

ASX / MEDIA ANNOUNCEMENT

ASX: NCZ 4 May 2021

Silver King Drilling Delivers Further High-Grade Assay Results up to 61% PbEq, including 580g/t Silver

Highlights:

 Assays from a further nine holes of New Century's 30-hole resource definition program at Silver King received, with continued impressive results showing continuity of high-grade mineralisation:

D=:11 #	Intercent	Crade (DhEe)	Danth	Ele	ement Grad	des
Drill #	Intercept	Grade (PbEq)	Depth Pb Zn		Ag	
	1.5m	61.0%	176.4m	49.1%	16.6%	580g/t
SK21_017	19.6m	26.3%	181.8m	13.1%	18.7%	140g/t
3KZ1_U17	10.2m	26.4%	211.0m	15.6%	15.4%	144g/t
	1.2m	19.9%	203.3m	0.9%	27.2%	73g/t
SK21_002	5.6m	43.5%	86.6m	42.5%	1.1%	574g/t
	10.0m	37.0%	252.4m	30.0%	9.7%	291g/t
SK21_024	2.1m	19.2%	271.0m	18.3%	1.2%	80g/t
	5.0m	17.5%	194.0m	15.7%	2.5%	151g/t
SK21_001	0.8m	32.6%	104.7m	15.8%	23.9%	100g/t
3KZ1_001	2.2m	21.0%	119.3m	9.0%	17.1%	78g/t
SK21_006	9.8m	32.5%	100.0m	27.9%	6.4%	304g/t
SK21_009	10.9m	18.8%	140.9m	12.7%	8.7%	73g/t
SK21_022	2.1m	14.3%	153.5m	8.8%	7.8%	54g/t
SK21_005	11.7m	16.1%	107.9m	7.8%	11.8%	59g/t
SK21_031	2.8m	11.5%	141.2m	2.8%	12.3%	86g/t

- Strong silver assays continue, with results up to 580g/t Ag
- Results provide strong support to upgrade the Mineral Resource confidence as part of a target investment decision in Q1 FY22
- The Silver King vein remains open down plunge, with a current Inferred Resource of 2.7Mt @ 16.9% PbEq (12% Pb, 6.9% Zn, 120g/t Ag)
- Remaining 14 Silver King drilling assays due within the month

New Century Resources Ltd

Office Level 4, 360 Collins Street, Melbourne VIC 3000

Phone +61 (3) 9070 3300

Email info@newcenturyresources.com
Website www.newcenturyresources.com

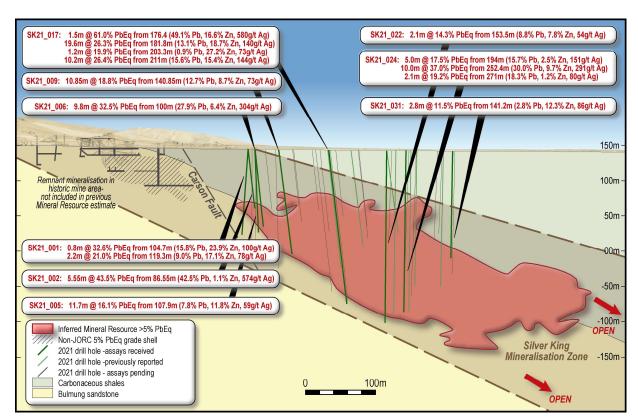


Figure 1: Silver King long section showing highlight intercepts & exploration potential

Figure 2: SK21_017 core showing part of 10.0m at 37.0% PbEq from 181.8m

Figure 3: SK21_024 core showing part of 19.6m at 26.3% PbEq from 252.4m

New Century Resources Limited (NCZ, New Century or the Company) (ASX:NCZ) is pleased to update the market on the progress of drilling activities at the high grade Silver King Lead-Zinc-Silver Deposit, located at the Century Zinc Mine in Queensland.

