the intrusion and may represent an internal transition from olivine-rich to olivine-poor geology. Sulphide mineralisation continues to be intersected in both pyroxenite and serpentinite host units.

The G4 and G11 zones remain open up-dip and along strike to the north. As announced on 19 April 2021, Chalice has now secured the acquisition of all private properties at Gonneville and, as such, drilling to test the extent of mineralisation to the north-east will commence shortly.

G1-G2 Zones

Diamond drill holes JD032 and JD029 targeted down-dip extensions of the high-grade G1 and G2 zones. JD032 intersected 13.4m @ 6.3g/t Pd, 1.1g/t Pt, 1.3% Ni, 0.7% Cu, 0.07% Co from 405.7m (**Figure 3**). This is the deepest intersection of the G1-G2 zone drilled to date and the mineralisation remains open down-dip and along strike to the north.

JD029 intersected 5m @ 1.2g/t Pd, 0.3g/t Pt, 0.2% Ni, 0.1% Cu, 0.02% Co from 331m and 6.6m @ 1.5g/t Pd, 0.4g/t Pt, 0.3% Ni, 0.3% Cu, 0.02% Co from 339.5m in the G1 and G2 positions. The results from these two holes support the current interpretation that the high-grade zones have a steep northerly plunge.

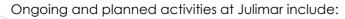
JD029 hole also intersected 14m @ 1.8g/t Pd, 0.4g/t Pt, 0.3% Ni, 0.3% Cu, 0.03% Co from 120m in the G8 position, which remains open along strike and down-dip.

Oxide and Disseminated Zones

Wide zones of shallow PGE+/-Au mineralisation continue to be intersected in saprolitic clays developed over Gonneville ultramatic geology (**Figure 1**). The PGE-enriched oxide zone extends over two distinct greas of ~1km x ~0.6km (south) and ~0.5km x ~0.15km (north).

Significant new oxide drill intersections include:

- 14m @ 1.7g/t Pd, 0.1g/t Pt from 15m (JD035);
- 21m @ 1.7g/t Pd, 0.5g/t Pt from 7m (JRC162D);
- 16m @ 1.9g/t Pd, 1g/t Pt from 8m (JRC179)
- 16m @ 3.5g/t Pd, 1.2g/t Pt, 0.7 g/t Au from 11m (JRC176)
- 17m @ 2.4g/t Pd, 0.6g/t Pt from 7m (JRC181)


Initial metallurgical testwork on oxide samples to date indicates that the palladium and gold can be recovered under atmospheric oxidative leach conditions; as such, the oxide zones are considered to have significant economic potential for the Project.

Wide zones of lower-grade PGE-Ni-Cu-Co mineralisation continue to be intersected, associated with disseminated sulphides throughout the Gonneville ultramafic geology. Metallurgical testwork on several disseminated sulphide composites is continuing.

Forward plan

Chalice is continuing the resource definition drill program and early studies at the \sim 1.8km x >0.9km Gonneville Intrusion in parallel with initial exploration activities within the Julimar State Forest to the north.

- Resource definition drilling (Gonneville) The RC/diamond drill program aims to define Mineral Resources predominantly in the Indicated category to a nominal ~200m below surface (deeper in high-grade zones), which is expected to be achieved with a 40m spaced drill pattern. Areas deeper than ~200m below surface are being drilled on a wider spaced pattern, as determined by preliminary pit-shell modelling, with the Mineral Resources expected to be reported predominantly in the Inferred category. Due to the continued growth of mineralised zones and the required drilling, the Company anticipates its maiden Mineral Resource Estimate will be released in late Q3 2021.
- **Metallurgical testwork (Gonneville)** variability flotation testwork on sulphide zone composites and leach testwork on oxide zone composites continues. New high-grade and disseminated sulphide composites have been compiled for the next phase of testwork.
- Mining studies (Gonneville) hydrology, hydrogeology, waste rock characterisation and initial infrastructure studies have commenced. The Company has appointed a Study Manager for the Project and anticipates that a scoping study will be released in early 2022.
- Marketing studies (Gonneville) preliminary discussions with various potential offtake partners have commenced, to determine indicative commercial terms for potential intermediate concentrate products.
- Geochemistry and Geochronology the Company has engaged the Geological Survey of WA (GSWA) and a specialist consultant to conduct initial geochemical analysis and metallogenesis studies. This work aims to improve our geological and mineralogical understanding of the discovery and enhance our targeting capability as we search for similar discoveries across our large land holding in the West Yilgarn Ni-Cu-PGE Province.
- **Reconnaissance exploration and environmental surveys within the Julimar State Forest** Soil sampling continues at the Jansz Target and ground gravity is underway within the Julimar State Forest. Flora and Fauna surveys are underway as part of planning for additional exploration activities as well as providing baseline information for future studies.

Authorised for release on behalf of the Company by:

Alex Dorsch Managing Director

For further information, please visit <u>www.chalicemining.com</u> to view our latest corporate presentation, or contact:

Corporate Enquiries

Alex Dorsch Managing Director Chalice Mining Limited +61 8 9322 3960 info@chalicemining.com

Follow our communications: LinkedIn: <u>chalice-mining</u> Twitter: @<u>chalicemining</u> Media Enquiries Nicholas Read Principal and Managing Director Read Corporate Investor Relations +61 8 9388 1474 info@readcorporate.com.au

The 100%-owned Julimar Nickel-Copper-PGE Project is located ~70km north-east of Perth on private farmland and State Forest. The Project has direct access to major highway, rail, power and port infrastructure in one of the world's most attractive mining jurisdictions – Western Australia.

The greenfield Project was staked in 2018 as part of Chalice's global search for high-potential nickel sulphide exploration opportunities.

Chalice interpreted the possible presence of a mafic-ultramafic layered intrusive complex (the 'Julimar Complex') based on high-resolution airborne magnetics. The Julimar Complex is interpreted to extend over ~26km of strike and is confirmed to be highly prospective for nickel, copper and platinum group elements (**Figure 5**).

Prior to Chalice's major discovery, the Julimar Complex had never been explored for Ni-Cu-PGE mineralisation, and the lack of any significant bedrock geology exposures and widespread development of laterite and transported cover in the region hindered the confirmation of the conceptual geological model.

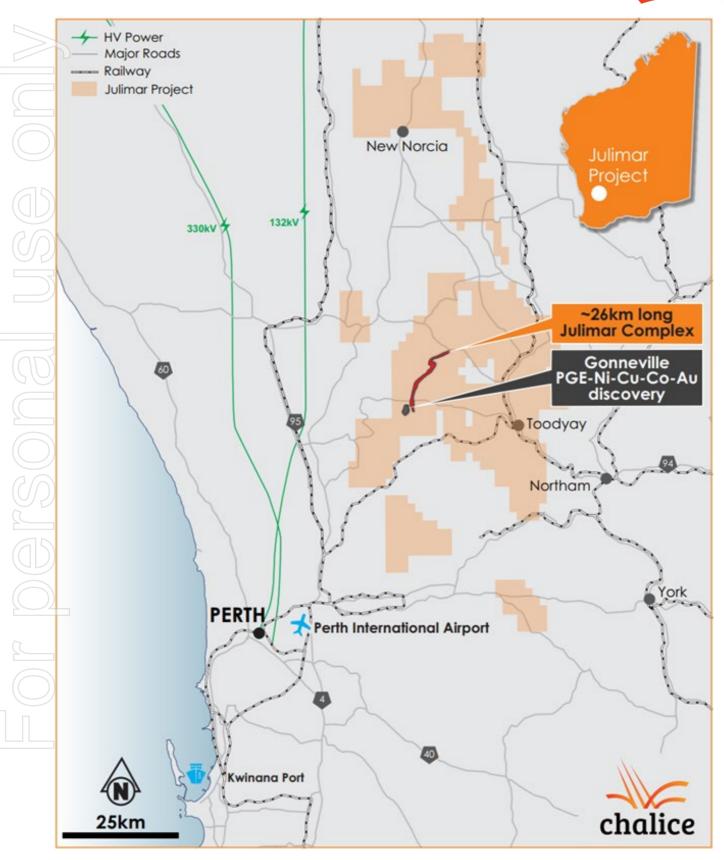
Exploration activities to date had largely been confined to the ~1.8km x >0.9km Gonneville Intrusion, located on partly Chalice-owned private land, while the access approval to the remainder of the Julimar Complex within the Julimar State Forest was pending.

Chalice commenced a systematic greenfield exploration program over the Gonneville Intrusion in mid-2019. The initial drill program commenced in Q1 2020 and resulted in the discovery of shallow high-grade PGE-nickel-copper-cobalt mineralisation. The first drill hole (JRC001) intersected 19m @ 8.4g/t Pd, 1.1g/t Pt, 2.6% Ni, 1.0% Cu and 0.14% Co from 48m. The major greenfield discovery at Julimar defined the new West Yilgarn Ni-Cu-PGE Province.

The Gonneville Intrusion is interpreted to be a layered mafic-ultramatic 'sill', with a moderate westerly dip and gentle northerly plunge. The potential 'feeder' for the system, a highly prospective area for high-grade mineralisation, is yet to be discovered. PGE-Ni-Cu-Co +/- Au sulphide mineralisation is widespread throughout the Gonneville Intrusion and has been intersected down to ~850m below surface to date. The intrusion is open to the north into the Julimar State Forest and its depth extent is still unknown.

Eleven high-grade massive / matrix / heavily disseminated sulphide zones (G1-11) have been defined to date within the Gonneville Intrusion. The discrete high-grade PGE-Ni-Cu-Co +/- Au zones comprise sulphide-rich accumulations (10-100% sulphide, defined by >1g/t Pd cut-off) and typically have a grade range of 1-15g/t PGE+Au, 0.5-3.3% Ni, 0.4-4.5% Cu and 0.03-0.27% Co.

The Gonneville Intrusion also hosts widespread disseminated PGE-Ni-Cu-Co mineralisation (trace to 3% sulphides, on average) surrounding the high-grade zones, which typically has a grade range of 0.5-2.0g/t PGE, 0.1-0.2% Ni, 0.05-0.15% Cu and 0.01-0.03% Co.


Weathering at Gonneville extends down to ~30-40m below surface and a well-developed saprolite (oxide) profile after serpentinite contains elevated PGE-Au grades (typically ranging from 1.2-4.5g/t PGE+Au) from near surface to a depth of ~25m.

