BURKINA FASO UPDATE - UNLOCKING THE POTENTIAL OF THE BOROMO BELT

HIGHLIGHTS:

$>$ Arrow is ramping up exploration efforts on its $1,500 \mathrm{~km}^{2}$ project in Burkina Faso
$>\quad$ Multiple new gold targets being defined on both 100% owned ground and the Trevali JV permits
> Proceeding toward a goal of consolidation of several advanced projects and deposits into a unified mineralised district

Arrow Minerals Limited (Arrow or the Company) is pleased to provide an update on its exploration activities in Burkina Faso. In parallel with growing the known Dassa gold deposit, several advanced targets are scheduled for drilling, as well as work to define multiple high-quality anomalies for drilling. The objective is to define a critical mass of gold mineralisation in a small radius around highly prospective structural locations along the Boromo Belt as shown in Figure 1.

Figure 1: Boromo Belt with Arrow permits, Trevali permits, and targets for 2021

The bulk of the work will be near Dassa, with concurrent regional definition along a newly acquired $>85 \mathrm{~km}$ portion of the fertile Boromo Greenstone Belt, now accessible to Arrow through a combination of 100% owned permits and via the recent binding term sheet to enter into a JV agreement with Trevali Mining (see ASX Announcement on 25 February 2021).
Arrow's Managing Director, Mr Howard Golden, said:
> "Arrow is preparing to launch an aggressive programme to unlock the immense potential of its position on the Boromo Greenstone Belt in Burkina Faso. With two deposits in hand, twelve prospects already advanced with high-grade intersections, and a large swathe of the greenstone belt ready for exploration we have the luxury of a target-rich environment in which to work.

The collection of drilling and other enabling data on our significant portion of the belt will be a priority for Arrow for the remainder of the year."

Boromo Belt Background

Arrow Minerals has been advancing its permits in the Boromo Belt for over a year, culminating in the recent definition of continuous near-surface, mostly oxidised gold mineralisation on its 100% Dassa project (see ASX Announcement on 13 January 2020). In addition, previous strong gold values in widely spaced drilling at the Divole Main and Divole Fold Nose targets sit within 7 km of Dassa (see ASX Announcement on 17 September 2019. Significant gold in soil and auger geochemistry has highlighted additional, as yet untested, gold mineralisation potential on Arrow permits (see ASX Announcement on 25 September 2020.

These very encouraging results have now been put into an even more positive context with the signing of a binding agreement with Trevali Mining to access an 85 km long section of the Boromo Belt extending northeast from Arrow's 100% owned permits. The Trevali permits host multiple partly defined high quality gold targets from limited historical work including the Guido deposit. The large section of the belt now available to Arrow also features regional structural corridors with significant evidence of mineralisation that require systematic exploration.

Trevali JV Permit Block

- The recent JV deal struck with Trevali has provided Arrow with a step change in accessing highly prospective ground with widespread gold anomalism, and multiple existing targets requiring drill testing within the next 12 months following modest additional anomaly definition work
- From 2009 to 2012 Blackthorn Resources explored for gold on permits currently held by Trevali and included in the recently signed JV agreement with Arrow.
- Blackthorn undertook significant surface and shallow rotary air blast (RAB) and RC drilling work during their tenure.
- Numerous highly anomalous results were obtained and announced by Blackthorn that coincide with favourable geological and structural positions identified by Arrow, as shown in Figure 1 (see Blackthorn ASX: BTR announcements from 22 May 2009, 30 April 2009, 30 August 2009, 16 December 2009 and 22 May 2010.
- The results in these blocks are of sufficient interest to rapidly proceed with validation and further anomaly definition work with a view to drill testing on multiple large target areas.
- Blackthorn reported results from RAB, RC and diamond drilling that include:

\circ	TZ21RB-023	$24 \mathrm{~m} @ 2.3 \mathrm{~g} / \mathrm{t}$ Au from $18 \mathrm{~m}^{1}$
\circ	SPNRB-037	$2 \mathrm{~m} @ 7.6 \mathrm{~g} / \mathrm{t}$ Au from $0 \mathrm{~m}^{1}$
\circ	POARB-054	$4 \mathrm{~m} @ 6.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ from $6 \mathrm{~m}^{1}$
\circ	Q22RC-003	$417 \mathrm{~m} @ 2.4 \mathrm{~g} / \mathrm{t}$ Au from $57 \mathrm{~m}^{1}$
\circ	GDDH012	$15 \mathrm{~m} @ 4.1 \mathrm{~g} / \mathrm{t}$ Au from $39 \mathrm{~m}^{1}$
\circ	POADDH-006	$4 \mathrm{~m} @ 3.2 \mathrm{~g} / \mathrm{t}$ Au from $130 \mathrm{~m}^{1}$
\circ	SPRB-003	$2 \mathrm{~m} @ 6.6 \mathrm{~g} / \mathrm{t}$ Au from $26 \mathrm{~m}^{1}$
\circ	GDDH-036	$4.3 \mathrm{~m} @ 4.4 \mathrm{~g} / \mathrm{t}$ Au from $116 \mathrm{~m}^{1}$
\circ	SPNRC-011	$4 \mathrm{~m} @ 5.2 \mathrm{~g} / \mathrm{t}$ Au from $88 \mathrm{~m}^{1}$

Trevali has also advanced work on their permits for gold as well as base metals. In particular, RC drilling has defined numerous high-grade zones for follow-up including:

\circ	LST2-AC030	$4 \mathrm{~m} @ 11.45 \mathrm{~g} / \mathrm{t}$ Au from 48 m 5
\circ	L2T1-AC003	$4 \mathrm{~m} @>25 \mathrm{~g} / \mathrm{t}$ Au from 12 m
\circ	SPAC-013	$4 \mathrm{~m} @ 12.5 \mathrm{~g} / \mathrm{t}$ Au from 20 m
\circ	PSW2-AC1190	$4 \mathrm{~m} @>25 \mathrm{~g} / \mathrm{t}$ Au from surface

100\% Arrow Permits

The outstanding results compiled over the Trevali JV permits dovetails into a coherent large prospective area as shown in Figure 2. The results above, combined with the Dassa and Dassa South deposit and mineralised zone respectively, (see ASX announcement on 4 March 2021), and the Divole Main and Divole Fold nose zones (see ASX announcement on 17 September 2019) already comprise a significant gold-bearing district. When added to the regional prospectivity across the Boromo Belt to be explored by Arrow it represents a very large and productive exploration space.

Dassa

- Broad coherent soil geochemistry
- Linear auger anomalies up to $6.4 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
- Drilled deposit with $1 \mathrm{~km} \times 360 \mathrm{~m}$ consistent gold mineralisation dipping shallowly from surface, largely in the oxidised zone including the following intersections:
- 6 m @ $4.0 \mathrm{~g} / \mathrm{t}$ Au from 43 m
- 13 m @ $2.4 \mathrm{~g} / \mathrm{t}$ Au from 6 m
- $12 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t}$ Au from 15 m
- 13 m @ $2.4 \mathrm{~g} / \mathrm{t}$ Au from 31 m
- 33m @ $1.9 \mathrm{~g} / \mathrm{t}$ Au from 21 m
- 8 m @ $2.5 \mathrm{~g} / \mathrm{t}$ Au from 112 m
- 13m @ $1.4 \mathrm{~g} / \mathrm{t}$ Au from 31m
- $14 \mathrm{~m} @ 3.2 \mathrm{~g} / \mathrm{t}$ Au from 23m