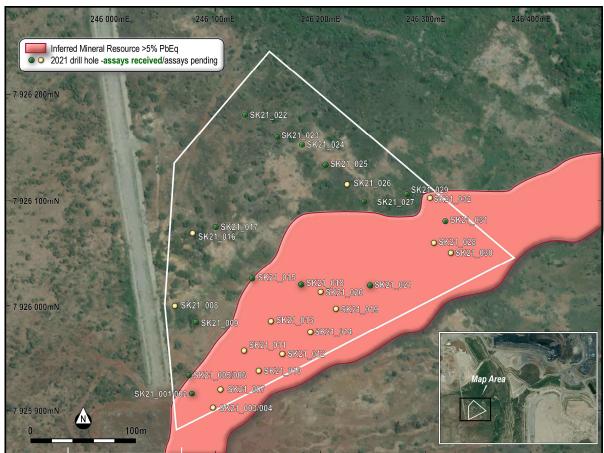


Figure 4: Project location and resource definition hole collars

Table 1. Silver King drilling program composite assays results

Hole ID	From	То	Interval (m)/1)	True width (m)	DhE	- /0/\	Pb	Zn	Ag		5 6 (2)
Hole ID	(m)	(m)	interval (III)(1)	True width (m)	PbEc	1 (1/0)	(%)	(%)	(g/t)		S.G. (2)
SK21_001	104.7	105.5	0.8	0.7	3	32.6%	15.8%	23.9%	1	.00	3.46
SK21_001	119.3	121.5	2.2	2.0	2	21.0%	9.0%	17.1%		78	3.15
SK21_002	86.55	92.1	5.55	5.0	4	43.5%	42.5%	1.1%	5	74	4.12
SK21_005	107.9	119.6	11.7	10.5		16.1%	7.8%	11.8%		59	3.15
SK21_006	100	109.8	9.8	8.8	137	32.5%	27.9%	6.4%	3	804	3.50
SK21_009	140.85	151.7	10.85	9.8		18.8%	12.7%	8.7%		73	3.09
SK21_017	176.4	177.9	1.5	1.4	(51.0%	49.1%	16.6%	5	088	4.96
SK21_017	181.8	201.4	19.6	17.6	2	26.3%	13.1%	18.7%	1	.40	3.45
SK21_017	203.3	204.5	1.2	1.1		19.9%	0.9%	27.2%		73	3.14
SK21_017	211	221.2	10.2	9.2	2	26.4%	15.6%	15.4%	1	44	3.57
SK21_022	153.5	155.6	2.1	1.9		14.3%	8.8%	7.8%		54	3.09
SK21_024	194	199	5	4.5		17.5%	15.7%	2.5%	1	.51	3.16
SK21_024	252.4	262.4	10	9.0	3	37.0%	30.0%	9.7%	2	91	3.78
SK21_024	271	273.1	2.1	1.9		19.2%	18.3%	1.2%		80	3.63
SK21_031	141.2	144	2.8	2.5		11.5%	2.8%	12.3%		86	3.00

⁽¹⁾ Downhole interva

⁽²⁾ Length weighted average of measured specific gravity values by water immersion method

Further assay results have been received from an additional nine of 30 holes completed as part of the full program, bringing the total to 16 holes with assays received. The impressive drilling results received to date demonstrate good continuity of the high-grade mineralisation, supporting an updated Mineral Resource estimate targeted for release in Q1 FY22.

Assays for the remaining 14 holes are anticipated to be received within the month. The Company will provide an update to the market as these results become available.

Silver King Deposit Overview

The Silver King deposit was discovered in 1887, with mining commencing soon after. By 1900 three shafts had been sunk on the deposit and small-scale, intermittent, underground production occurred from the mine through to 1980.

Figure 5: Location of the Silver King Deposit with historical workings

The maximum depth of the known excavations is approximately 60m from the current surface and it is estimated no more than 50,000 tonnes of ore was extracted in total. The historic mine lies approximately 1km south of the southernmost extent of the Century Open pit.

Mineralisation at Silver King consists of a series of moderately to steeply dipping quartz-galenasphalerite-siderite hydrothermal veins and breccias associated with a northeast trending sinistral strike-slip fault.