Early stage metallurgical testwork completed to date on selected high-grade and disseminated sulphide mineralisation samples from Gonneville has returned promising flotation results, giving initial encouragement that the sulphide-hosted mineralisation at Gonneville will be amenable to conventional flotation under standard conditions.

Tests completed on a composite of oxide mineralisation samples has also returned promising results, with the extraction of palladium and gold achieved through oxidative leaching under standard conditions.

An airborne electromagnetic (AEM) survey was completed in September 2020 over the entire Julimar Complex. Three new large AEM anomalies were identified – Hartog, Baudin and Jansz. The Hartog EM Anomaly extends ~6.5km directly north of the Gonneville Intrusion into the Julimar State Forest. Reconnaissance activities over the new targets has identified several drill-ready targets.

About Platinum Group Elements

The Platinum Group Elements (PGEs) are a group of six precious metals clustered together on the periodic table: platinum (Pt), palladium (Pd), iridium (Ir), osmium (Os), rhodium (Rh) and ruthenium (Ru).

PGEs have many desirable properties and as such have a wide variety of applications. Most notably, they are used as auto-catalysts (pollution control devices for vehicles), but are also used in jewellery, electronics as well as in hydrogen production, purification and fuel cells.

Palladium is very rare and is currently one of the most valuable precious metals, with an acute supply shortage driving prices to a recent record high of US\$2,850/oz in April 2021.

Strong demand growth (~11.5Moz in 2019¹) is being driven by regulations requiring increased use of the metal, particularly as an auto-catalyst in gasoline and gasoline-hybrid vehicles. The total palladium market supply from all sources in 2019 was ~10.8Moz, and >75% is sourced from mines in Russia and South Africa¹.

¹ Source: S&P Global Market Intelligence

Competent Persons and Qualifying Persons Statement

The information in this announcement that relates to Exploration Results in relation to the Julimar Nickel-Copper-PGE Project is based on and fairly represents information and supporting documentation compiled by Bruce Kendall BSC (Hons), a Competent Person, who is a Member of the Australian Institute of Geoscientists. Mr Kendall is a full-time employee of the Company and has sufficient experience that is relevant to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves, and is a Qualified Person under National Instrument 43-101 – 'Standards of Disclosure for Mineral Projects'. The Qualified Person has verified the data disclosed in this release, including sampling, analytical and test data underlying the information contained in this release. Mr Kendall consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

The Information in this announcement that relates to prior exploration results for the Julimar Project is extracted from ASX announcements available to view on the Company's website at www.chalicemining.com. The Company confirms that it is not aware of any new information or data that materially affects the exploration results included in the relevant original market announcements. The Company confirms that the form and context in which the Competent Person and Qualified Person's findings are presented have not been materially modified from the relevant original market announcements.

Forward Looking Statements

This report may contain forward-looking information, including forward looking information within the meaning of Canadian securities legislation and forward-looking statements within the meaning of the United States Private Securities Litigation Reform Act of 1995 (collectively, forward-looking statements). These forward-looking statements are made as of the date of this report and Chalice Mining Limited (the Company) does not intend, and does not assume any obligation, to update these forward-looking statements.

Forward-looking statements relate to future events or future performance and reflect Company management's expectations or beliefs regarding future events and include, but are not limited to, the Company's strategy, the fair value of investments ultimately realised, the estimation of mineral reserves and mineral resources, the realisation of mineral resource estimates, estimation of metallurgical recoveries, the forecast timing of the estimation of mineral resources, the likelihood of exploration success at the Company's projects, the prospectivity of the Company's exploration projects, the existence of additional EM anomalies within the project, the timing of future exploration activities on the Company's exploration projects, planned expenditures and budgets and the execution thereof, the timing and availability of drill results, potential sites for additional drilling, the timing and amount of estimated future production, costs of production, capital expenditures, success of mining operations, environmental risks, unanticipated reclamation expenses, title disputes or claims and limitations on insurance coverage.

In certain cases, forward-looking statements can be identified by the use of words such as "appears", "allows", "anticipates", "considered", "continue", "expected", "interpreted", "interpretation", "likely", "nearing", "may", "potential", "potentially", "highly", "plan" or "planned", "prospective", "promising", "targeted", "to expand", "will", or variations of such words and phrases or statements that certain actions, events or results may, could, would, might or will be taken, occur or be achieved or the negative of these terms or comparable terminology. By their very nature forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements.

Such factors may include, among others, risks related to actual results of current or planned exploration activities; assay results of soil samples; whether geophysical and geochemical anomalies are related to economic mineralisation or some other feature; obtaining appropriate access to undertake additional ground disturbing exploration work on EM anomalies located in the Julimar State Forrest; the results from testing EM anomalies; results of planned metallurgical test work Including results from other zones not tested yet, scaling up to commercial operations; changes in project parameters as plans continue to be refined; changes in exploration programs based upon the results of exploration, future prices of mineral resources; grade or recovery rates; accidents, labour disputes and other risks of the mining industry; delays in obtaining governmental approvals or financing or in the completion of development or construction activities; movements in the share price of investments and the timing and proceeds realised on future disposals of investments, the impact of the COVID 19 epidemic as well as those factors detailed from time to time in the Company's interim and annual financial statements, all of which are filed and available for review on SEDAR at sedar.com, ASX at asx.com.au and OTC Markets at otcmarkets.com.

Although the Company has attempted to identify important factors that could cause actual actions, events or results to differ materially from those described in forward-looking statements, there may be other factors that cause actions, events or results not to be as anticipated, estimated or intended. There can be no assurance that forward-looking statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on forward-looking statements.

Hole ID	From (m)	To (m)	Interval (m)*	Pd (g/t)	Pt (g/t)	Αυ (g/t)	Ni (%)	Сu (%)	Co (%)	Geology
JD024	7.0	31.8	24.8	0.90	0.22	0.03	0.20	0.18	0.04	Oxide
Incl	9.0	18.6	9.6	1.63	0.34	0.03	0.30	0.34	0.08	Oxide
JD024	32.5	49.0	16.5	0.36	0.10	0.02	0.15	0.02	0.01	Sulphide
JD024	57.4	163.0	105.6	0.44	0.11	0.01	0.17	0.02	0.01	Sulphide
JD024	168.0	215.0	47.0	0.49	0.13	0.01	0.16	0.05	0.01	Sulphide
JD024	231.0	257.0	26.0	0.78	0.32	0.09	0.16	0.13	0.02	Sulphide
Incl	245.0	256.0	11.0	1.31	0.62	0.14	0.15	0.24	0.02	Sulphide
JD025	6.2	12.1	5.9	0.56	0.05	0.02	0.13	0.25	0.27	Oxide
JD025	23.1	28.2	5.1	0.32	0.07	0.01	0.14	0.03	0.03	Oxide
JD025	43.0	53.9	10.9	0.68	0.09	0.01	0.15	0.05	0.01	Oxide
JD025	111.8	173.0	61.2	0.39	0.08	0.01	0.16	0.05	0.02	Sulphide
JD025	198.0	227.5	29.5	0.47	0.12	0.02	0.25	0.11	0.02	Sulphide
JD025	250.4	271.0	20.7	0.41	0.16	0.02	0.11	0.06	0.01	Sulphide
JD027	34.2	40.2	6.0	0.38	0.09	0.03	0.13	0.10	0.01	Oxide
JD027	40.2	58.8	18.6	0.67	0.17	0.01	0.14	0.05	0.01	Sulphide
JD027	72.2	80.0	7.8	0.47	0.12	0.03	0.18	0.11	0.02	Sulphide
JD027	93.5	252.0	158.5	0.56	0.12	0.01	0.17	0.05	0.02	Sulphide
JD027	277.5	332.0	54.5	0.58	0.19	0.02	0.15	0.08	0.02	Sulphide
Incl	315.5	320.0	4.5	2.46	1.26	0.09	0.21	0.17	0.02	Sulphide
JD028	174.0	316.0	142.0	0.58	0.13	0.02	0.14	0.10	0.02	Sulphide
Incl	202.0	212.0	10.0	1.10	0.29	0.02	0.15	0.10	0.02	Sulphide
JD028	397.8	409.1	11.3	1.19	0.23	0.04	0.15	0.07	0.01	Sulphide
Incl	404.0	408.0	4.0	2.33	0.43	0.07	0.17	0.13	0.02	Sulphide
JD029	92.0	210.0	118.0	0.73	0.16	0.03	0.16	0.11	0.02	Sulphide
Incl	94.0	97.0	3.0	1.40	0.26	0.01	0.16	0.04	0.02	Sulphide
and	120.0	134.0	14.0	1.76	0.36	0.03	0.25	0.31	0.03	Sulphide
and	141.0	143.9	2.9	1.14	0.12	0.04	0.23	0.28	0.03	Sulphide
JD029	237.0	256.9	19.9	0.50	0.12	<0.01	0.13	0.03	0.01	Sulphide
JD029	264.1	292.0	27.9	0.37	0.09	<0.01	0.14	0.03	0.01	Sulphide
JD029	314.2	319.1	5.0	0.35	0.08	<0.01	0.15	0.04	0.01	Sulphide
JD029	324.1	485.2	161.0	0.65	0.14	0.02	0.18	0.10	0.02	Sulphide
Incl	331.0	336.0	5.0	1.21	0.26	0.01	0.22	0.08	0.02	Sulphide
and	339.5	346.0	6.6	1.47	0.36	0.03	0.29	0.33	0.02	Sulphide
and	426.8	430.0	3.2	2.11	0.16	0.09	0.57	1.06	0.07	Sulphide
and	474.0	484.0	10.0	1.17	0.25	0.03	0.24	0.31	0.02	Sulphide
JD029	493.3	511.6	18.4	0.64	0.17	0.04	0.13	0.19	0.02	Sulphide
JD031	76.0	81.0	5.0	0.56	2.44	0.07	0.15	0.02	0.01	Sulphide
JD031	77.0	89.0	12.0	0.40	1.29	0.01	0.03	<0.01	0.01	Sulphide
JD031	105.0	189.4	84.4	0.54	0.15	0.01	0.13	0.06	0.01	Sulphide
Incl	118.0	120.0	2.0	1.06	0.64	0.02	0.16	0.07	0.01	Sulphide

Appendix 1: Significant new drill intersections (>0.3g/t Pd cut-off) – Julimar Ni-Cu-PGE Project.