Figure 2: Dassa deposit with drilling completed by Arrow Minerals

Divole Main, Divole Fold Nose and Poa

- RC drilling followed up soil and auger anomalism targeted on mapped structures information (see ASX announcement on 17 September 2019).
- Gold mineralisation was drilled on three zones on the two targets based on soil and auger gold anomalism (see Figure 3).
- Mineralisation was complex in the Fold Nose, requiring more information and follow-up drilling.
- Mineralisation at Divole Main is coherent on a N-S structure and within a porphyry, warranting further follow-up drilling. Intersections from the two zones included:
- 9.9 m @ $4.3 \mathrm{~g} / \mathrm{t}$ Au from 48 m
- 8 m @ $1.7 \mathrm{~g} / \mathrm{t}$ Au from 125 m
- 17 m @ $1.2 \mathrm{~g} / \mathrm{t}$ Au from 41 m
- 3 m @ $3.7 \mathrm{~g} / \mathrm{t}$ Au from 53m
- 7.5m @ 1.6g/t from 65m
- Arrow also completed auger drilling in the southwest corner of Divole East, defining a highgrade coherent auger anomaly targeted for upcoming drilling

Figure 3: Auger saprolite sample analysis results over the Divole East Permit

Proposed 2021 Work Programme

Work proposed for the coming twelve months includes all stages of exploration to advance the many existing high-quality targets along the Boromo Belt, as well as regional studies to deliver more targets for testing. The Table below summarises the techniques, areas, and timing of the planned exploration work.

Table 1: Twelve Month Bromo Belt Work Programme

Project Generation		
Geological and regolith mapping	Trevali JV	Q2 2021
Regional stream sediment geochemistry	Trevali JV	Q2 2021
Gravity survey	Regional - Arrow and Trevali JV	Q3 2021
High-resolution aeromagnetic survey	Trevali JV	Q4 2021
Anomaly Definition	Trevali JV	Q3 2021
Soil geochemistry	Divole East, Trevali JV	Q3 2021
Shallow auger drilling	Trevali JV (Guido)	Q3 2021
Relogging and analysis of historical drillholes		
Mineralisation Definition Drilling	Dassa, Dassa South, Dyapya, Divole East, Trevali JV	Q2 2021
Reverse circulation (RC) drilling	Dassa, Trevali JV	Q1 2022
Diamond core drilling		

Announcement authorised for release by Howard Golden, Managing Director of Arrow. For further information visit www.arrowminerals.com.au or contact:

Arrow Minerals Limited

Mr Howard Golden
Managing Director

E: info@arrowminerals.com.au

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Howard Golden who is a Member of the Australian Institute of Geoscientists. Mr Golden is a full-time employee of Arrow and has more than five years' experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves". Mr Golden consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Additionally, Mr Golden confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report.

Appendix 1: Trevali RC Drilling Results

Hole ID	Northing	Easting	From	To	Interval Thickness	Au ppm
LST2-AC030	550274	1370332	44	48	4	
L2T1-AC003	556490	1376817	12	16	4	
SPAC-013	552420	1374436	20	24	4	
PSW2-AC119	540942	1367039	0	4	4	12.45

Appendix 2: Blackthorn Resources Announced RC Drilling Results ${ }^{1}$

Hole ID	Northing	Easting	From	To	Interval Thickness	Au ppm
TZ21RB-023	549442	1372096	18	42	24	
SPNRB-037	552119	1374952	0	2	2.25	
POARB-054	536285	1369412	6	10	4	
Q22DDH-003	550347	1371436	71	85	14	6.48
POADDH-006	536252	1369446	130	134	4.16	
GDDH-036	549717	1369758	116.2	120.5	4.3	
SPRB-003	534046	1369364	26	28	2	
SPNRC-011	552430	1374986	88	92	4.44	

${ }^{1}$ This result is not reported in accordance with JORC 2012. A Competent Person has not done sufficient work to classify its compliance with the JORC code 2012. The result was reported to be in compliance with the JORC 2004 code, and nothing has come to the attention of Arrow that causes it to question the accuracy or reliability of the former owner's results. Arrow has not independently validated the former owner's result and therefore is not to be regarded as reporting, adopting or endorsing this result.

Appendix 3: Arrow Minerals Divole East Auger Results

Hole ID	Sample ID	Easting	Northing	Au ppb
DE-AG-001	1007501	528140	1365500	10
DE-AG-002	1007505	528179	1365500	-5
DE-AG-003	1007507	528218	1365500	-5
DE-AG-004	1007509	528256	1365506	-5
DE-AG-005	1007511	528297	1365503	-5
DE-AG-006	1007513	528336	1365503	-5
DE-AG-007	1007514	528379	1365498	43
DE-AG-008	1007516	528457	1365600	13
DE-AG-009	1007519	528439	1365600	892
DE-AG-010	1007522	528419	1365601	-5
DE-AG-011	1007524	528398	1365601	-5
DE-AG-012	1007526	528378	1365599	-5
DE-AG-013	1007528	528145	1365601	-5
DE-AG-014	1007530	528180	1365600	-5
DE-AG-015	1007533	528200	1365600	-5
DE-AG-016	1007535	528220	1365600	-5
DE-AG-017	1007537	528240	1365600	-5
DE-AG-018	1007539	528260	1365600	24
DE-AG-019	1007541	528280	1365600	16
DE-AG-020	1007543	528301	1365600	9
DE-AG-021	1007545	528321	1365600	37
DE-AG-022	1007548	528340	1365600	34
DE-AG-023	1007549	528357	1365602	64

Hole ID	Sample ID	Easting	Northing	Au ppb
DivE_Aug_309	1009443	529086	1365799	-5
DivE_Aug_310	1009444	529121	1365800	16
DivE_Aug_311	1009446	529159	1365801	-5
DivE_Aug_312	1009448	529201	1365799	-5
DivE_Aug_313	1009450	529240	1365800	179
DivE_Aug_314	1009451	529283	1365799	-5
DivE_Aug_315	1009454	529322	1365798	-5
DivE_Aug_316	1009456	529641	1365600	-5
DivE_Aug_317	1009458	529681	1365600	-5
DivE_Aug_318	1009460	529760	1365600	-5
DivE_Aug_319	1009463	529802	1365602	20
DivE_Aug_320	1009465	529840	1365602	-5
DivE_Aug_321	1009467	529883	1365600	-5
DivE_Aug_322	1009468	529921	1365600	28
DivE_Aug_323	1009471	529759	1365400	-5
DivE_Aug_324	1009473	529723	1365399	107
DivE_Aug_325	1009475	529682	1365399	10
DivE_Aug_326	1009478	529641	1365399	-5
DivE_Aug_327	1009480	529602	1365399	32
DivE_Aug_328	1009482	529564	1365396	-5
DivE_Aug_329	1009484	529359	1365200	-5
DivE_Aug_330	1009485	529401	1365202	25
DivE_Aug_331	1009488	529442	1365205	-5