The system extends vertically across the stratigraphic units H2, H3, and H4r within the Lawn Hill formation of the Upper McNamara Group - in the footwall to the adjacent Century stratiform Zn-Pb-Ag deposit.

Figure 6: Location of Silver King and other existing Mineral Resources & Reserves on the Century Mining Lease

Silver King & East Fault Block Development Study

New Century sees strong potential for the near-term development of Silver King and East Fault Block into mining operations. With results of the recently completed drilling program to provide important resource, geotechnical and metallurgical information for inputs to the Development Study currently underway.

The Company is targeting a final investment decision for the development of Silver King and East Fault Block in Q1 FY22.

This announcement is approved for release by the Board of New Century Resources.

For further information, please contact:

New Century Resources

Patrick Walta Managing Director P: +61 3 9070 3300

E: info@newcenturyresources.com

Media enquiries

Shane Goodwin
Head of Corporate Affairs

P: +61 434 039 106

E: sgoodwin@newcenturyresources.com

Table 2. Silver King drilling program drillhole details and status

Hole ID	Depth (m)	Dip	Azi (MGA)	East (MGA)	North (MGA)	RL (MGA)	Status	Assay Results
SK21_001	133	-82	171	246078.1	7925917	148.8	Complete	Yes
SK21_002	105.6	-60	130	246078.1	7925917	148.8	Complete	Yes
SK21_003	160	-90	90	246086.6	7925915	148.5	Complete	No
SK21_004	150.3	-90	90	246096	7925912	148.5	Complete	No
SK21_005	129.9	-68	134	246075.6	7925934	148.4	Complete	Yes
SK21_006	141.5	-60	130	246075.5	7925934	148.7	Complete	Yes
SK21_007	101	-60	130	246105.5	7925921	148.3	Complete	No
SK21_008	195	-66	138	246062.5	7925999	148.8	Complete	No
SK21_009	178.4	-60	130	246082.1	7925984	148. 4	Complete	Yes
SK21_010	95	-60	130	246141.4	7925938	147.4	Deferred	No
SK21_011	120.2	-60	130	246127.6	7925957	147.6	Complete	No
SK21_012	100	-60	130	246164	7925954	146.7	Complete	No
SK21_013	131.7	-60	130	246153.4	7925985	146.9	Complete	No
SK21_014	109.9	-60	130	246190.2	7925975	146.1	Complete	No
SK21_015	198.7	-60	130	246134.9	7926025	147.1	Complete	Yes
SK21_016	234.5	-60	130	246079.3	7926068	147.5	Complete	No
SK21_017	249.9	-60	130	246100.8	7926074	147.1	Complete	Yes
SK21_018	156	-60	130	246181.5	7926019	146.2	Complete	Yes
SK21_019	125	-60	130	246214.4	7925996	145.8	Complete	No
SK21_020	144	-60	130	246200.4	7926012	145.7	Complete	No
SK21_021	141.7	-60	130	246247	7926019	145.1	Complete	Yes
SK21_022	312.7	-60	145	246128.6	7926180	145.2	Complete	Yes
SK21_023	310.6	-60	145	246159.1	7926159	145.2	Complete	Yes
SK21_024	306.8	-60	145	246182.5	7926151	145.1	Complete	Yes
SK21_025	285.7	-60	145	246204.6	7926132	145.1	Complete	Yes
SK21_026	240	-60	145	246225.2	7926114	145	Complete	No
SK21_027	219.7	-60	145	246241	7926098	144.8	Complete	Yes
SK21_028	180.6	-60	145	246307.4	7926059	144.1	Complete	No
SK21_029	221.6	-60	145	246281.4	7926105	144.2	Complete	Yes
SK21_030	0	-60	145	246323.3	7926050	143.9	Cancelled	N/A
SK21_031	174.7	-60	145	246317.7	7926080	143.7	Complete	Yes
SK21_032	209	-60	145	246303.8	7926102	143.9	Complete	No