JD031 Incl	(m) 201.5	(m)	(m)*		(a/t)	(α/t)				Geology
		212.4	10.9	(g/t) 0.73	(g/t) 0.13	(g/t) <0.01	(%) 0.23	(%) 0.10	(%) 0.02	Sulphide
	205.6	209.8	4.2	1.13	0.18	0.01	0.38	0.17	0.04	Sulphide
JD031	281.0	312.0	31.0	0.64	0.12	<0.01	0.17	0.10	0.02	Sulphide
JD031	329.0	394.3	65.3	0.42	0.10	0.01	0.15	0.05	0.01	Sulphide
JD032	64.8	69.7	4.9	0.76	0.16	<0.01	0.16	0.01	0.04	Sulphide
Incl	66.0	68.0	2.0	1.15	0.25	0.01	0.21	0.01	0.05	Sulphide
JD032	74.6	97.7	23.1	0.46	0.10	0.01	0.15	0.04	0.01	Sulphide
JD032										Sulphide
JD032										Sulphide
JD032										Sulphide
JD032										Sulphide
incl										Sulphide
and										Sulphide
and										Sulphide
and										Sulphide
and		607.0								Sulphide
										Sulphide
/										Sulphide
										Sulphide
										Sulphide
										Sulphide
/										Sulphide
										Sulphide
/										Sulphide
										Sulphide
										Oxide
										Oxide
										Oxide
										Sulphide
										Sulphide
										Sulphide
										Sulphide
										Sulphide
/										Sulphide
										Sulphide
										Sulphide
										Sulphide
										Oxide
										Oxide
										Sulphide
										Sulphide
										Oxide
	JD032 JD032 JD032 JD032 Incl and and and	JD032 101.7 JD032 172.0 JD032 205.0 JD032 401.7 Incl 405.7 and 443.3 and 459.0 and 588.0 and 600.0 JD034 34.5 and 62.0 JD034 94.0 and 62.0 JD034 94.0 JD034 141.7 Incl 113.0 JD034 255.3 JD035 12.0 Incl 15.0 JD035 52.8 JD035 52.8 JD035 99.4 incl 138.0 and 197.0 JD035 215.0 and 197.0 JD035 215.0 and 197.0 JD036 6.0	JD032101.7164.0JD032172.0200.0JD032205.0242.0JD032401.7611.0Incl405.7419.0and443.3446.0and588.0593.7and600.0607.0JD03434.589.0Incl49.051.0and62.066.0JD03494.0119.0Incl113.0119.0JD034255.3341.3JD03512.036.0Incl15.029.0JD03599.4208.9JD03599.4208.9JD03599.4208.9Incl100.0105.0and138.0150.0Incl138.0150.0Incl100.0105.0Incl100.0105.0Incl100.0105.0Incl100.0105.0Incl100.0105.0Incl100.0105.0Incl100.0105.0Incl100.0105.0Incl100.0105.0Incl100.0105.0Incl138.0150.0Incl100.0130.0Incl10.013.0JD0366.017.0JD03628.079.0JD036116.3125.3	JD032101.7164.062.3JD032172.0200.028.0JD032205.0242.037.0JD032401.7611.0209.4Incl405.7419.013.4and443.3446.02.7and588.0593.75.7and600.0607.07.0JD03434.589.054.5Incl49.051.02.0and62.066.04.0JD03494.0119.025.0Incl113.0119.06.0JD034255.3341.385.9JD03512.036.024.0JD03512.036.024.0JD03455.3341.385.9JD03512.036.024.0JD03512.036.024.0JD03552.891.138.3JD03552.891.138.3JD03552.891.138.3JD03552.891.138.3JD03552.891.138.3JD035215.0261.046.0Incl100.0105.05.0and185.0190.05.0and185.0190.03.0JD03621.0261.045.0JD03628.079.051.0JD036116.3125.39.0	JD032101.7164.062.30.60JD032172.0200.028.00.45JD032205.0242.037.00.61JD032401.7611.0209.40.95Incl405.7419.013.46.26and443.3446.02.71.18and459.0462.03.01.06and588.0593.75.72.18and600.0607.07.01.26JD03434.589.054.50.66Incl49.051.02.01.70and62.066.04.01.75JD03494.0119.025.00.73Incl113.0119.06.01.67JD03494.0119.025.00.73Incl113.0119.06.01.67JD03494.0119.025.00.73Incl13.0119.06.01.67JD03512.036.024.01.39JD03512.036.024.01.39JD03552.891.138.30.52JD03552.891.138.30.52JD03552.891.138.30.52JD03599.4208.9109.50.90Incl100.0105.05.01.43and138.0150.01.26and177.0182.05.01.43and13	JD032101.7164.062.30.600.13JD032172.0200.028.00.450.10JD032205.0242.037.00.610.14JD032401.7611.0209.40.950.19Incl405.7419.013.46.261.12and443.3446.02.71.180.28and459.0462.03.01.060.23and588.0593.75.72.180.25and600.0607.07.01.260.38JD03434.589.054.50.660.13Incl49.051.02.01.700.23and62.066.04.01.750.34JD03494.0119.025.00.730.14Incl113.0119.06.01.670.26JD034141.7228.086.30.610.17Incl182.0189.07.01.260.75and206.0209.03.01.100.23JD03512.036.024.01.390.06Incl15.029.014.01.720.08JD03599.4208.9109.50.900.31JD03599.4208.9109.50.900.31Incl100.0105.05.01.430.53and138.0150.01.100.750.22	JD032101.7164.062.30.600.130.01JD032172.0200.028.00.450.10<0.01	JD032101.7164.062.30600.130.010.15JD032172.0200.028.00.450.10<0.01	JD032 101.7 164.0 62.3 0.60 0.13 0.01 0.15 0.07 JD032 172.0 200.0 28.0 0.45 0.10 <0.01 0.15 0.04 JD032 205.0 242.0 37.0 0.61 0.14 0.01 0.15 0.09 JD032 401.7 611.0 209.4 0.95 0.19 0.04 0.24 0.14 and 443.3 446.0 2.7 1.18 0.28 0.03 1.31 0.71 and 453.0 442.0 3.0 1.06 0.23 0.02 0.27 0.16 and 600.0 607.0 7.0 1.26 0.38 0.09 0.22 0.22 JD034 34.5 89.0 54.5 0.66 0.13 <0.01 0.15 0.11 and 60.0 4.0 1.75 0.34 <0.01 0.05 Incl 113.0 119.0 6.0 1.67	D032 101.7 164.0 62.3 0.60 0.13 0.01 0.15 0.07 0.02 D032 172.0 200.0 28.0 0.45 0.10 <0.11 0.15 0.04 0.01 D032 205.0 242.0 37.0 0.61 0.14 0.01 0.15 0.04 0.02 D032 401.7 611.0 209.4 0.95 0.19 0.04 0.24 0.14 0.02 and 405.7 419.0 13.4 6.26 1.12 0.03 1.31 0.71 0.07 and 443.3 446.0 2.7 1.18 0.28 0.03 0.23 0.08 0.09 and 459.0 462.0 3.0 1.06 0.23 0.01 0.11 0.03 and 60.0 67.5 0.34 0.01 0.17 0.05 0.02 and 62.0 66.0 1.67 0.26 0.01 0.11 0.05

		From	То	Interval	Pd	Pt	Αu	Ni	Cu	Co	
>	Hole ID	(m)	(m)	(m)*	(g/t)	(g/t)	(g/t)	(%)	(%)	(%)	Geology
~	JD038	30.5	43.0	12.5	0.37	0.10	0.03	0.16	0.04	0.02	Sulphide
	JD038	53.8	59.0	5.2	0.38	0.10	0.03	0.17	0.08	0.02	Sulphide
	JD038	84.3	151.8	67.5	0.47	0.10	0.03	0.17	0.07	0.02	Sulphide
	JD039	11.0	21.0	10.0	0.60	0.09	0.01	0.11	0.07	0.01	Oxide
	JD039	33.0	60.0	27.0	0.44	0.11	0.01	0.13	0.05	0.01	Oxide
\subseteq	JD039	60.0	81.0	21.0	0.61	0.11	0.02	0.15	0.10	0.02	Sulphide
	JD039	87.0	244.0	157.0	1.09	0.28	0.12	0.14	0.13	0.01	Sulphide
71	Incl	115.0	144.0	29.0	1.41	0.46	0.07	0.16	0.08	0.02	Sulphide
	and	151.0	155.0	4.0	1.01	0.35	0.07	0.14	0.05	0.01	Sulphide
16	and	164.0	169.0	5.0	1.14	0.35	0.11	0.13	0.06	0.01	Sulphide
JJ,	and	177.0	200.0	23.0	1.69	0.45	0.19	0.16	0.16	0.01	Sulphide
	and	207.0	224.0	17.0	1.51	0.24	0.28	0.17	0.38	0.02	Sulphide
	and	236.0	243.0	7.0	2.14	0.56	0.09	0.09	0.08	0.01	Sulphide
	JD039	252.0	256.0	4.0	1.66	0.21	0.14	0.13	0.06	0.01	Sulphide
	JD040	23.2	35.6	12.4	0.50	1.94	0.02	0.03	0.01	0.01	Oxide
	incl	29.0	34.0	5.0	0.75	3.23	0.03	0.03	0.01	0.01	Oxide
	JD040	52.0	133.6	81.6	0.64	0.13	<0.01	0.18	0.09	0.02	Sulphide
	Incl	58.0	60.0	2.0	1.16	0.28	0.01	0.20	0.12	0.02	Sulphide
	and	79.0	82.0	3.0	1.05	0.20	<0.01	0.24	0.09	0.02	Sulphide
	JD040	149.7	182.0	32.4	0.51	0.10	<0.01	0.15	0.09	0.02	Sulphide
	JD040	188.0	195.3	7.3	0.60	0.13	0.01	0.16	0.08	0.01	Sulphide
_	JD040	311.5	329.2	17.7	0.49	0.10	0.01	0.14	0.03	0.01	Sulphide
6	JRC135	13.0	29.0	16.0	1.42	0.23	0.01	0.17	0.19	0.11	Oxide
J	Incl	13.0	28.0	15.0	1.46	0.24	0.01	0.16	0.19	0.11	Oxide
	JRC135	29.0	54.0	25.0	0.50	0.10	<0.01	0.18	0.04	0.02	Sulphide
10	JRC135	59.0	63.0	4.0	0.73	0.14	<0.01	0.19	0.04	0.02	Sulphide
	JRC135	71.0	115.0	44.0	0.47	0.10	<0.01	0.17	0.04	0.02	Sulphide
\leq	JRC135	135.0	144.0	9.0	0.83	0.16	<0.01	0.16	0.04	0.02	Sulphide
	JRC135	179.0	192.0	13.0	0.50	0.10	0.01	0.20	0.09		Sulphide
	JRC135	248.0	258.0	10.0	0.64	0.13	0.06	0.15	0.14	0.01	Sulphide
	Incl	256.0	258.0	2.0	1.20	0.22	0.11	0.14	0.37	0.01	Sulphide
	JRC136	10.0	26.0	16.0	0.51	0.19	0.15	0.12	0.36	0.04	Oxide
	JRC136	33.0	63.0	30.0	0.39	0.09	0.01	0.12	0.07	0.01	Sulphide
_	JRC136	68.0	111.0	43.0	0.72	0.16	< 0.01	0.15	0.12	0.02	Sulphide
	Incl	71.0	75.0	4.0	1.40	0.38	0.01	0.18	0.15	0.02	Sulphide
	and	89.0	93.0	4.0	1.13	0.21	< 0.01	0.17	0.03	0.02	Sulphide
	JRC136	116.0	172.0	56.0	0.60	0.13	0.01	0.15	0.06	0.02	Sulphide
	Incl	144.0	146.0	2.0	1.29	0.23	0.01	0.17	0.06	0.02	Sulphide
	and	149.0	151.0	2.0	1.13	0.31	0.01	0.14	0.09	0.01	Sulphide
	JRC136	182.0	189.0	7.0	0.31	0.06	< 0.01	0.12	0.04	0.01	Sulphide
	JRC136	194.0	216.0	22.0	0.33	0.07	0.01	0.13	0.06	0.02	Sulphide
	JRC137	0.0	25.0	25.0	0.83	0.07	0.02	0.22	0.14	0.02	Oxide