Hole ID	$\begin{gathered} \hline \text { Sample } \\ \text { ID } \\ \hline \end{gathered}$	Easting	Northing	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \\ \hline \end{gathered}$
DE-AG-024	1007552	528537	1365705	24
DE-AG-025	1007554	528501	1365700	31
DE-AG-026	1007556	528458	1365699	12
DE-AG-027	1007558	528417	1365696	43
DE-AG-028	1007560	528380	1365699	18
DE-AG-029	1007563	528340	1365698	21
DE-AG-030	1007565	528300	1365700	21
DE-AG-031	1007567	528264	1365702	21
DE-AG-032	1007569	528220	1365701	22
DE-AG-033	1007571	528181	1365700	14
DE-AG-034	1007573	528180	1365798	47
DE-AG-035	1007575	528220	1365800	44
DE-AG-036	1007578	528240	1365800	39
DE-AG-037	1007580	528260	1365800	25
DE-AG-038	1007581	528277	1365803	38
DE-AG-039	1007584	528297	1365801	336
DE-AG-040	1007586	528320	1365799	37
DE-AG-041	1007588	528320	1365799	37
DE-AG-042	1007590	528360	1365800	22
DE-AG-043	1007592	528380	1365800	29
DE-AG-044	1007595	528402	1365800	15
DE-AG-045	1007597	528428	1365800	22
DE-AG-046	1007599	528449	1365800	41
DE-AG-047	1007601	528467	1365800	20
DE-AG-048	1007602	528480	1365800	93
DE-AG-049	1007605	528502	1365797	20
DE-AG-050	1007608	528541	1365802	15
DE-AG-051	1007610	528540	1365902	30
DE-AG-052	1007612	528502	1365899	23
DE-AG-053	1007614	528461	1365900	12
DE-AG-054	1007616	528420	1365900	12
DE-AG-055	1007617	528377	1365903	27
DE-AG-056	1007620	528341	1365901	24
DE-AG-057	1007623	528299	1365901	27
DE-AG-058	1007625	528259	1365900	22
DE-AG-059	1007627	528217	1365900	43
DE-AG-060	1007629	528177	1365898	40
DE-AG-061	1007630	528260	1366000	40
DE-AG-062	1007632	528280	1366000	36
DE-AG-063	1007635	528298	1366000	17
DE-AG-064	1007638	528319	1366001	16
DE-AG-065	1007640	528336	1366000	44
DE-AG-066	1007642	528363	1366000	20
DE-AG-067	1007644	528380	1366000	29
DE-AG-068	1007646	528400	1365999	12
DE-AG-069	1007648	528421	1365999	36
DE-AG-070	1007649	528440	1365998	22
DE-AG-071	1007653	528460	1365999	16
DE-AG-072	1007655	528480	1365999	48
DE-AG-073	1007657	528501	1365999	20
DE-AG-074	1007659	528518	1365999	22
DE-AG-075	1007661	528520	1366100	30
DE-AG-076	1007662	528500	1366100	17
DE-AG-077	1007664	528479	1366100	26
DE-AG-078	1007668	528460	1366100	19
DE-AG-079	1007670	528440	1366101	15
DE-AG-080	1007672	528420	1366100	32

Hole ID	Sample ID	Easting	Northing	Au ppb
DivE_Aug_332	1009490	529480	1365203	-5
DivE_Aug_333	1009493	529518	1365203	-5
DivE_Aug_334	1009495	529560	1365201	-5
DivE_Aug_335	1009497	529603	1365200	-5
DivE_Aug_336	1009499	529639	1365201	10
DivE_Aug_337	1007901	529921	1368199	-5
DivE_Aug_338	1007902	529962	1368201	10
DivE_Aug_339	1007905	530000	1368201	-5
DivE_Aug_340	1007908	530040	1368200	-5
DivE_Aug_341	1007910	530084	1368201	-5
DivE_Aug_342	1007912	530119	1368200	-5
DivE_Aug_343	1007914	530162	1368199	10
DivE_Aug_344	1007916	530202	1368197	26
DivE_Aug_345	1007918	530242	1368201	-5
DivE_Aug_346	1007919	530282	1368197	-5
DivE_Aug_347	1007921	530323	1368199	15
DivE_Aug_348	1007924	530321	1368801	-5
DivE_Aug_349	1007925	530358	1368802	-5
DivE_Aug_350	1007927	530399	1368804	-5
DivE_Aug_351	1007930	530438	1368803	-5
DivE_Aug_352	1007932	530478	1368803	10
DivE_Aug_353	1007933	530520	1368800	-5
DivE_Aug_354	1007936	530557	1368803	-5
DivE_Aug_355	1007939	530597	1368802	-5
DivE_Aug_356	1007941	531240	1368800	-5
DivE_Aug_357	1007942	531201	1368798	-5
DivE_Aug_358	1007944	531160	1368800	-5
DivE_Aug_359	1007947	531122	1368799	16
DivE_Aug_360	1007949	531082	1368800	16
DivE_Aug_361	1007950	530722	1369000	-5
DivE_Aug_362	1007954	530681	1368999	12
DivE_Aug_363	1007956	530643	1369001	-5
DivE_Aug_364	1007958	530600	1369000	-5
DivE_Aug_365	1007959	530561	1369000	-5
DivE_Aug_366	1007961	530520	1368999	18
DivE_Aug_367	1007964	530483	1369001	-5
DivE_Aug_368	1007966	530680	1369200	-5
DivE_Aug_369	1007968	530720	1369186	-5
DivE_Aug_370	1007971	530768	1369203	14
DivE_Aug_371	1007973	530804	1369200	-5
DivE_Aug_372	1007975	530840	1369200	-5
DivE_Aug_373	R0019940	534807.62	1370016.93	0.26
DivE_Aug_374	R0019942	534829.07	1369984.77	0.01
DivE_Aug_375	R0019944	534854.01	1369950.3	0.09
DivE_Aug_376	R0019947	534877.64	1369917.04	0.01
DivE_Aug_377	R0019949	534890.29	1369878.02	0.06
DivE_Aug_378	R0019952	534917.5	1369850.08	0.02
DivE_Aug_379	R0019954	534938.96	1369816.93	0.01
DivE_Aug_380	R0019956	534963.34	1369784	0.01
DivE_Aug_381	R0019958	534985.45	1369748.98	0.02
DivE_Aug_382	R0019960	535003.1	1369715.27	0.02
DivE_Aug_383	R0019962	535023.03	1369683.56	0.04
DivE_Aug_384	R0019964	535042.1	1369651.07	0.04
DivE_Aug_385	R0019966	535066.49	1369616.6	0.05
DivE_Aug_386	R0019968	535089.03	1369585.11	0.02
DivE_Aug_387	R0019970	535110.48	1369550.85	0.04
DivE_Aug_388	R0019972	535127.7	1369516.92	0.01

Hole ID	$\begin{gathered} \hline \text { Sample } \\ \text { ID } \\ \hline \end{gathered}$	Easting	Northing	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \\ \hline \end{gathered}$
DE-AG-081	1007674	528401	1366099	95
DE-AG-082	1007676	528380	1366100	20
DE-AG-083	1007678	528360	1366100	17
DE-AG-084	1007680	528340	1366100	16
DE-AG-085	1007681	528320	1366100	30
DE-AG-086	1007685	528300	1366100	16
DE-AG-087	1007687	528281	1366101	26
DE-AG-088	1007689	528280	1366200	31
DE-AG-089	1007691	528300	1366200	16
DE-AG-090	1007693	528320	1366200	24
DE-AG-091	1007694	528340	1366200	24
DE-AG-092	1007696	528358	1366200	198
DE-AG-093	1007700	528422	1366200	45
DE-AG-094	1007702	528438	1366200	42
DE-AG-095	1007704	528460	1366200	40
DE-AG-096	1007706	528478	1366202	23
DE-AG-097	1007708	528500	1366200	19
DE-AG-098	1007710	528518	1366200	22
DE-AG-099	1007713	528101	1367000	-5
DE-AG-100	1007714	528120	1367000	9
DE-AG-101	1007717	528138	1367001	9
DE-AG-102	1007719	528160	1367000	71
DE-AG-103	1007721	528180	1367000	-5
DE-AG-104	1007723	528200	1367000	10
DE-AG-105	1007725	528220	1367000	-5
DE-AG-106	1007726	528243	1367000	-5
DE-AG-107	1007729	528264	1367000	5
DE-AG-108	1007732	528281	1366999	14
DE-AG-109	1007734	528302	1367000	-5
DE-AG-110	1007736	528320	1367002	-5
DE-AG-111	1007738	528340	1367000	-5
DE-AG-112	1007740	528360	1367000	-5
DE-AG-113	1007743	528360	1367201	-5
DE-AG-114	1007745	528341	1367200	22
DE-AG-115	1007746	528320	1367200	19
DE-AG-116	1007749	528300	1367200	-5
DE-AG-117	1007751	528281	1367200	-5
DE-AG-118	1007753	528259	1367201	-5
DE-AG-119	1007755	528240	1367201	-5
DE-AG-120	1007758	528226	1367205	-5
DE-AG-121	1007759	528200	1367200	8
DE-AG-122	1007761	529099	1366598	15
DE-AG-123	1007764	529140	1366600	14
DE-AG-124	1007766	529181	1366601	12
DE-AG-125	1007768	529221	1366600	-5
DE-AG-126	1007770	529260	1366601	21
DE-AG-127	1007771	529299	1366600	9
DE-AG-128	1007775	529340	1366601	-5
DE-AG-129	1007777	529380	1366600	26
DE-AG-130	1007778	529420	1366601	35
DE-AG-131	1007780	529461	1366600	29
DE-AG-132	1007783	529500	1366600	-5
DE-AG-133	1007785	529540	1366600	-5
DE-AG-134	1007788	529579	1366600	13
DE-AG-135	1007790	529619	1366600	-5
DE-AG-136	1007791	529659	1366601	5971
DE-AG-137	1007794	529699	1366601	-5