Competent Person Statement

Exploration Targets and Exploration Results

The information in this announcement that relates to Exploration Targets and Exploration Results is based on information compiled by Damian O'Donohue, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Damian O'Donohue is a full time employee of the Company. Damian O'Donohue has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Damian O'Donohue consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Mineral Resources

The information in this announcement that relates to Mineral Resources for:

- the Silver King deposit is extracted from the Company's prospectus released to ASX on 20 June 2017 and is available to view at https://www.asx.com.au/asxpdf/20170620/pdf/43k1ybkrg5mk9g.pdf;
- the South Block deposit is extracted from a report titled 'South Block Resource Provides Significant Potential for Century Mine Life Extension and Production Increase' which was released to the ASX on 15 January 2018 and is available to view at https://www.asx.com.au/asxpdf/20180115/pdf/43qt931zzrmlbb.pdf; and
- the East Fault Block deposit is extracted from a report titled 'Century Expansion Study Incorporating In-site Resource Development Demonstrates Strong Value Add Potential' which was released to the ASX on 25 June 2019 and is available to view at https://www.asx.com.au/asxpdf/20190625/pdf/446345qmbjpgjg.pdf.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Ore Reserves

The information in this announcement that relates to the Ore Reserves at the Century Tailings Deposit is extracted from a report titled 'New Century Reports Outstanding Feasibility Results that Confirm a Highly Profitable, Large Scale Production and Low Cost Operation for the Century Mine Restart' which was released to the ASX on 28 November 2017 and is available to view at https://www.asx.com.au/asxpdf/20171128/pdf/43pn3pvq59yjz5.pdf. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Lead Equivalence Calculation

The calculation adjusts individual grades for non-lead payable metals to a lead equivalence, allowing a combined value weighted grade to be reported (PbEq). The calculation takes into account metallurgical recoveries, concentrate grades, payability factors, treatment charges and refining charges, metal payment terms, and metal prices in generating a lead equivalence value for zinc (Zn), and silver (Ag).

New Century has selected to report on a lead equivalent basis, as lead is the metal that contributes the most to the lead equivalent (PbEq.) calculation. It is the view of New Century Resources that all the metals used in the Pb Eq. formula are expected to be recovered and sold.

Where:

Metallurgical Recoveries are derived from historical test work carried out the Silver King deposit. The assumed Metallurgical Recovery for each metal is shown below in Table 3. The average recovery for silver assumes payable value from the lead concentrate only and assigns a weighted average recovery for total silver assuming 80% of contained silver is subject to 80% recovery (64% of total Ag recovered).

Metal Price assumptions are based on consensus price forecasts and are shown below in Table 3.

Payable Metal Factors are calculated for each metal and make allowance for concentrate grade, treatment charges, refining charges, and metal payment terms. It is the view of New Century that two saleable base metal concentrates will be produced from Silver King. Payable metal factors are detailed below in Table 3.

The following lead equivalence factors are the product of individual factors for metal recovery, concentrate grade, metal price, treatment & refining charges, and payability normalized to the respective lead value (where the lead metal equivalent factor = 1).

Table 3. Metal Equivalence Factors

Metal	Lead (Pb)	Zinc (Zn)	Silver (Ag)
Metal Price \$USD	1900/t	2400/t	20/oz
Recovery	87%	75%	64%
Concentrate grade	69%	56%	21.2 oz.
Treatment charge \$USD	\$175	\$155	2 oz
Payability	95%	85%	95%
Metal Equivalence Factor	1.0	0.7	0.000544

The lead equivalence grade is calculated as per the following formula:

PbEq = (Pb%*1.0) + (Zn%*0.7) + (Ag ppm*0.000544)