Hole ID	From	То	Interval	Pd	Pt	Aυ	Ni	Cu	Co	Coology
	(m)	(m)	(m)*	(g/t)	(g/t)	(g/t)	(%)	(%)	(%)	Geology
Incl	3.0	5.0	2.0	1.17	0.08	0.01	0.05	0.12	< 0.01	Oxide
and	20.0	25.0	5.0	1.24	0.12	0.03	0.31	0.14	0.03	Oxide
JRC137	25.0	88.0	63.0	0.43	0.10	0.01	0.16	0.05	0.01	Sulphide
JRC137	93.0	164.0	71.0	0.49	0.10	0.02	0.16	0.04	0.01	Sulphide
JRC137	191.0	228.0	37.0	0.39	0.09	0.05	0.13	0.10	0.01	Sulphide
JRC138	12.0	26.0	14.0	0.90	0.20	0.01	0.14	0.17	0.02	Oxide
Incl	13.0	21.0	8.0	1.05	0.23	0.01	0.13	0.18	0.03	Oxide
JRC138	26.0	119.0	93.0	0.55	0.12	<0.01	0.15	0.08	0.02	Sulphide
Incl	28.0	38.0	10.0	1.17	0.24	0.01	0.19	0.25	0.02	Sulphide
JRC138	124.0	229.0	105.0	0.61	0.12	<0.01	0.16	0.05	0.02	Sulphide
Incl	170.0	172.0	2.0	1.01	0.22	<0.01	0.17	0.04	0.02	Sulphide
JRC139	73.0	107.0	34.0	0.38	0.09	0.01	0.12	0.08	0.01	Sulphide
JRC139	114.0	252.0	138.0	0.65	0.15	0.03	0.14	0.08	0.01	Sulphide
Incl	129.0	133.0	4.0	1.07	0.22	0.03	0.15	0.12	0.01	Sulphide
and	228.0	233.0	5.0	1.25	0.57	0.15	0.09	0.15	0.01	Sulphide
JRC140	1.0	16.0	15.0	0.64	0.13	0.01	0.05	0.07	0.01	Oxide
Incl	8.0	11.0	3.0	1.37	0.28	< 0.01	0.05	0.10	0.01	Oxide
JRC140	16.0	242.0	226.0	0.62	0.13	<0.01	0.17	0.07	0.02	Sulphide
Incl	37.0	45.0	8.0	1.08	0.22	<0.01	0.19	0.07	0.02	Sulphide
and	139.0	145.0	6.0	1.05	0.21	<0.01	0.28	0.09	0.03	Sulphide
and	163.0	172.0	9.0	1.20	0.25	< 0.01	0.28	0.10	0.02	Sulphide
and	194.0	202.0	8.0	1.41	0.32	0.01	0.40	0.15	0.03	Sulphide
and	213.0	215.0	2.0	1.47	0.29	< 0.01	0.25	0.11	0.02	Sulphide
JRC140	247.0	263.0	16.0	0.34	0.08	< 0.01	0.13	0.03	0.01	Sulphide
JRC140	268.0	282.0	14.0	0.58	0.10	0.02	0.14	0.09	0.01	Sulphide
JRC141	2.0	27.0	25.0	1.66	0.50	0.06	0.19	0.21	0.04	Oxide
Incl	2.0	16.0	14.0	2.57	0.71	0.09	0.21	0.31	0.06	Oxide
JRC141	29.0	41.0	12.0	1.13	0.60	0.05	0.54	0.42	0.04	Sulphide
Incl	35.0	38.0	3.0	3.14	2.00	0.07	1.67	0.57		Sulphide
JRC141	56.0	168.0	112.0	0.53	0.10	0.01	0.17	0.07	0.02	Sulphide
Incl	58.0	62.0	4.0	3.21	0.23	0.04	0.45	0.24	0.02	Sulphide
JRC141	177.0	182.0	5.0	0.34	0.25	0.04	0.43	0.24	0.03	Sulphide
JRC141	204.0	258.0	54.0	0.54	0.10	0.03	0.19	0.08	0.02	Sulphide
Incl	218.0	238.0	3.0	2.82	0.10	0.02	0.17	0.53	0.02	Sulphide
JRC142	19.0	35.0	16.0	0.54	0.23	0.08	0.01	0.07	0.03	Oxide
JRC142	26.0	144.0	118.0	0.54	0.42	0.02	0.03	0.07	0.04	Sulphide
Incl	83.0	90.0	7.0	1.17	0.12	0.02	0.13	0.07	0.01	Sulphide
and	98.0	102.0	4.0	1.17	0.21	0.02	0.18	0.07	0.02	Sulphide
JRC143	157.0	190.0	33.0	0.52	0.11	0.01	0.14	0.08	0.02	Sulphide
	163.0	166.0	3.0	1.05	0.24	0.02	0.20	0.07	0.02	Sulphide
JRC143	206.0	231.0	25.0	0.48	0.11	0.01	0.13	0.06	0.02	Sulphide
Incl	228.0	230.0	2.0	1.37	0.32	0.02	0.27	0.19	0.03	Sulphide

Hole ID	From	То	Interval	Pd	Pt	Au	Ni	Cu	Co	Geology
JRC143	(m) 237.0	(m) 257.0	(m) * 20.0	(g/t) 0.40	(g/t) 0.07	(g/t) 0.01	(%) 0.12	(%) 0.07	(%) 0.01	Sulphide
JRC144	6.0	27.0	20.0	2.15	0.45	0.05	0.12	0.17	0.05	Oxide
Incl	9.0	27.0	18.0	2.41	0.47	0.06	0.18	0.19	0.05	Oxide
JRC144	27.0	162.0	135.0	0.48	0.09	0.01	0.16	0.07	0.02	Sulphide
JRC144	168.0	203.0	35.0	0.52	0.11	< 0.01	0.13	0.06	0.01	Sulphide
JRC144	211.0	236.0	25.0	0.69	0.13	<0.01	0.16	0.07	0.02	Sulphide
JRC144	211.0	236.0	25.0	0.69	0.13	<0.01	0.16	0.07	0.02	Sulphide
Incl	217.0	219.0	2.0	1.57	0.24	0.01	0.14	0.19	0.01	Sulphide
JRC146	90.0	228.0	138.0	0.56	0.13	0.01	0.13	0.10	0.01	Sulphide
Incl	155.0	158.0	3.0	1.07	0.24	0.01	0.16	0.10	0.02	Sulphide
and	175.0	178.0	3.0	1.05	0.23	0.01	0.15	0.07	0.02	Sulphide
JRC147	17.0	24.0	7.0	0.85	0.17	0.03	0.10	0.06	0.02	Oxide
Incl	22.0	24.0	2.0	1.26	0.17	0.03	0.12	0.10	0.02	Oxide
JRC147	26.0	49.0	23.0	0.46	0.17	0.03	0.12	0.10	0.02	Sulphide
JRC147	61.0	115.0	54.0	0.40	0.11	0.04	0.12	0.10	0.01	Sulphide
incl	98.0	106.0	8.0	1.11	0.10	0.03	0.21	0.18	0.02	Sulphide
and	110.0	115.0	5.0	1.18	0.20	0.13	0.16	0.13	0.02	Sulphide
JRC147	120.0	165.0	45.0	0.57	0.12	0.13	0.13	0.08	0.01	Sulphide
Incl	146.0	148.0	2.0	1.12	0.12	0.01	0.13	0.12	0.02	Sulphide
and	140.0	158.0	2.0	1.40	0.27	0.01	0.21	0.12	0.02	Sulphide
JRC147	192.0	197.0	5.0	0.42	0.21	0.01	0.23	0.17	0.03	Sulphide
JRC147 JRC147	208.0	246.0	38.0	0.42	0.07	0.01	0.18	0.10	0.01	Sulphide
JRC147	66.0	92.0	26.0	1.10	0.12	0.01	0.16	0.10	0.02	Sulphide
Incl	67.0	72.0	5.0	2.45	0.43	0.08	0.18	0.12	0.01	Sulphide
and	78.0	81.0	3.0	1.30	0.53	0.10	0.23	0.23	0.02	Sulphide
JRC148	226.0	231.0	5.0	0.50	0.33	0.04	0.18	0.12	0.02	
JRC148			21.0							Sulphide
<u></u>	248.0	269.0		0.46	0.11	0.01	0.12	0.09	0.01	Sulphide
JRC149	113.0	166.0	53.0	0.68	0.16	0.03	0.12	0.14	0.01	Sulphide
Incl	139.0	145.0	6.0	1.28	0.29	0.03	0.14	0.04		Sulphide
and JRC149	156.0	159.0	3.0	1.86	0.41	0.06	0.13	0.10	0.01	Sulphide
	186.0	264.0	78.0	0.60	0.14	0.01	0.14	0.07	0.01	Sulphide
	255.0	260.0	5.0	1.26	0.24	0.01	0.15	0.06	0.01	Sulphide
JRC150	156.0	173.0	17.0	0.43	0.40	0.04	0.05	0.02	0.01	Sulphide
JRC151	26.0	30.0	4.0	0.93	0.17	0.02	0.14	0.05	0.02	Oxide
JRC151	55.0	94.0	39.0	0.54	0.13	0.03	0.12	0.11	0.01	Sulphide
	56.0	58.0	2.0	1.25	0.32	0.02	0.21	0.20	0.02	Sulphide
JRC151	100.0	214.0	114.0	0.74	0.16	0.03	0.16	0.09	0.02	Sulphide
Incl	106.0	115.0	9.0	1.01	0.19	0.02	0.15	0.06	0.01	Sulphide
and	126.0	128.0	2.0	1.06	0.21	0.02	0.18	0.05	0.02	Sulphide
and	159.0	161.0	2.0	1.02	0.22	0.05	0.21	0.14	0.02	Sulphide
and	173.0	187.0	14.0	1.16	0.25	0.04	0.15	0.08	0.01	Sulphide
and	195.0	197.0	2.0	1.13	0.22	0.01	0.30	0.12	0.03	Sulphide