Hole ID	Sample ID	Easting	Northing	Au ppb
DivE_Aug_389	R0019974	535153.39	1369482.78	0.01
Dive_Aug_390	R0019977	535177.56	1369451.19	0.02
DivE_Aug_391	R0019979	535198.91	1369416.82	0.02
DivE_Aug_392	R0019981	535217.21	1369383.78	0.01
DivE_Aug_393	R0019983	535242.03	1369352.96	0.01
DivE_Aug_394	R0019986	534424.34	1370018.9	0.01
DivE_Aug_395	R0019988	534444.06	1369983.65	0.01
DivE_Aug_396	R0019990	534467.68	1369952.6	0.02
DivE_Aug_397	R0019992	534486.31	1369917.9	0.01
DivE_Aug_398	R0019994	534511.24	1369886.19	0.01
Dive_Aug_399	R0019997	534528.35	1369854.48	0.01
Dive_Aug_400	R0019999	534551.54	1369819.01	0.01
Dive_Aug_401	R0018801	534575.82	1369783.87	0.01
Dive_Aug_402	R0018803	534597.93	1369749.84	0.01
Dive_Aug_403	R0018805	534619.71	1369718.13	0.01
Dive_Aug_404	R0018807	534643.23	1369687.19	0.01
DivE_Aug_405	R0018809	534662.18	1369651.94	0.01
DivE_Aug_406	R0018811	534686.13	1369619.9	0.04
DivE_Aug_407	R0018813	534706.18	1369585.42	0.01
DivE_Aug_408	R0018816	534727.74	1369551.94	0.27
DivE_Aug_409	R0018818	534748.54	1369518.9	0.04
DivE_Aug_410	R0018820	534773.04	1369486.2	0.02
Dive_Aug_411	R0018822	534790.47	1369451.83	0.5
DivE_Aug_412	R0018824	534811.93	1369414.14	0.02
DivE_Aug_413	R0018827	534836.65	1369382.21	0.04
DivE_Aug_414	R0018829	534856.25	1369349.51	0.03
DivE_Aug_415	R0018831	534876.4	1369313.59	0.04
DivE_Aug_416	R0018833	534901.12	1369282.66	0.04
DivE_Aug_417	R0018835	534922.9	1369246.08	0.03
DivE_Aug_418	R0018837	534942.29	1369214.92	0.03
DivE_Aug_419	R0018839	534961.35	1369182.43	0.02
Dive_Aug_420	R0018841	534993.89	1369155.27	0.04
DivE_Aug_421	R0018843	535029.99	1369145.58	0.03
DivE_Aug_422	R0018846	535025.51	1369069.6	0.02
DivE_Aug_423	R0018848	535055.87	1369045.2	0.07
Dive_Aug_424	R0018851	535075.69	1369017.58	0.06
DivE_Aug_425	R0018853	535098.02	1368981	0.02
DivE_Aug_426	R0018855	535123.6	1368948.74	0.32
DivE_Aug_427	R0018857	535144.74	1368906.86	0.08
DivE_Aug_428	R0018859	535162.38	1368881.56	0.03
DivE_Aug_429	R0018861	535187	1368843.32	0.04
Dive_Aug_430	R0018863	535209.43	1368812.5	0.05
Dive_Aug_431	R0018865	535230.56	1368775.81	0.02
DivE_Aug_432	R0018867	534044.66	1370012.81	0.02
DivE_Aug_433	R0018869	534067.41	1369982.43	-0.01
DivE_Aug_434	R0018871	534089.85	1369946.96	0.01
DivE_Aug_435	R0018873	534110.43	1369912.48	0.02
DivE_Aug_436	R0018876	534129.49	1369879	0.01
DivE_Aug_437	R0018878	534154.09	1369848.28	0.02
DivE_Aug_438	R0018880	534167.07	1369813.69	0.01
DivE_Aug_439	R0018882	534192.77	1369774.9	0.03
DivE_Aug_440	R0018884	534213.02	1369745.29	0.02
Dive_Aug_441	R0018887	534234.48	1369712.91	0.01
DivE_Aug_442	R0018889	534259.63	1369679.66	0.05
Dive_Aug_443	R0018891	534285.11	1369642.64	-0.01
Dive_Aug_444	R0018893	534308.19	1369609.72	0.02
DivE_Aug_445	R0018896	534329.97	1369577.67	0.02

Hole ID	Sample ID	Easting	Northing	Au ppb
DE-AG-138	1007796	529738	1366602	-5
DE-AG-139	1007798	529781	1366601	13
DE-AG-140	1007800	529821	1366605	9
DE-AG-141	1007803	529862	1366598	94
DE-AG-142	1007805	529903	1366600	25
DE-AG-143	1007807	529942	1366601	-5
DE-AG-144	1007808	529981	1366601	10
DE-AG-145	1007811	530021	1366602	-5
DE-AG-146	1007813	530060	1366600	-5
DE-AG-147	1007815	529760	1366100	-5
DE-AG-148	1007817	529723	1366100	-5
DE-AG-149	1007819	529680	1366101	9
DE-AG-150	1007821	529640	1366097	9
DE-AG-151	1007824	529601	1366100	9
DE-AG-152	1007826	529561	1366100	12
DE-AG-153	1007828	529522	1366100	48
DE-AG-154	1007830	529482	1366100	12
DE-AG-155	1007831	529442	1366100	13
DE-AG-157	1007836	529360	1366101	9
DE-AG-158	1007838	529320	1366100	19
DE-AG-159	1007840	529280	1366100	19
DE-AG-160	1007842	529238	1366101	49
DE-AG-161	1007844	529193	1366100	10
DE-AG-162	1007846	529260	1366100	8
DE-AG-163	1007850	528380	1366152	52
DE-AG-164	1007852	528401	1366155	1374
DE-AG-165	1007854	528200	1365300	-5
DE-AG-166	1007856	528240	1365300	5
DE-AG-167	1007857	528280	1365300	11
DE-AG-168	1007859	528320	1365300	12
DE-AG-168	1007860	528320	1365300	-5
DE-AG-169	1007861	528360	1365300	32
DE-AG-170	1007865	528520	1365300	-5
DE-AG-171	1007867	528479	1365299	-5
DE-AG-172	1007869	528558	1365300	-5
DE-AG-173	1007871	528600	1365300	-5
DE-AG-174	1007872	528640	1365300	20
DE-AG-175	1007874	528440	1365300	-5
DivE_Aug_176	4464	529361	1366799	-5
DivE_Aug_177	4465	529397	1366800	12
DivE_Aug_178	4468	529441	1366800	68
DivE_Aug_179	4470	529481	1366801	174
DivE_Aug_180	4472	529518	1366801	-5
DivE_Aug_181	4474	529559	1366798	19
DivE_Aug_182	4476	529604	1366801	-5
DivE_Aug_183	4479	529642	1366799	18
DivE_Aug_184	4481	529681	1366790	-5
DivE_Aug_185	4483	529718	1366801	-5
DivE_Aug_186	4485	529758	1366803	-5
DivE_Aug_187	4487	529801	1366802	15
DivE_Aug_188	4488	529842	1366801	127
DivE_Aug_189	4491	529879	1366800	-5
DivE_Aug_190	4494	529919	1366801	-5
DivE_Aug_191	4496	529961	1366800	-5
DivE_Aug_192	4498	530000	1366800	-5
DivE_Aug_193	4500	530042	1366801	14
DivE_Aug_194	1009202	530082	1366802	14