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

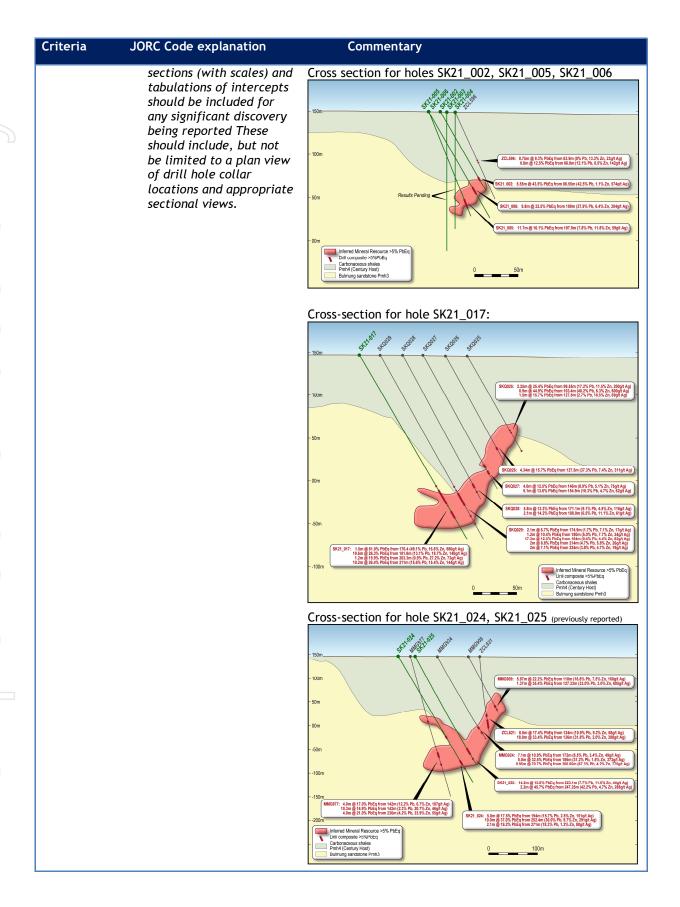
(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling was used to obtain core samples. Samples consist of half HQ3 drill core. Sample intervals were selected by company geologists based on visual mineralisation. Intervals ranged from 0.1 to 1.1m based on geological boundaries. Core samples were cut in half onsite using an Almonte core saw. Samples were sent to ALS laboratories Mount Isa for sample preparation and density measurements, and transferred to ALS Brisbane for detailed assays. Approximately 3kg samples were crushed to 70% passing 2mm and a sample split of 250g was taken using a riffle splitter. The split is then pulverized to >85% passing 75 microns. Analysis consisted of an aqua regia digest followed by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) for Ag; and lithium metaborate fusion followed by X-ray Fluorescence Spectroscopy (XRF) for Al2O3, CaO, Cu, Fe, MgO, Pb, S, SiO2, Zn.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond drill was used for all samples being reported. HQ3 diameter core was recovered. Core was oriented using a REFLEX ACT III digital core orientation system.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have 	 Drilled intervals were reconciled against recovered core to assess sample recovery. Average core recoveries are >95%. No bias is apparent relating to sample recoveries as minimal sample loss has been observed.

Criteria	JORC Code explanation	Commentary
	occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Detailed geological and geotechnical logging is carried out on all core appropriate for Mineral Resource estimation and mining studies. Visual geological logs are qualitative with some quantitative measures relating to rock quality and structural orientations. 100% of recovered core is logged for geology, with select intervals proximal to likely development chosen for detailed geotechnical logging.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Core is cut in half on site using an automatic feed Almonte core saw. The sample is of high quality and represents standard industry practice. Where practical samples are cut at 10 degrees to the core orientation line. No field duplicates were taken, however coarse splits were taken at the laboratory as pseudo duplicate samples. Approximately 3kg samples were crushed to 70% passing 2mm and a sample split of 250g was taken using a riffle splitter. The split is then pulverized to >85% passing 75 microns. This represents standard industry practice and is considered appropriate to the mineralisation being sampled. A silica flush of both the laboratory crusher and pulveriser, is carried out following the preparation of high grade samples to minimise carry-over contamination. The competent person considers the sample size to be appropriate for the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) 	 The methods and procedures are considered of high quality and consistent with industry best practice. The XRF method is considered a total method, whilst the AES method is considered near-total. Commercially available Certified Reference Materials (CRM) were inserted at an approximate ratio of 1:20. Certified blank material was used following high-grade intervals to identify any carryover contamination. The Commercial laboratory also assigns internal control samples for QA which are validated prior to the finalisation of results. All controls returned within acceptable