Hole ID	From (m)	To (m)	Interval (m)*	Pd (g/t)	Pt (g/t)	Au (g/t)	Ni (%)	Сu (%)	Co (%)	Geology
JRC151	235.0	276.0	41.0	0.41	0.07	0.02	0.15	0.11	0.02	Sulphide
JRC152	10.0	22.0	12.0	0.77	0.15	0.01	0.15	0.14	0.03	Oxide
Incl	15.0	18.0	3.0	1.10	0.18	0.01	0.22	0.20	0.03	Oxide
JRC152	22.0	202.0	180.0	0.71	0.15	0.01	0.16	0.09	0.02	Sulphide
Incl	39.0	43.0	4.0	1.45	0.29	0.01	0.26	0.22	0.03	Sulphide
and	72.0	75.0	3.0	1.28	0.22	< 0.01	0.20	0.05	0.02	Sulphide
and	116.0	118.0	2.0	1.20	0.33	0.01	0.15	0.12	0.02	Sulphide
and	139.0	142.0	3.0	1.53	0.41	0.01	0.18	0.12	0.02	Sulphide
and	189.0	191.0	2.0	1.86	0.28	0.02	0.36	0.22	0.02	Sulphide
and	199.0	202.0	3.0	1.39	0.20	0.02	0.20	0.10	0.02	Sulphide
JRC153	156.0	170.0	14.0	0.39	0.08	0.03	0.12	0.12	0.01	Sulphide
JRC153	181.0	251.0	70.0	0.45	0.11	0.03	0.12	0.07	0.01	Sulphide
Incl	237.0	231.0	2.0	1.14	0.11	0.02	0.15	0.07	0.01	Sulphide
JRC154	146.0	188.0	42.0	0.66	0.26	0.02	0.13	0.07	0.02	Sulphide
Incl	172.0	176.0	4.0	1.23	0.13	0.02	0.12	0.15	0.02	Sulphide
JRC154	201.0	219.0	18.0	0.51	0.33	< 0.03	0.16	0.18	0.02	Sulphide
JRC154	201.0	217.0	4.0	0.31	0.10	<0.01	0.18	0.08	0.02	Sulphide
JRC154	227.0	260.0	19.0	0.38	0.10	<0.01	0.17	0.08	0.01	
										Sulphide
	241.0	243.0	2.0	1.44	0.28	0.01	0.17	0.12	0.02	Sulphide
JRC155	58.0	62.0	4.0	0.30	0.06	0.04	0.08	0.09	0.01	Sulphide
JRC155	84.0	137.0	53.0	0.53	0.13	0.01	0.11	0.07	0.01	Sulphide
Incl	103.0	106.0	3.0	1.21	0.27	0.02	0.13	0.06	0.01	Sulphide
JRC155	169.0	258.0	89.0	0.57	0.12	< 0.01	0.16	0.04	0.02	Sulphide
Incl	206.0	208.0	2.0	1.14	0.22	<0.01	0.15	0.05	0.01	Sulphide
and	221.0	224.0	3.0	2.57	0.52	0.01	0.46	0.17	0.05	Sulphide
and	254.0	256.0	2.0	1.07	0.20	<0.01	0.18	0.05	0.02	Sulphide
JRC156	15.0	33.0	18.0	0.51	0.30	0.04	0.09	0.08	0.02	Oxide
JRC158	43.0	48.0	5.0	0.44	1.29	0.01	0.03	0.01	0.01	Oxide
Incl	44.0	48.0	4.0	0.47	1.43	0.01	0.03	0.01	0.01	Oxide
JRC158	56.0	60.0	4.0	0.34	0.18	0.02	0.05	0.04	0.01	Oxide
JRC158	79.0	84.0	5.0	0.58	0.22	0.01	0.10	0.09	0.01	Sulphide
JRC158	163.0	167.0	4.0	0.31	0.08	<0.01	0.12	0.02	0.01	Sulphide
JRC158	170.0	190.0	20.0	0.73	0.15	<0.01	0.16	0.05	0.02	Sulphide
Incl	184.0	187.0	3.0	2.02	0.41	0.01	0.21	0.06	0.02	Sulphide
JRC159	31.0	38.0	7.0	0.48	0.14	<0.01	0.09	0.10	0.02	Oxide
JRC159	70.0	80.0	10.0	0.37	0.08	0.01	0.14	0.09	0.02	Sulphide
JRC159	86.0	112.0	26.0	0.35	0.08	0.01	0.10	0.12	0.01	Sulphide
JRC159	117.0	128.0	11.0	0.51	0.13	0.03	0.11	0.15	0.01	Sulphide
JRC159	213.0	246.0	33.0	0.85	0.20	0.04	0.14	0.11	0.01	Sulphide
Incl	214.0	218.0	4.0	1.23	0.27	0.08	0.17	0.07	0.02	Sulphide
and	232.0	241.0	9.0	1.06	0.25	0.03	0.16	0.14	0.01	Sulphide
JRC160	65.0	81.0	16.0	0.35	0.08	<0.01	0.13	0.05	0.01	Sulphide

Hole ID	From (m)	To (m)	Interval (m)*	Pd (g/t)	Pt (g/t)	Au (g/t)	Ni (%)	Сu (%)	Co (%)	Geology
JRC160	98.0	112.0	14.0	0.58	0.13	0.01	0.16	0.07	0.01	Sulphide
incl	98.0	101.0	3.0	1.09	0.24	0.01	0.17	0.09	0.02	Sulphide
JRC160	120.0	249.0	129.0	0.58	0.13	0.04	0.14	0.14	0.01	Sulphide
Incl	180.0	187.0	7.0	1.00	0.21	0.12	0.16	0.24	0.02	Sulphide
and	241.0	248.0	7.0	1.16	0.24	0.07	0.15	0.10	0.02	Sulphide
JRC162D	5.0	56.0	51.0	1.06	0.27	0.02	0.20	0.11	0.05	Oxide
Incl	7.0	28.0	21.0	1.67	0.47	0.01	0.18	0.15	0.09	Oxide
JRC162D	56.0	60.0	4.0	0.55	0.12	0.01	0.23	0.02	0.02	Sulphide
JRC162D	78.0	257.6	179.6	0.71	0.17	0.03	0.12	0.06	0.01	Sulphide
Incl	90.0	96.0	6.0	1.21	0.17	0.06	0.14	0.20	0.01	Sulphide
and	124.0	130.0	6.0	1.26	0.42	0.03	0.16	0.06	0.02	Sulphide
and	200.0	203.0	3.0	1.17	0.38	0.01	0.13	0.10	0.01	Sulphide
and	210.0	246.0	36.0	1.01	0.23	0.04	0.11	0.08	0.01	Sulphide
and	249.0	251.0	2.0	1.33	0.19	0.03	0.15	0.08	0.01	Sulphide
JRC163	10.0	43.0	33.0	1.02	0.42	0.01	0.12	0.11	0.03	Oxide
incl	21.0	36.0	15.0	1.47	0.54	0.01	0.15	0.16	0.04	Oxide
JRC163	43.0	49.0	6.0	0.62	0.12	<0.01	0.18	0.03	0.02	Sulphide
JRC163	54.0	70.0	16.0	1.71	0.25	0.01	0.50	0.54	0.04	Sulphide
Incl	63.0	68.0	5.0	3.82	0.43	0.01	1.14	0.24	0.10	Sulphide
JRC163	80.0	169.0	89.0	1.17	0.25	0.08	0.15	0.39	0.02	Sulphide
Incl	144.0	157.0	13.0	4.69	1.04	0.45	0.22	2.22	0.02	Sulphide
JRC163	175.0	180.0	5.0	0.55	0.14	0.02	0.13	0.09	0.01	Sulphide
JRC165D	357.0	367.0	10.0	0.99	0.48	0.03	0.15	0.17	0.02	Sulphide
Incl	359.0	365.0	6.0	1.30	0.69	0.04	0.18	0.20	0.02	Sulphide
JRC165D	379.0	406.0	27.0	0.53	0.13	0.07	0.09	0.14	0.01	Sulphide
Incl	398.0	400.0	2.0	2.32	0.44	0.51	0.11	0.11	0.01	Sulphide
JRC166	41.0	58.0	17.0	0.51	0.12	0.01	0.16	0.06	0.02	Sulphide
JRC167D	263.0	317.6	54.6	0.90	0.20	0.09	0.14	0.27	0.01	Sulphide
Incl	264.0	275.0	11.0	1.33	0.39	0.04	0.17	0.28	0.01	Sulphide
and	281.0	295.0	14.0	1.08	0.19	0.12	0.14	0.44	0.01	Sulphide
and	298.0	300.0	2.0	1.25	0.13	0.53	0.16	0.48	0.02	Sulphide
JRC168	8.0	35.0	27.0	0.89	0.27	0.03	0.16	0.12	0.05	Oxide
Incl	9.0	18.0	9.0	1.58	0.49	0.04	0.19	0.21	0.11	Oxide
JRC168	35.0	90.0	55.0	0.55	0.12	0.02	0.20	0.12	0.02	Sulphide
Incl	69.0	73.0	4.0	1.75	0.23	0.03	0.50	0.82	0.04	Sulphide
and	144.0	147.0	3.0	2.56	0.56	0.13	0.20	0.44	0.02	Sulphide
JRC169	143.0	150.0	7.0	0.46	0.10	0.01	0.14	0.05	0.01	Sulphide
JRC170	10.0	23.0	13.0	0.87	0.19	0.01	0.11	0.11	0.01	Oxide
Incl	17.0	21.0	4.0	1.04	0.25	<0.01	0.17	0.14	0.02	Oxide
JRC170	28.0	33.0	5.0	0.35	0.08	<0.01	0.12	0.06	0.01	Oxide
JRC170	33.0	82.0	49.0	0.69	0.14	0.01	0.18	0.09	0.02	Sulphide
JRC170	230.0	236.0	6.0	0.49	0.10	0.01	0.13	0.07	0.01	Sulphide