Hole ID	Sample ID	Easting	Northing	Au ppb
DivE_Aug_446	R0018898	534351.86	1369544.3	0.02
Dive_Aug_447	R0018900	534372.77	1369509.61	0.02
DivE_Aug_448	R0018902	534394.01	1369475.68	0.06
DivE_Aug_449	R0018904	534419.59	1369440.88	0.02
DivE_Aug_450	R0018906	534440.17	1369408.83	0.04
DivE_Aug_451	R0018908	534463.37	1369375.24	0.02
DivE_Aug_452	R0018910	534482.43	1369341.87	0.03
DivE_Aug_453	R0018912	534505.62	1369308.17	0.03
Dive_Aug_454	R0018914	534529.69	1369272.15	0.02
DivE_Aug_455	R0018917	534550.49	1369241.21	0.03
DivE_Aug_456	R0018919	534568.03	1369208.94	0.03
DivE_Aug_457	R0018921	534592.2	1369172.92	0.03
DivE_Aug_458	R0018923	534616.38	1369138.89	0.04
Dive_Aug_459	R0018926	534638.81	1369105.96	0.03
DivE_Aug_460	R0018928	534657	1369072.48	0.03
DivE_Aug_461	R0018930	534679.76	1369041.1	0.04
DivE_Aug_462	R0018932	534699.48	1369006.07	0.03
DivE_Aug_463	R0018934	534721.69	1368975.24	0.04
DivE_Aug_464	R0018936	534744.02	1368939.99	0.04
DivE_Aug_465	R0018938	534762.53	1368911.6	0.03
DivE_Aug_466	R0018940	534785.95	1368871.7	0.077
DivE_Aug_467	R0018942	534808.6	1368841.1	0.013
DivE_Aug_468	R0018944	534830.05	1368804.96	0.249
DivE_Aug_469	R0018947	534852.16	1368772.92	0.036
DivE_Aug_470	R0018949	534874.7	1368744.09	0.028
DivE_Aug_471	R0018952	534900.83	1368707.07	0.031
DivE_Aug_472	R0018954	534919.46	1368673.7	0.067
DivE_Aug_473	R0018956	534937.98	1368639.11	0.026
DivE_Aug_474	R0018958	534958.78	1368608.83	0.033
DivE_Aug_475	R0018960	534983.17	1368572.15	0.061
DivE_Aug_476	R0018962	535013.55	1368532.82	0.027
DivE_Aug_477	R0018964	535027.17	1368503.64	0.016
DivE_Aug_478	R0018966	535048.95	1368479.34	0.011
DivE_Aug_479	R0018968	535266.12	1368134.36	0.026
DivE_Aug_480	R0018970	535243.58	1368169.17	0.068
DivE_Aug_481	R0018972	535223.1	1368202.98	0.008
DivE_Aug_482	R0018974	535201.1	1368234.58	0.047
DivE_Aug_483	R0018977	535180.95	1368269.61	0.009
DivE_Aug_484	R0018979	535070.63	1368436.9	0.019
DivE_Aug_485	R0018981	535095.13	1368399.33	0.016
DivE_Aug_486	R0018983	535115.82	1368368.73	0.01
DivE_Aug_487	R0018986	535141.3	1368333.15	0.019
DivE_Aug_488	R0018988	535153.85	1368299.99	0.008
DivE_Aug_489	R0018990	535255.84	1367561.42	0.005
DivE_Aug_490	R0018992	535240.69	1367592.81	0.005
DivE_Aug_491	R0018994	535219.35	1367624.08	0.021
DivE_Aug_492	R0018997	535199.84	1367659.11	0.037
Dive_Aug_493	R0018999	535175.56	1367694.13	0.023
DivE_Aug_494	R0021001	535153.67	1367722.64	0.008
DivE_Aug_495	R0021003	535130.59	1367758.55	0.023
DivE_Aug_496	R0021005	535110	1367791.92	0.007
DivE_Aug_497	R0021007	535087.78	1367825.18	0.01
DivE_Aug_498	R0021009	535067.19	1367863.19	0.008
Dive_Aug_499	R0021011	535040.09	1367891.47	0.01
DivE_Aug_500	R0021013	535017.43	1367926.5	0.009
DivE_Aug_501	R0021016	534996.31	1367957.33	0.007
DivE_Aug_502	R0021018	534976.27	1367990.03	0.014

Hole ID	$\begin{aligned} & \text { Sample } \\ & \text { ID } \end{aligned}$	Easting	Northing	Au ppb
DivE_Aug_195	1009204	530123	1366789	-5
DivE_Aug_196	1009205	530163	1366791	37
DivE_Aug_197	1009209	530207	1366815	10
DivE_Aug_198	1009211	530961	1367000	14
DivE_Aug_199	1009212	530921	1366999	13
DivE_Aug_200	1009214	530880	1367000	10
DivE_Aug_201	1009217	530840	1367001	-5
DivE_Aug_202	1009219	530800	1367002	-5
DivE_Aug_203	1009220	530444	1366997	22
DivE_Aug_204	1009224	530413	1366979	-5
DivE_Aug_205	1009226	530360	1366991	-5
DivE_Aug_206	1009228	530316	1367014	-5
DivE_Aug_207	1009229	530276	1367017	-5
DivE_Aug_208	1009231	530239	1367002	-5
DivE_Aug_209	1009233	530200	1367002	-5
DivE_Aug_209	1009234	530200	1367002	-5
DivE_Aug_210	1009236	530161	1367002	-5
DivE_Aug_211	1009238	530122	1367004	12
DivE_Aug_212	1009241	530079	1367003	-5
DivE_Aug_213	1009243	530039	1367001	17
DivE_Aug_214	1009245	529997	1367002	-5
DivE_Aug_215	1009247	529959	1367001	-5
DivE_Aug_216	1009249	529914	1366998	76
DivE_Aug_217	1009251	529875	1367001	374
DivE_Aug_218	1009254	529837	1367001	10
DivE_Aug_219	1009256	529797	1367001	24
DivE_Aug_220	1009258	529759	1366998	10
DivE_Aug_221	1009259	529718	1367000	14
DivE_Aug_222	1009262	529679	1366999	-5
DivE_Aug_223	1009264	529640	1367000	13
DivE_Aug_224	1009266	529601	1367001	10
DivE_Aug_225	1009269	529556	1366999	8
DivE_Aug_226	1009271	529519	1367003	-5
DivE_Aug_227	1009273	529478	1367000	-5
DivE_Aug_228	1009275	529439	1366999	-5
DivE_Aug_229	1009276	529398	1366998	10
DivE_Aug_230	1009279	529357	1367001	-5
DivE_Aug_231	1009281	529321	1366997	10
DivE_Aug_232	1009283	529684	1367200	13
DivE_Aug_233	1009285	529721	1367202	10
DivE_Aug_234	1009288	529771	1367199	-5
DivE_Aug_235	1009290	529801	1367203	613
DivE_Aug_236	1009291	529841	1367201	21
DivE_Aug_237	1009294	529881	1367203	10
DivE_Aug_238	1009296	529922	1367202	-5
DivE_Aug_239	1009299	529961	1367203	-5
DivE_Aug_240	1009300	530000	1367200	13
DivE_Aug_241	1009302	530041	1367202	36
DivE_Aug_242	1009305	530080	1367201	-5
DivE_Aug_243	1009307	530120	1367200	5
DivE_Aug_244	1009308	530162	1367200	16
DivE_Aug_245	1009311	530201	1367198	-5
DivE_Aug_246	1009314	530244	1367199	-5
DivE_Aug_247	1009316	530282	1367200	-5