Criteria	JORC Code explanation	Commentary
	and precision have been established.	limits.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No independent verification has occurred at the time of reporting. No twinned holes were drilled. Qualitative logging is carried out into standardised Microsoft Excel logging spread-sheets with drop down logging codes for each variable. The logging geologist then completes a commentary for the relevant section which should correspond with the logging codes for the interval. Where there is inconsistency the commentary information is prioritised. Data is validated prior to being uploaded to an externally hosted Datashed database managed by Maxwell Geoservices. Assay data is loaded directly from the certified laboratory results file and no adjustments are made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All surface survey data is collected by a qualified mine surveyor to high accuracy. Downhole surveys were carried out using a North Seeking Gyro-compass. All data is reported in Map Grid of Australia MGA94 zone 54. Topographic control is of high quality using a combination of airborne LiDAR and high accuracy surface point data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Results represent infill drilling of the current Inferred Mineral Resource to approximate a 20m spaced grid. The objective is to complete an updated Mineral Resource estimate with an increased confidence level appropriate for Mining Studies. No sample compositing has occurred.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 All reasonable attempts are made in the drill design process to intersect mineralisation perpendicular to the structure which controls mineralisation at Silver King. At times physical drilling limitations, or access constraints may mean the angle of intercept is sub-perpendicular. No bias relating to the orientation of sampling has been identified at the time of reporting.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	 Sample intervals were logged and recorded by experienced geologists, and sample numbers assigned to each interval. Core samples were cut by field assistants and placed into commercially printed numbered calico bags corresponding to the sample interval above. The individual calico bags were placed into poly-woven sacks which were tied with either metal wire ties or plastic cable ties. Samples were transported by commercial carriers to off-site laboratories. Sample sheets were entered into the Geological database and a corresponding sample inventory was attached to the freight. Upon receipt, the laboratory staff completed a sample receipt report, noting any missing or damaged samples relative to the submission documentation which is forwarded to the Project Geologist.
Audits reviews	or • The results of any audits or reviews of sampling techniques and data.	 No audits or reviews have occurred at the time of reporting.


Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Century Mining Ltd holds a mining lease (ML90045) including the Century Mine; this has an expiry date of 18/09/2037. Century Mine operates under The Gulf Communities Agreement (GCA). The agreement was negotiated between Pasminco Century Mine Limited, the Queensland Government and three native title groups the Waanyi, Mingginda, and Gkuthaarn and Kikatj under the right to negotiate provisions of the Native Title Act 1993 (Cth). This agreement, which was signed in May 1997, came into effect in September 1997 when Pasminco purchased the Century Mine project from Rio Tinto. The GCA specifies particular benefits and obligations on each party, which exist throughout the life of the mining project. In negotiating the GCA, Traditional Owners intended for the mine to contribute to the social and economic development of the Gulf while protecting and promoting cultural heritage. All activities undertaken are further subject to the conditions of the Environmental Authority EPML00888813, issued by the Queensland Department of Environment and Heritage Protection. All activities are monitored by site based environmental scientists. There are no known impediments to operating in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Exploration and mining has been ongoing for over 100 years in the Burketown Mineral field, there is a large catalogue of historical documents, maps, scientific papers and reports pertaining to the area. First production from Silver King occurred in 1897 with intermittent attempts to mine continuing into the 1980's. Following the discovery of Century Mine in 1990 by Rio Tinto numerous drilling campaigns have occurred by subsequent owners of the operation with the identification of a significant fault offset extension at Silver King. The history of this work is poorly documented but is attributed to Zinifex Ltd by the author. Zinifiex later merged with Oxiana Ltd to form OZ Minerals.
Geology	Deposit type, geological setting and style of mineralisation.	 Located regionally within a major mineral province which also hosts the - Mount Isa, Hilton, George Fisher, Cannington, Dugald River and Lady Loretta base metal deposits - together with the McArthur River deposit in the McArthur Basin to the north-west; the Silver King deposit is part of an epithermal vein field closely