Hole ID	From (m)	To (m)	Interval (m)*	Pd (g/t)	Pt (g/t)	Au (g/t)	Ni (%)	Сu (%)	Co (%)	Geology
JRC171	163.0	188.0	25.0	0.46	0.14	0.02	0.13	0.10	0.01	Sulphide
JRC171	193.0	212.0	19.0	0.65	0.12	0.08	0.11	0.04	0.01	Sulphide
Incl	208.0	212.0	4.0	1.78	0.26	0.17	0.06	0.03	0.01	Sulphide
JRC172	6.0	27.0	21.0	0.64	0.22	0.04	0.18	0.12	0.03	Oxide
Incl	7.0	13.0	6.0	1.21	0.39	0.04	0.23	0.25	0.07	Oxide
JRC172	27.0	60.0	33.0	0.36	0.09	0.02	0.16	0.04	0.02	Sulphide
JRC172	152.0	158.0	6.0	0.33	0.08	0.01	0.15	0.02	0.01	Sulphide
JRC172	168.0	193.0	25.0	0.45	0.17	0.03	0.17	0.14	0.02	Sulphide
Incl	190.0	192.0	2.0	1.28	0.78	0.09	0.11	0.08	0.01	Sulphide
JRC173	105.0	115.0	10.0	0.58	0.14	0.01	0.14	0.11	0.02	Sulphide
JRC175	8.0	25.0	17.0	0.69	0.14	0.02	0.20	0.20	0.05	Oxide
JRC175	39.0	53.0	14.0	0.84	0.21	0.04	0.14	0.35	0.01	Sulphide
Incl	48.0	52.0	4.0	1.85	0.49	0.08	0.15	0.90	0.02	Sulphide
JRC175	70.0	74.0	4.0	0.92	0.20	0.20	0.10	0.14	0.01	Sulphide
Incl	70.0	72.0	2.0	1.10	0.22	0.36	0.08	0.14	0.01	Sulphide
JRC176	10.0	30.0	20.0	2.96	0.96	0.56	0.15	0.30	0.04	Oxide
Incl	11.0	27.0	16.0	3.52	1.17	0.66	0.15	0.34	0.05	Oxide
JRC176	30.0	50.0	20.0	0.60	0.10	0.12	0.12	0.07	0.01	Sulphide
JRC177	4.0	30.0	26.0	1.18	0.57	0.02	0.16	0.16	0.05	Oxide
Incl	13.0	28.0	15.0	1.63	0.65	0.02	0.21	0.17	0.07	Oxide
JRC177	30.0	50.0	20.0	0.39	0.08	<0.01	0.12	0.07	0.01	Sulphide
JRC177	57.0	63.0	6.0	0.36	0.09	<0.01	0.19	0.06	0.02	Sulphide
JRC177	74.0	111.0	37.0	0.47	0.10	<0.01	0.12	0.05	0.01	Sulphide
JRC177	127.0	140.0	13.0	0.43	0.08	<0.01	0.15	0.05	0.02	Sulphide
JRC177	176.0	199.0	23.0	0.41	0.09	0.02	0.13	0.08	0.01	Sulphide
JRC177	214.0	231.0	17.0	0.40	0.13	0.01	0.12	0.10	0.01	Sulphide
JRC178	4.0	30.0	26.0	1.21	0.33	0.01	0.14	0.22	0.08	Oxide
Incl	9.0	24.0	15.0	1.70	0.45	0.01	0.16	0.30	0.14	Oxide
JRC178	51.0	174.0	123.0	0.62	0.17	0.01	0.20	0.09	0.02	Sulphide
Incl	66.0	69.0	3.0	2.73	0.77	0.01	0.68	0.20	0.05	Sulphide
and	75.0	78.0	3.0	2.13	0.62	0.01	0.37	0.24	0.03	Sulphide
and	122.0	124.0	2.0	3.17	2.41	0.01	1.54	0.40	0.12	Sulphide
JRC178	208.0	241.0	33.0	0.92	0.18	0.02	0.13	0.06	0.01	Sulphide
Incl	228.0	232.0	4.0	1.38	0.22	0.02	0.11	0.03	0.01	Sulphide
JRC179	8.0	38.0	30.0	1.58	0.61	0.07	0.19	0.27	0.06	Oxide
Incl	8.0	24.0	16.0	1.89	0.95	0.09	0.23	0.30	0.10	Oxide
and	31.0	37.0	6.0	2.10	0.33	0.06	0.18	0.40	0.01	Oxide
JRC179	38.0	81.0	43.0	0.76	0.27	0.12	0.17	0.25	0.02	Sulphide
Incl	74.0	77.0	3.0	4.16	2.53	0.18	0.34	0.79	0.03	Sulphide
JRC180	9.0	29.0	20.0	0.78	0.25	0.02	0.15	0.09	0.06	Oxide
Incl	10.0	16.0	6.0	1.45	0.51	0.03	0.18	0.20	0.13	Oxide
JRC180	29.0	73.0	44.0	0.43	0.09	0.01	0.16	0.02	0.01	Sulphide

	Hole ID	From (m)	To (m)	Interval (m)*	Pd (g/t)	Pt (g/t)	Au (g/t)	Ni (%)	С u (%)	Co (%)	Geology
	JRC180	78.0	108.0	30.0	0.46	0.11	0.04	0.13	0.14	0.01	Sulphide
	JRC180	115.0	138.0	23.0	0.34	0.08	0.04	0.12	0.19	0.01	Sulphide
	JRC180	148.0	166.0	18.0	0.57	0.14	0.07	0.11	0.21	0.01	Sulphide
	Incl	154.0	157.0	3.0	1.29	0.33	0.16	0.19	0.65	0.02	Sulphide
	JRC181	5.0	35.0	30.0	1.66	0.38	0.01	0.15	0.18	0.04	Oxide
_	Incl	7.0	24.0	17.0	2.44	0.55	0.01	0.16	0.24	0.06	Oxide
	JRC181	35.0	82.0	47.0	0.51	0.11	<0.01	0.13	0.06	0.01	Sulphide
14	JRC181	107.0	117.0	10.0	0.56	0.14	0.02	0.17	0.12	0.02	Sulphide
	JRC181	169.0	181.0	12.0	0.46	0.10	0.02	0.12	0.07	0.01	Sulphide
6	JRC181	191.0	197.0	6.0	0.32	0.07	0.02	0.15	0.07	0.01	Sulphide
IJ.,	JRC181	204.0	212.0	8.0	0.32	0.10	0.02	0.13	0.04	0.01	Sulphide
	JRC181	220.0	237.0	17.0	0.37	0.13	0.06	0.13	0.09	0.01	Sulphide
	JRC181	242.0	257.0	15.0	0.95	0.58	0.08	0.11	0.03	0.01	Sulphide
	Incl	253.0	257.0	4.0	2.64	1.85	0.24	0.13	0.04	0.01	Sulphide
	JRC182	7.0	30.0	23.0	0.80	0.23	0.02	0.16	0.10	0.05	Oxide
	incl	7.0	14.0	7.0	1.64	0.54	0.03	0.21	0.25	0.12	Oxide
	JRC182	30.0	102.0	72.0	0.37	0.08	0.01	0.15	0.04	0.01	Sulphide
0	JRC182	107.0	118.0	11.0	0.36	0.08	0.02	0.13	0.09	0.01	Sulphide
	JRC183	5.0	19.0	14.0	0.40	0.02	0.03	0.06	0.11	0.01	Sulphide
	JRC184	111.0	124.0	13.0	0.54	0.13	0.03	0.15	0.12	0.02	Sulphide
	JRC185	101.0	119.0	18.0	0.95	1.01	0.04	0.13	0.14	0.01	Sulphide
_	Incl	101.0	111.0	10.0	1.19	1.67	0.05	0.13	0.16	0.01	Sulphide
ſſ	JRC185	175.0	192.0	17.0	0.38	0.11	0.02	0.12	0.03	0.01	Sulphide
2	JRC185	216.0	237.0	21.0	1.15	0.27	0.10	0.11	0.03	0.01	Sulphide
	Incl	217.0	227.0	10.0	1.30	0.26	0.06	0.11	0.02	0.01	Sulphide
14	and	233.0	236.0	3.0	2.45	0.73	0.36	0.15	0.07	0.01	Sulphide
	JRC186	7.0	32.0	25.0	0.61	0.11	0.02	0.10	0.11	0.01	Oxide
	JRC187	6.0	34.0	28.0	0.89	0.30	0.05	0.20	0.13	0.03	Oxide
_	Incl	7.0	16.0	9.0	1.92	0.59	0.08	0.24	0.22	0.07	Oxide
	and	27.0	29.0	2.0	1.15	0.88	0.06	0.27	0.12	0.02	Oxide
	JRC187	94.0	105.0	11.0	0.46	0.09	0.02	0.11	0.02	0.01	Sulphide
	JRC187	115.0	136.0	21.0	0.77	0.20	0.02	0.15	0.03	0.01	Sulphide
	Incl	127.0	136.0	9.0	1.16	0.33	0.04	0.19	0.04	0.02	Sulphide
	JRC188	7.0	28.0	21.0	0.93	0.26	0.03	0.16	0.13	0.03	Oxide
1	Incl	8.0	16.0	8.0	1.56	0.43	0.05	0.22	0.25	0.06	Oxide
	JRC188	28.0	83.0	55.0	0.38	0.08	0.02	0.15	0.03	0.01	Sulphide
	JRC188	102.0	125.0	23.0	0.53	0.12	0.01	0.17	0.06	0.01	Sulphide
	Incl	104.0	108.0	4.0	1.03	0.22	0.02	0.22	0.07	0.02	Sulphide
	JRC188	132.0	167.0	35.0	0.52	0.12	0.04	0.14	0.19	0.01	Sulphide
	JRC189	11.0	31.0	20.0	1.23	0.37	0.02	0.19	0.18	0.11	Oxide
	Incl	15.0	31.0	16.0	1.40	0.45	0.02	0.23	0.21	0.14	Oxide
	JRC189	31.0	73.0	42.0	0.93	0.16	0.04	0.19	0.15	0.02	Sulphide