Hole ID	Sample ID	Easting	Northing	Au ppb
DivE_Aug_503	R0021020	534956.55	1368022.74	0.014
DivE_Aug_504	R0021022	534934	1368059.65	0.005
DivE_Aug_505	R0021024	534912.11	1368092.8	0.036
DivE_Aug_506	R0021027	534888.7	1368124.18	0.011
DivE_Aug_507	R0021029	534862.9	1368161.41	0.017
DivE_Aug_508	R0021031	534847.31	1368195.01	0.013
DivE_Aug_509	R0021033	534825.64	1368226.61	0.012
DivE_Aug_510	R0021035	534799.84	1368259.53	0.006
DivE_Aug_511	R0021037	534779.58	1368291.36	0.006
DivE_Aug_512	R0021039	534758.23	1368328.71	0.01
DivE_Aug_513	R0021041	534736.77	1368360.86	0.011
DivE_Aug_514	R0021043	534715.31	1368398.32	0.014
DivE_Aug_515	R0021046	534691.68	1368433.46	0.015
DivE_Aug_516	R0021048	534664.9	1368464.17	0.007
DivE_Aug_517	R0021051	534642.58	1368497.21	0.095
DivE_Aug_518	R0021053	534623.41	1368531.91	0.008
DivE_Aug_519	R0021055	534600.1	1368565.39	0.025
DivE_Aug_520	R0021057	534583.43	1368596	0.008
DivE_Aug_521	R0021059	534562.41	1368629.15	0.012
DivE_Aug_522	R0021061	534540.64	1368661.3	0.018
DivE_Aug_523	R0021063	534521.13	1368698.21	0.014
DivE_Aug_524	R0021065	534498.37	1368733.8	0.017
DivE_Aug_525	R0021067	534475.94	1368768.6	0.012
DivE_Aug_526	R0021069	534453.4	1368798.54	0.057
DivE_Aug_527	R0021071	534429.88	1368830.7	0.011
DivE_Aug_528	R0021073	534408.1	1368863.29	0.005
DivE_Aug_529	R0021076	534386.86	1368897.55	0.016
DivE_Aug_530	R0021078	534364.86	1368931.69	0.005
DivE_Aug_531	R0021080	534342	1368966.61	0.009
DivE_Aug_532	R0021082	534320.87	1368998.87	0.02
DivE_Aug_533	R0021084	534299.09	1369032.91	0.013
DivE_Aug_534	R0021087	534279.26	1369066.72	0.006
DivE_Aug_535	R0021089	534255.63	1369100.53	0.005
DivE_Aug_536	R0021091	534234.4	1369132.8	0.005
DivE_Aug_537	R0021093	534214.25	1369168.6	0.005
DivE_Aug_538	R0021096	534192.36	1369202.97	0.009
DivE_Aug_539	R0021098	534169.93	1369234.68	0.02
DivE_Aug_540	R0021100	534147.28	1369269.26	0.007
DivE_Aug_541	R0021102	534127.56	1369301.86	0.025
DivE_Aug_542	R0021104	534105.45	1369336.56	0.025
DivE_Aug_543	R0021106	534082.15	1369368.16	0.014
DivE_Aug_544	R0021108	534058.85	1369403.3	0.016
DivE_Aug_545	R0021110	534038.05	1369437.89	0.01
DivE_Aug_546	R0021112	534011.49	1369470.7	0.008
DivE_Aug_547	R0021114	533990.36	1369502.08	0.012
DivE_Aug_548	R0021117	533972.93	1369539.1	0.005
DivE_Aug_549	R0021119	533954.3	1369573.14	0.005
DivE_Aug_550	R0021121	533925.56	1369604.96	0.01
DivE_Aug_551	R0021123	533909.11	1369639.55	0.009
DivE_Aug_552	R0021126	533882.11	1369672.03	0.011
DivE_Aug_553	R0021128	533868.92	1369705.3	0.008
DivE_Aug_554	R0021130	533845.29	1369738	0.005
DivE_Aug_555	R0021132	533820.8	1369770.15	0.01
DivE_Aug_556	R0021134	533802.93	1369806.29	0.006

Hole ID	$\begin{gathered} \hline \text { Sample } \\ \text { ID } \end{gathered}$	Easting	Northing	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$
DivE_Aug_248	1009318	530323	1367199	-5
DivE_Aug_249	1009320	530356	1367201	10
DivE_Aug_250	1009322	530400	1367199	30
DivE_Aug_251	1009324	530439	1367198	-5
DivE_Aug_252	1009326	530477	1367201	-5
DivE_Aug_253	1009329	530515	1367200	14
DivE_Aug_254	1009330	530320	1367398	14
DivE_Aug_255	1009333	530277	1367402	-5
DivE_Aug_256	1009335	530242	1367398	-5
DivE_Aug_257	1009337	530205	1367397	-5
DivE_Aug_258	1009339	530164	1367398	10
DivE_Aug_259	1009341	530044	1367398	8
DivE_Aug_260	1009344	530003	1367398	-5
DivE_Aug_261	1009346	529965	1367396	-5
DivE_Aug_262	1009347	529921	1367398	-5
DivE_Aug_263	1009350	529882	1367399	-5
DivE_Aug_264	1009352	529844	1367401	-5
DivE_Aug_265	1009353	529799	1367395	15
DivE_Aug_266	1009355	529762	1367597	-5
DivE_Aug_267	1009359	529719	1367599	-5
DivE_Aug_268	1009361	529679	1367599	-5
DivE_Aug_269	1009362	529640	1367599	-5
DivE_Aug_270	1009365	529602	1367598	-5
DivE_Aug_271	1009367	529562	1367599	10
DivE_Aug_272	1009369	529520	1367607	-5
DivE_Aug_273	1009370	529318	1366404	337
DivE_Aug_274	1009373	529361	1366400	18
DivE_Aug_275	1009376	529398	1366400	31
DivE_Aug_276	1009378	529440	1366402	10
DivE_Aug_277	1009379	529477	1366402	16
DivE_Aug_278	1009382	529517	1366400	-5
DivE_Aug_279	1009384	529544	1366419	-5
DivE_Aug_280	1009386	529917	1366403	-5
DivE_Aug_281	1009389	529880	1366399	-5
DivE_Aug_282	1009391	529840	1366398	-5
DivE_Aug_283	1009393	529800	1366400	-5
DivE_Aug_284	1009395	529754	1366408	-5
DivE_Aug_285	1009397	529718	1366402	-5
DivE_Aug_286	1009399	529678	1366405	12
DivE_Aug_287	1009401	529639	1366397	30
DivE_Aug_288	1009404	529598	1366403	-5
DivE_Aug_289	1009405	529720	1366199	-5
DivE_Aug_290	1009407	529682	1366201	-5
DivE_Aug_291	1009410	529643	1366200	-5
DivE_Aug_292	1009412	529600	1366202	-5
DivE_Aug_293	1009413	529565	1366199	16
DivE_Aug_294	1009416	529523	1366200	-5
DivE_Aug_296	1009419	529443	1366202	13
DivE_Aug_297	1009420	529403	1366200	32
DivE_Aug_298	1009422	529361	1366199	-5
DivE_Aug_299	1009424	529315	1366201	-5
DivE_Aug_300	1009426	529279	1366199	-5