Criteria	JORC Code explanation	Commentary
		 associated with the sediment hosted stratiform Zn-Pb-Ag Century deposit. The main lode which hosts the vast majority of mineralisation at Silver King is a fault offset from the shallow historically mined area. At least 4 other smaller veins have been mapped in historic mine plans Silver King is a Mesoproterozoic aged structurally controlled Pb-Zn-Ag quartz carbonate epithermal vein breccia within the Upper Lawn Hill formation. Mineralisation has been identified from surface in the historic mine area, to 300m below surface over a strike length of 700m and dips variably to the NW from approximately 65 degrees in the upper levels to sub horizontal in the lower levels, with a general 20 degree plunge to the NE. The potential modification of the orebody geometry by the adjacent Lawn Hill impact event is still under investigation. Mineral relationships in the vein system suggests multiple early sphalerite (ZnS) stages overprinted by galena (PbS). Chlorite-sericite-illite alteration is common in the H3 sandstone unit. The Zinc rich fluids are more pervasive through the host rocks infilling much of the brecciated rock in the fault zone, and also along the western H4r/H3 shale to sandstone lithological contact; potentially due to contrasting brittle-elastic responses to stress within these rock masses. The Pb zones appear localised to the fault structure(s) and may indicate reactivation and infill of the fault(s) at a later date. The Pb zones are also significantly higher grade than the Zn overall.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth	All hole details are contained within the body of the report and assay results being reported are included in full in the Assay results table following Table 1 Section 2.

Criteria	JORC Code explanation	Commentary
	 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cutoff grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intervals were reported above a 5% PbEq grade cut-off over a minimum 1m true width interval with grades weighted by both interval length and specific gravity. The additional weighting using specific gravity was to account for the large variability in this value in high grade base metals. The lead equivalence (PbEq) calculation and inputs is outlined in full within the document. The lead equivalence grade is calculated as per the following formula: Pb Eq. = (Pb%*1.0) + (Zn%*0.7) + (Ag ppm*0.000544) The following inputs were used to derive the equation: Metal Price SUSD 1900/t 200/oz Recovery 87% 64% 64% 620 Concentrate grade 69% 56% 12.2 oz Payability 95% 85% 95% 195% 64% 64% 648 65% 95% 95% 1942 007 0.000544
Relationship between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 In the case of the reported results at Silver King it is assumed the downhole interval is approximately 90% of the true width of mineralisation. The angle of intersect is not true to perpendicular due to the variable dip of the vein and physical limitations of equipment.
Diagrams	Appropriate maps and	

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All results are reported in full within the document.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No additional material information is available for reporting at this time.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional Exploration drilling may occur following the interpretation of all results from the current drilling. The deposit remains open down plunge, and undertested for parallel mineralisation to the west and east given the historic identification of mineralised structures in plans. A detailed structural model of the deposit should be developed to better understand the complex geometries observed in drilling.