	Hole ID	From (m)	To (m)	Interval (m)*	Pd (g/t)	Pt (g/t)	Au (g/t)	Ni (%)	Cu (%)	Co (%)	Geology
	Incl	30.0	33.0	3.0	2.29	0.23	0.02	0.30	0.28	0.03	Sulphide
	and	46.0	49.0	3.0	1.67	0.45	0.17	0.20	1.01	0.02	Sulphide
	and	65.0	71.0	6.0	1.86	0.17	0.05	0.15	0.01	0.01	Sulphide
	JRC189	85.0	120.0	35.0	0.57	0.11	0.03	0.12	0.02	0.01	Sulphide
	JRC189	136.0	164.0	28.0	0.96	0.13	0.08	0.11	0.05	0.01	Sulphide
	Incl	148.0	155.0	7.0	1.42	0.23	0.14	0.13	0.09	0.01	Sulphide
[and	162.0	164.0	2.0	1.69	0.13	0.12	0.17	0.15	0.01	Sulphide
74	JRC190	6.0	33.0	27.0	0.79	0.18	0.01	0.17	0.14	0.03	Oxide
	Incl	9.0	22.0	13.0	1.09	0.26	0.02	0.22	0.22	0.05	Oxide
6	JRC190	33.0	44.0	11.0	0.64	0.13	0.02	0.19	0.21	0.02	Sulphide
IJ	JRC190	87.0	92.0	5.0	1.60	0.37	0.07	0.18	0.13	0.02	Sulphide
	incl	89.0	91.0	2.0	3.14	0.72	0.15	0.26	0.20	0.03	Sulphide
	JRC190	99.0	115.0	16.0	0.65	0.21	0.12	0.17	0.24	0.02	Sulphide
	JRC190	148.0	154.0	6.0	1.45	1.05	0.47	0.10	0.13	0.01	Sulphide
	Incl	150.0	152.0	2.0	3.35	2.50	1.10	0.14	0.18	0.02	Sulphide
	JRC191	152.0	170.0	18.0	0.61	0.26	0.06	0.10	0.04	0.01	Sulphide
IJ,	Incl	163.0	170.0	7.0	1.01	0.51	0.11	0.10	0.04	0.01	Sulphide

Appendix 2: New drill hole locations – Julimar Ni-Cu-PGE Project.

Hole ID	Туре	Easting (m)	Northing (m)	RL (m)	Depth (m)	Survey type	Azi (°)	Dip (°)	Assay status
JD024	DDH	425196.8	6512361.6	238.0	310.8	GPS-RTK	92.6	-61.3	Reported
JD025	DDH	425239.4	6512430.7	239.9	280.6	GPS-RTK	89.0	-61.5	Reported
JD027	DDH	425053.6	6512359.3	237.3	348.8	GPS-RTK	91.1	-56.8	Reported
JD028	Core	425288.6	6513320.8	257.7	468.8	GPS-RTK	90.4	-60.3	Reported
JD029	Core	424930.6	6512601.1	247.5	564.8	GPS-RTK	91.9	-61.3	Reported
JD030	Core	425441.3	6512281.8	242.2	183.7	GPS-RTK	90.0	-60.0	Reported (NSA)
JD031	Core	425289.3	6513521.0	256.1	450.4	GPS-RTK	91.3	-59.9	Reported
JD032	Core	424796.1	6512665.9	251.3	660.7	GPS-RTK	117.1	-60.6	Reported
JD033	Core	425404.0	6512283.3	239.8	210.8	GPS-RTK	89.9	-59.9	Reported (NSA)
JD034	Core	425437.0	6513035.8	258.2	420.0	GPS-RTK	90.3	-59.8	Reported
JD035	Core	425538.2	6512816.2	251.7	294.8	GPS-RTK	88.0	-60.8	Reported
JD036	Core	425353.4	6512283.7	237.5	214.2	GPS-RTK	89.2	-59.8	Reported
JD038	Core	425317.7	6512283.1	236.8	256.8	GPS-RTK	89.9	-59.8	Reported
JD039	Core	425576.9	6512820.8	249.1	301.1	GPS-RTK	90.0	-60.0	Reported
JD040	Core	425367.8	6513598.8	254.1	426.8	GPS-RTK	98.9	-56.2	Reported
JRC135	RC	425311.3	6512789.0	254.9	258.0	GPS-RTK	89.5	-59.8	Reported
JRC136	RC	425487.1	6513317.1	248.4	216.0	GPS-RTK	90.0	-60.0	Reported
JRC137	RC	425278.8	6512428.5	239.6	300.0	GPS-RTK	87.9	-61.9	Reported
JRC138	RC	425273.9	6512783.8	255.5	288.0	GPS-RTK	89.9	-60.2	Reported
JRC139	RC	425409.9	6513320.1	251.1	252.0	GPS-RTK	84.2	-58.9	Reported
JRC140	RC	425238.7	6512774.6	255.9	282.0	GPS-RTK	93.1	-59.2	Reported
JRC141	RC	425145.8	6512433.6	240.7	258.0	GPS-RTK	88.7	-59.5	Reported
JRC142	RC	425202.3	6513320.1	261.5	234.0	GPS-RTK	89.3	-59.1	Reported
JRC143	RC	424957.1	6512783.1	258.7	258.0	GPS-RTK	88.3	-59.7	Reported
JRC144	RC	425203.3	6512783.3	257.5	244.0	GPS-RTK	90.3	-59.7	Reported
JRC145	RC	425328.5	6513320.6	256.4	246.0	GPS-RTK	88.1	-59.8	Reported (NSA)
JRC146	RC	425113.5	6513000.5	265.9	252.0	GPS-RTK	92.7	-52.2	Reported
JRC147	RC	424997.2	6512782.2	258.6	246.0	GPS-RTK	88.0	-59.4	Reported
JRC148	RC	425125.9	6513320.2	265.8	270.0	GPS-RTK	88.7	-59.2	Reported
JRC149	RC	425085.8	6512999.8	266.2	264.0	GPS-RTK	91.9	-61.8	Reported
JRC150	RC	425007.1	6513319.8	269.8	264.0	GPS-RTK	90.9	-59.6	Reported
JRC151	RC	424918.4	6512784.4	258.2	276.0	GPS-RTK	91.6	-59.5	Reported
JRC152	RC	425487.8	6513520.6	249.8	250.0	GPS-RTK	89.9	-59.2	Reported
JRC153	RC	425025.1	6513079.3	266.7	252.0	GPS-RTK	88.0	-59.7	Reported
JRC154	RC	425150.3	6513080.3	263.4	264.0	GPS-RTK	87.7	-59.7	Reported
JRC155	RC	425228.3	6513079.8	262.2	258.0	GPS-RTK	89.7		Reported
JRC156	RC	425408.5	6513519.8	252.0	36.0	GPS-RTK	90.0	-60.0	Reported
JRC157	RC	425048.8	6513519.5	265.6	252.0	GPS-RTK	90.3	-59.6	Reported (NSA)
JRC158	RC	425327.8	6513518.5	254.6	240.0	GPS-RTK	89.3		Reported
JRC159	RC	424876.9	6512784.6	257.6	249.0	GPS-RTK	92.3	-60.4	Reported