Hole ID	Sample ID	Easting	Northing	Au ppb
DivE_Aug_557	R0021136	533778.32	1369840.32	0.005
DivE_Aug_558	R0021138	533757.09	1369872.26	0.005
DivE_Aug_559	R0021140	533731.83	1369906.18	0.006
DivE_Aug_560	R0021142	533711.79	1369938.78	0.033
DivE_Aug_561	R0021144	533689.15	1369969.49	0.04
DivE_Aug_562	R0021147	533664.76	1370003.74	0.017
DivE_Aug_563	R0021149	533288.11	1370004.08	0.005
DivE_Aug_564	R0021152	533311.95	1369974.03	0.008
DivE_Aug_565	R0021154	533332.1	1369941.66	0.008
DivE_Aug_566	R0021156	533353.01	1369907.18	0.005
DivE_Aug_567	R0021158	533374.57	1369870.16	0.005
DivE_Aug_568	R0021160	533399.83	1369838.01	0.005
DivE_Aug_569	R0021162	533420.85	1369806.4	0.005
DivE_Aug_570	R0021164	533444.36	1369772.48	0.005
DivE_Aug_571	R0021166	533463.31	1369740.55	0.005
DivE_Aug_572	R0021168	533481.4	1369703.85	0.009
DivE_Aug_573	R0021170	534422.41	1368258.75	0.005
DivE_Aug_574	R0021172	534401.28	1368288.14	0.015
DivE_Aug_575	R0021174	534377.65	1368327.04	0.017
DivE_Aug_576	R0021177	534358.58	1368363.18	0.018
DivE_Aug_577	R0021179	534336.37	1368392.23	0.024
DivE_Aug_578	R0021181	534316.65	1368427.16	0.018
DivE_Aug_579	R0021183	534288.68	1368457.75	0.041
DivE_Aug_580	R0021186	534268.74	1368496.99	0.026
DivE_Aug_581	R0021188	534246.64	1368527.48	0.035
DivE_Aug_582	R0021190	534225.83	1368560.3	0.026
DivE_Aug_583	R0021192	534202.86	1368591.79	0.016
DivE_Aug_584	R0021194	534182.38	1368627.26	0.016
DivE_Aug_585	R0021197	534158.97	1368656.98	0.027
DivE_Aug_586	R0021199	534140.23	1368697.32	0.016
DivE_Aug_587	R0021201	534117.58	1368728.7	0.018
DivE_Aug_588	R0021203	534098.96	1368759.86	0.034
DivE_Aug_589	R0021205	534076.74	1368793.45	0.012
DivE_Aug_590	R0021207	534052.57	1368829.26	0.017
DivE_Aug_591	R0021209	534030.9	1368863.4	0.018
DivE_Aug_592	R0021211	534004.88	1368894.33	0.008
DivE_Aug_593	R0021213	533983.97	1368929.03	0.027
DivE_Aug_594	R0021216	533963.6	1368962.73	0.012
DivE_Aug_595	R0021218	533944.97	1368994.12	0.008
DivE_Aug_596	R0021220	533919.71	1369031.8	0.005
DivE_Aug_597	R0021221	533905.87	1369062.86	0.022
DivE_Aug_598	R0021222	533503.5	1369673.47	0.019
DivE_Aug_599	R0021224	533524.85	1369638.44	0.011
DivE_Aug_600	R0021227	533548.37	1369603.63	0.009
DivE_Aug_601	R0021230	533569.5	1369570.59	0.007
DivE_Aug_602	R0021232	533593.55	1369539.1	0.007
DivE_Aug_603	R0021234	533614.8	1369500.42	0.009
DivE_Aug_604	R0021236	533639.51	1369469.71	0.005
DivE_Aug_605	R0021238	533662.81	1369432.8	0.005
DivE_Aug_606	R0021240	533684.7	1369401.53	0.447
DivE_Aug_607	R0021242	533707.24	1369362.75	0.012
DivE_Aug_608	R0021244	533731.62	1369340.66	0.013

Hole ID	Sample ID	Easting	Northing	Au ppb
DivE_Aug_301	1009428	529238	1366201	10
DivE_Aug_302	1009430	528798	1365806	-5
DivE_Aug_303	1009433	528835	1365803	-5
DivE_Aug_304	1009434	528884	1365800	18
DivE_Aug_305	1009437	528922	1365791	-5
DivE_Aug_306	1009439	528968	1365798	-5
DivE_Aug_307	1009440	529002	1365801	-5
DivE_Aug_308	1009441	529045	1365789	10

Hole ID	Sample ID	Easting	Northing	Au ppb
DivE_Aug_609	R0021247	533744.82	1369296.44	0.017
DivE_Aug_610	R0021249	533765.3	1369263.95	0.03
DivE_Aug_611	R0021252	533793.93	1369231.36	0.005
DivE_Aug_612	R0021254	533809.61	1369203.4	0.015
DivE_Aug_613	R0021256	533829.22	1369166.27	0.018
DivE_Aug_614	R0021258	533857.2	1369132.36	0.026
DivE_Aug_615	R0021260	533882.46	1369098.77	0.095

JORC Code, 2012 Edition - Table 1 report template

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	- Pulverised rock sample at 1 m intervals of which an approximate 2.5 kg sample was taken for assay.
Drilling techniques	- Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	- Reverse Circulation (RC) drilling was used to collect 1m pulverised rock samples using a face sampling hammer. - Air Core drilling was used to collect samples in the saprolite zone, collecting 1 m pulverised samples of oxidised material. Drilling continued until bit refusal at the fresh rock interface.
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and resultsassessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	- Visual estimates of recovery were made and only recorded where there were significant differences in volumes of chip sample. - Overall sample recovery is considered good, and in line with normal expectations for this type of drilling. - Auger sampling was done using a motorised vehicle mounted auger screw that sampled a 1 m interval in the base of weathering/laterite and a 1 m sample at the top of in-situ saprolite.