Hole ID	Туре	Easting (m)	Northing (m)	RL (m)	Depth (m)	Survey type	Azi (°)	Dip (°)	Assay status
JRC160	RC	424837.2	6512783.1	256.7	249.0	GPS-RTK	88.1	-60.3	Reported
JRC162D	RC/Core	425558.8	6512865.5	251.0	294.8	GPS-RTK	93.7	-59.3	Reported
JRC163	RC	425520.1	6512862.5	253.4	321.0	GPS-RTK	90.3	-59.8	Reported
JRC164	RC	424970.3	6513509.7	270.2	252.0	GPS-RTK	91.4	-59.6	Reported (NSA)
JRC165D	RC/Core	424887.9	6512128.7	237.0	435.8	GPS-RTK	92.0	-59.8	Reported
JRC166	RC	425608.6	6513596.4	249.5	270.0	GPS-RTK	88.7	-60.1	Reported
JRC167D	RC/Core	424968.3	6512130.1	233.3	409.8	GPS-RTK	92.6	-60.0	Reported
JRC168	RC	425357.5	6512323.2	237.8	222.0	GPS-RTK	90.9	-60.1	Reported
JRC169	RC	425528.7	6513598.3	250.8	180.0	GPS-RTK	90.0	-60.1	Reported
JRC170	RC	425448.5	6513598.8	252.5	252.0	GPS-RTK	92.0	-60.0	Reported
JRC171	RC	425088.8	6512042.4	232.3	309.0	GPS-RTK	89.7	-59.2	Reported
JRC172	RC	425277.2	6512321.4	236.5	264.0	GPS-RTK	91.4	-62.0	Reported
JRC173	RC	425290.5	6513597.1	256.1	252.0	GPS-RTK	86.0	-59.0	Reported
JRC174	RC	425046.5	6512044.6	233.2	138.0	GPS-RTK	92.0	-59.6	Reported (NSA)
JRC175	RC	425433.5	6512318.1	241.8	234.0	GPS-RTK	89.1	-59.4	Reported
JRC176	RC	425579.3	6512477.7	240.4	126.0	GPS-RTK	92.7	-59.7	Reported
JRC177	RC	425256.9	6512646.2	246.2	249.0	GPS-RTK	87.3	-59.6	Reported
JRC178	RC	425321.8	6512649.2	246.4	249.0	GPS-RTK	90.7	-58.8	Reported
JRC179	RC	425534.2	6512475.8	242.1	186.0	GPS-RTK	89.9	-60.5	Reported
JRC180	RC	425378.3	6512394.2	239.5	252.0	GPS-RTK	90.4	-61.2	Reported
JRC181	RC	425415.3	6512651.4	248.8	279.0	GPS-RTK	92.6	-59.6	Reported
JRC182	RC	425339.7	6512394.1	238.3	142.0	GPS-RTK	89.8	-60.6	Reported
JRC183	RC	425495.1	6512477.0	242.8	234.0	GPS-RTK	91.4	-60.3	Reported
JRC184	RC	425491.4	6512653.1	251.4	250.0	GPS-RTK	89.1	-59.5	Reported
JRC185	RC	425459.0	6512653.3	250.7	273.0	GPS-RTK	91.1	-59.2	Reported
JRC186	RC	425455.7	6512474.5	242.3	174.0	GPS-RTK	89.7	-61.2	Reported
JRC187	RC	425579.0	6512558.2	241.2	195.0	GPS-RTK	91.8	-59.6	Reported
JRC188	RC	425314.5	6512393.8	238.5	246.0	GPS-RTK	88.4	-63.1	Reported
JRC189	RC	425537.6	6512555.4	242.2	201.0	GPS-RTK	89.1	-59.3	Reported
JRC190	RC	425414.5	6512476.1	241.5	180.0	GPS-RTK	90.0	-60.0	Reported
JRC191	RC	425501.2	6512554.1	244.1	213.0	GPS-RTK	91.7	-59.6	Reported

NSA = no significant assay

Appendix 3: JORC Table 1 – Julimar Ni-Cu-PGE Project

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). 	 Diamond drill core samples were taken over selective intervals ranging from 0.2m to 1.2m (typically 1.0m). Qualitative care taken when sampling diamond drill core to sample the same half of the drill core. Reverse Circulation (RC) drilling samples

Criteria	JORC Code explanation	Commentary
	 These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information. 	were collected as 1m samples. Two 1m assay samples were collected as a split from the rig cyclone using a cone splitter and are typically 3kg in weight.
Drilling techniques	 Drill type (eg. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drilling has been undertaken by diamond and Reverse Circulation (RC) techniques. Diamond drill core is HQ size (63.5mm diameter) with triple tube used from surface and standard tube in competent bedrock. Core orientation is by an ACT Reflex (ACT II RD) tool RC Drilling uses a face-sampling hammer drill bit with a diameter of 5.5 inches (140mm).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Individual recoveries of diamond drill core samples were recorded on a qualitative basis. Generally sample weights are comparable, and any bias is considered negligible. Individual recoveries for RC composite samples were recorded on a qualitative basis. Sample weights were slightly lower through transported cover whereas drilling through bedrock yielded samples with more consistent weights. No relationships have been evident between diamond core or RC sample grade and recoveries.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill holes were logged geologically including, but not limited to; weathering, regolith, lithology, structure, texture, alteration and mineralisation. Logging was at an appropriate quantitative standard for infill drilling and resource estimation. Logging is considered qualitative in nature. All holes were geologically logged in full. Diamond drill core is photographed wet

Criteria	JORC Code explanation	Commentary
		before cutting.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Diamond core was sawn in half and one-half quartered and sampled over 0.2-1.2n intervals (mostly 1m). Diamond drill core field duplicates collected as ¼ core. RC assay samples were collected as two 1m splits from the rig cyclone via a cone splitter. The cone splitter was horizontal to ensure sample representivity. Wet or damp samples were noted in the sample logging sheet and a majority of samples were dry. Sample preparation is industry standard and comprises oven drying, jaw crushing and pulverising to -75 microns (80% pass). Field duplicates were collected from selected sulphide zones as a second 1m split directly from the cone splitter. Drill sample sizes are considered appropriate for the style of mineralisation sought and the nature of the drilling program.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established. 	 Diamond drill core and RC samples underwent sample preparation and geochemical analysis by ALS Perth. Au-Pt Pd was analysed by 50g fire assay fusion with an ICP-AES finish (ALS Method code PGM-ICP24). A 48-element suite was analysed by ICP-MS following a four-acid digest (ALS method code ME-MS61) for holes up to and including JD023 and JRC122. Later holes were analysed using four-acid digest for 34 elements (ALS method code ME-ICP61) including Ag, Al As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn, Zr. Additional ore-grade analysis was performed as required for elements reporting out of range for Ni, Cr, Cu (ALS method code ME-OG-62) and Pd, Pt (ALS method code PGM-ICP27). Certified analytical standards and blanks were inserted at appropriate intervals for diamond, RC drill samples and auger soil samples Approximately 5% of samples submitted for analysis comprised QAQC control samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage 	 samples. Significant drill intersections are checked by the Project Geologist and then by the General Manager Exploration. Significant intersections are cross-checked with the logged geology and drill core after final assays are received.

Criteria	JORC Code explanation	Commentary
	 (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Two RC holes have been twinned with a diamond hole to provide a comparison between grade/thickness variations over a 5m separation between drill holes. Primary drill data was collected digitally using OCRIS software before being transferred to the master SQL database.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Diamond and RC drill hole collar location are initially recorded by Chalice employees using a handheld GPS with a +/- 3m margin of error. DGPS collar pick-ups replace handheld GPS collar pick-ups and have +/-20 mm margin of error. The grid system used for the location of a drill holes is GDA94 - MGA (Zone 50). RLs were assigned either from 1 sec (30m satellite data or DGPS pick-ups.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole spacing varies from between 80m x 40 m in the south to 200m x 80m in the north. Results from the drilling to date are not considered sufficient to assume any geological or grade continuity appropriate for Mineral Resource estimation procedure(s) and classifications. No compositing undertaken for diamonc drill core or RC samples.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 RC and Diamond drill holes were typicall oriented within 15° of orthogonal to the interpreted dip and strike of the known zone of mineralisation. However, drill hole JD012, JD026, JRC60 JRC078 and JRC081 were drilled at less optimal azimuths due to site access constraints. The orientation of the drilling is not considered to have introduced sampling bias
Sample security	The measures taken to ensure sample security.	Samples are collected in polyweave bag and delivered directly from site to ALS laboratories in Wangara, Perth by a Chalice contractor
Audits or	The results of any audits or reviews of sampling techniques and data.	No review has been carried out to date.

Section 2 Reporting of Exploration Results Criteria JORC Code explanation Commentary Mineral tenement Type, reference name/number, location Exploration activities are ongoing over and land tenure and ownership including agreements or E70/5118 and 5119 and the tenements status material issues with third parties such as are in good standing. The holder CGM joint ventures, partnerships, overriding (WA) Pty Ltd is a wholly owned subsidiary royalties, native title interests, historical of Chalice Mining Limited with no known sites, wilderness or national park and encumbrances environmental settings. Current drilling is on private land The security of the tenure held at the time E70/5119 partially overlaps ML1SA, a State • of reporting along with any known Agreement covering Bauxite mineral impediments to obtaining a licence to rights only operate in the area. **Exploration done** Acknowledgment and appraisal of Limited exploration has been completed by other parties exploration by other parties. by other exploration parties in the vicinity of the targets identified by Chalice to date. Chalice has compiled historical records • dating back to the early 1960's which indicate only three genuine explorers in the area, all primarily targeting Fe-Ti-V mineralisation. Over 1971-1972, Garrick Agnew Pty Ltd • undertook reconnaissance surface sampling over prominent aeromagnetic anomalies in a search for 'Coates deposit style' vanadium mineralisation. Surface sampling methodology is not described in detail, nor were analytical methods specified, with samples analysed for V₂O₅, Ni, Cu, Cr, Pb and Zn, results of which are referred to in this announcement. Three diamond holes were completed by Bestbet Pty Ltd targeting Fe-Ti-V situated approximately 3km NE of JRC001. No elevated Ni-Cu-PGE assays were reported. Bestbet Pty Ltd undertook 27 stream sediment samples within E70/5119. Elevated levels of palladium were noted in the coarse fraction (-5mm+2mm) are reported in this release. Finer fraction samples did not replicate the coarse fraction results. A local AMAG survey was flown in 1996 by Alcoa using 200m line spacing which has been used by Chalice for targeting purposes. Geology Deposit type, geological setting and style The target deposit type is a magmatic Niof mineralisation. Cu-PGE sulphide deposit, within the Yilgarn Craton. The style of sulphide mineralisation intersected consists of massive, matrix, stringer and disseminated sulphides typical of metamorphosed and structurally overprinted magmatic Ni sulphide deposits.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of such aggregation should be stated and some typical examples of such aggregations should be stated. 	 Provided in body of text Provided in body of text No material information has been excluded. Significant intercepts are reported using a >0.3g/t Pd length-weighted cut off. A maximum of 4m internal dilution has been applied. Higher grade intervals are reported using a >1.0g/t Pd length-weighted cut off. A maximum of 2m internal dilution has been applied. Metal equivalent values are not reported.
Relationship between mineralisation widths and intercept lengths	 stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known'). 	 All widths are quoted down-hole. All drill holes were orientated to be as close as possible to orthogonal to the interpreted strike and/or dip of the mineralised zone(s) and/or targets except for JD010, JD012, JD013, JD014, JD023, JD032, JRC060, JRC078 and JRC081 due to access constraints.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to figures in the body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be	All significant intercepts have been reported.

Criteria	JORC Code explanation	Commentary
	practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable
Further work	 The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Diamond and RC drilling will continue to test high-priority targets including EM conductors. Further drilling along strike and down dip may occur at these and other targets depending on results. Down-hole EM surveying will be carried out on the majority of diamond and selective RC drill holes to test for off-hole conductors. Subsequent holes will undergo down-hole EM if required. Any potential extensions to mineralisation are shown in the figures in the body of the text.