Arrow Minerals Limited
 ABN 49112609846

$18 / 40$ St Quentin Ave, Claremont WA 6010
PO Box 886, Claremont WA 6910

Tel \quad +61 (8) 93833330
Fax +61 (8) 94864799

	ARROW MINERALS	
Criteria	JORC Code explanation	Commentary
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. - The total length and percentage of the relevant intersections logged.	- RC, auger and air core drill chips have been geologically logged to a level that is considered relevant to the style of mineralization under investigation. All relevant reverse circulation and air core intervals with potential for gold and other mineralisation have been sampled - Lithological and structural information was collected on paper logs including lithology, mineralogy, mineralization, weathering, colour and other appropriate features using a geological legend appropriate for West African geology and subsequently entered into a digital database. - All logging is qualitative. - Selected chip samples from each hole were washed and placed into plastic chip trays for future reference.
Sub-sampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet ordry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled.	- The sample material from the RC drilling is collected by passing the drill spoil through a riffle splitter after passing through the drill rig cyclone at 1 m intervals to collect an approximate 2.5 kg sample in a plastic bag.
Quality of assay data and laboratory tests	- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. - Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	- ALS Burkina SARL, Ouagadougou Burkina Faso was contracted to carry out the sample prep and analysis for Arrow and Trevali samples. 1m samples were analysed using 50g fire assay for total separation of gold using the ALS BGS Au-AA26 or ALS BGS Au-AA26 technique. . - Pre-2020 Arrow soil samples were analysed by BIGS Global, Ouagadougou. Samples were analysed using 50g fire assay for total separation of gold using the BIGS FPF500 lead-base fire assay technique. - Standard samples with known gold contents were submitted for assay at regular intervals as well as blank samples and duplicate samples for QA/QC purposes - No umpire or third-party assay checks were completed. - Data is reviewed before being accepted into the database. Any batches failing QA/QC analysis resubmitted for check assays. Dataset QA/QC contains acceptable levels of precision and accuracy. A third-party independent database administrator, Mitchell River Group, has been contracted for QA/QC control and data validation.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. - Discuss any adjustment to assay data.	- All assay results were received electronically from the laboratory and digitally merged with field logs, after which spot manual checks were made to ensure this had been completed correctly. No adjustments were necessary to the assay or logging data. - No twinning of reverse circulation or air core drilling has been undertaken due to the early stage of exploration.
Location of data points	- Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control.	- Collar positions of the reverse circulation, auger and air core holes were located with GPS, and drillhole azimuth at the collar was determined with a combination of GPS and compass readings. At the completion of each hole, the collar was capped with concrete and drillhole details inscribed in the cement. - Down hole surveys were undertaken for all reverse circulation holes by the drill contractor utilizing a Reflex EZ-Shot downhole survey instrument and by single shot Eastman Cameras. Survey intervals of 30 m and end of hole were routinely collected. No strongly magnetic rock units are present within the deposit which may upset magnetic based readings. No downhole surveys were undertaken for air core holes. - All Burkina Faso project coordinates are reported in this document using WGS84 UTM Zone 30N.
Data spacing and distribution	- Data spacing for reporting of Exploration Results. - Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	- The reverse circulation drilling was conducted on nominal 160 m spaced drill traverses with between three and eight holes per section. Air core holes were drilled on nominal 350 m spaced traverses with between five and eight holes per section. - Drilling was not sufficient, along with surface and artisanal workings exposures, to develop a good enough geological understanding of stratigraphy, intrusions, and veining orientations within the prospect area drilled to establish mineral resources. - No sample compositing was applied.
Orientation of data in relation to geological structure	- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	- The drilling is early stage and not adequately spaced to determine identification of the key geological features with high confidence, but an estimate of the continuity of structures and lithological units can be made.
Sample security	- The measures taken to ensure sample security.	- Samples are removed from the field immediately upon collection and stored in a secure compound for subsampling and preparation for laboratory dispatch. Samples are then delivered to the laboratory directly from the field. Sample submission forms are sent in hardcopy, as well as electronically, to the laboratories.

Criteria

Audits or reviews

JORC Code explanation

- The results of any audits or reviews of sampling techniques and data.

Commentary

- Databases were reviewed for obvious discrepancies and validated by a third-party database administrator, however no audits were completed on these early exploration results.

Section 2 Reporting of Exploration Results

JORC Code explanation

- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmentalsettings.
- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

Commentary

- The Divole East Project comprises 2 separate permits. Arrow Minerals is 100% owner of these permits
o Divole East: granted on 2017/05/18 arrete 17/046/MEMC/SG/DGCM and transferred on 2017/12/29 arrete 17/249/MMC/SG/DGCM
o Dyapya: granted on 2019/05/10 arrete 19/047/MMC/CG/DGCM
- The Divole West Project comprises a single exploration permit. Arrow Minerals is 100% holder of this permit
o Divole West: granted on 2017/05/18 arrete 17/047/MMC/SG/DGCM and transferred on 2017/12/29 arrete 17/250/MMC/SG/DGCM
- The Hounde South Project comprises 2 separate exploration permits. Arrow Minerals is 100% holder of these permits.
o Fofora: granted on 2016/12/20 arrete 16/226/MEMC/SG/DGCMIM
o Konkoira: granted on 2016/12/20 arrete 16/228/MEMC/SG/DGCMIM
- The Nako Project comprises a single exploration permit. Arrow Minerals is 100% holder of this permit.
- Nako: granted on 2016/12/20 arrete 16/227/MEMC/SG/DGCMIM
- The Boulsa Project comprises 2 exploration permits. Arrow Minerals is the 100% holder of these permits
o Lilyala: granted on 2018/08/24, arrete 18/152/MMC/SG/DGCM
o Konkoira: granted on 2018/08/24, arrete 18/228/MMC/SG/DGCM
- The Trevali joint-venture comprises four permits. Arrow has a right to earn in to 51% of any gold reserves discovered and mined on these permits.
Pilimikou: granted 2019/07/19, arrete 19/156/MMC/SG/DG
- Kordie: granted 2020/06/02, arrete 20/119/MMC/SG/DG
- Viveo: Granted 2019/07/19, arrete 19/155/MMC/SG/DG
- Semapoum: granted 2020/06/02, arrete 20/118/MMC/SG/DG
- Kikio: granted 2020/06/02, arrete 20/117/MMC/SG/DG

Exploration done by other

 parties- Acknowledgment and appraisal of exploration by other parties.

No historic exploration by other parties has been recovered for the 100\% Arrow project areas. On the Trevali JV area, historical work by Blackthorn Resources and Trevali Mining has been undertaken for gold and base metals. The gold exploration use in this announcement appears to be of a high standard and nothing has come to the attention of Arrow to indicate any problems with the quality of the information.

	\qquad	
Criteria	JORC Code explanation	Commentary
Geology	- Deposit type, geological setting and style of mineralisation.	- Arrow projects are all hosted in granite/greenstone belts of the Proterozoic Birimian Shield in Burkina Faso. The exploration is targeting orogenic style gold mineralisation systems.
Drillhole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: - easting and northing of the drillhole collar - elevation or RL (Reduced Level - elevation above sea level in metres) of the drillhole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	- See Appendices A and B.
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	- The reverse circulation drill results have been reported using a $0.5 \mathrm{~g} / \mathrm{t}$ edge grade and incorporating a maximum of 3 m of consecutive internal dilution. Only intersections with average grades of at least $1 \mathrm{~g} / \mathrm{t}$ are reported. - Air core grades are reported using the maximum 1 m sample interval from each hole in saprolite. - N / A as no metal equivalents are used.
Relationship between mineralisation widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	- Drill holes have been oriented as close as possible to perpendicular to interpreted strike orientation of the mineralisation - Reported intersections are downhole widths. Exploration at the prospects is at an early stage and insufficient information is currently available to infer true widths
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	- Summary maps are provided in this document.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- Further exploration activities are required to allow assessment of potential target size and will be provided when Arrow Minerals progresses work and data validation.

Criteria
 JORC Code explanation

Other substantive exploration data

Commentary

- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.
- The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.
- Further exploration work will occur at Arrow's Burkina Faso projects utilising skilled staff and fit for purpose techniques including, depending on requirements, reverse circulation and diamond drilling, drainage sampling, soils, auger, air core drilling, geological mapping, ground and airborne geophysics. Specific targets for follow up are using data including that contained in this report and illustrated in the relevant figures.