Hole ID	From (m)	To (m)	Downhole Int (m)	True width (m)	PbEq%	Pb%	Zn%	Ag g/t ₍₁₎	S.G (2)
SK21 001	103.7	104.7	1		0.2	0.0	0.2	1	2.61
SK21_001	104.7	105.5	0.8		32.6	15.8	23.9	100	3.46
SK21_001	105.5	106.5	1		0.9	0.2	1.1	1	2.7
SK21_001	115.3	116.3	1		0.3	0.1	0.3	1	2.6
SK21_001	116.3	117.3	1		5.5	1.1	6.2	8	2.76
SK21_001	117.3	118.3	1		0.8	0.2	0.9	1	2.58
SK21_001	118.3	119.3	1		2.7	0.4	3.3	6	2.53
SK21_001	119.3	120.3	1		23.1	8.9	20.2	70	3.22
SK21_001	120.3	121	0.7		19.8	8.0	16.8	89	3.13
SK21_001	121	121.5	0.5		18.2	10.6	10.9	80	3.03
SK21_001	121.5	122.5	1		2.9	1.5	2.1	7	2.45
SK21_001	122.5	123.4	0.9		3.9	2.3	2.2	9	2.57
SK21_001	123.4	124	0.6		4.0	0.9	4.4	8	3.15
SK21_001	124	125	1		5.1	0.4	6.6	8	3.17
SK21_001	125	125.7	0.7		6.7	0.1	9.4	8	3.04
SK21_001	125.7	126.7	1		1.7	0.0	2.5	2	2.78
SK21_001	126.7	127.7	1		0.2	0.0	0.3	1	2.67
SK21_002	82	83	1	0.9	0.2	0.1	0.2	4	2.57
SK21_002	83	84	1	0.9	17.8	2.4	22.1	25	2.98
SK21_002	84	85	1	0.9	1.3	0.3	1.4	3	2.62
SK21_002	85	86	1	0.9	0.9	0.1	1.1	2	2.55
SK21_002	86	86.55	0.55	0.495	3.2	1.5	2.5	14	2.64
SK21_002	86.55	87.6	1.05	0.945	84.0	82.6	0.8	1500	6.84
SK21_002	87.6	88.4	0.8	0.72	41.5	39.3	2.8	360	4.39
SK21_002	88.4	89	0.6	0.54	1.5	0.5	1.4	4	2.99
SK21_002	89	89.7	0.7	0.63	7.8	6.2	2.3	27	3.08
SK21_002	89.7	90.4	0.7	0.63	0.5	0.1	0.6	1	2.67
SK21_002	90.4	91.4	1	0.9	15.0	14.9	0.2	74	3.09
SK21_002	91.4	92.1	0.7	0.63	55.3	55.1	0.1	244	4.68
SK21_002	92.1	93.1	1	0.9	0.2	0.0	0.2	1	2.77
SK21_005	105.5	106	0.5	0.45	1.3	0.5	1.2	5	2.69
SK21_005	106	107	1	0.9	1.0	0.4	0.9	4	2.5
SK21_005	107	107.9	0.9	0.81	0.7	0.2	0.8	4	2.59
SK21_005	107.9	109	1.1	0.99	17.5	3.9	19.5	55	2.96
SK21_005	109	110	1	0.9	4.6	1.0	5.2	10	2.62
SK21_005	110	111	1	0.9	19.7	9.6	14.5	46	3.12
SK21_005	111	112	1	0.9	17.8	4.4	19.1	61	3.09
SK21_005	112	112.7	0.7	0.63	12.8	6.1	9.6	56	3.02
SK21_005	112.7	113.6	0.9	0.81	2.3	2.0	0.5	11	3.7
SK21_005	113.6	114.5	0.9	0.81	12.9	1.8	15.8	41	2.96
SK21_005	114.5	115.5	1	0.9	10.3	6.4	5.6	40	2.85
SK21_005	115.5	116	0.5	0.45	1.9	0.6	1.8	5	2.63

Hole ID	From (m)	To (m)	Downhole Int (m)	True width (m)	PbEq%	Pb%	Zn%	Ag g/t ₍₁₎	S.G (2)
SK21 005	116	117	1	0.9	21.1	12.4	12.4	53	3.23
SK21_005	117	117.7	0.7	0.63	24.1	8.5	22.3	42	3.46
SK21_005	117.7	118.5	0.8	0.72	2.3	0.2	3.1	5	2.97
SK21_005	118.5	119	0.5	0.45	16.1	1.6	20.7	47	3.29
SK21_005	119	119.6	0.6	0.54	53.2	43.8	13.2	320	4.62
SK21_005	119.6	120.6	1	0.9	0.3	0.1	0.2	1	2.7
SK21_006	97.5	98.5	1	0.9	0.1	0.0	0.2	1	2.59
SK21_006	98.5	99	0.5	0.45	1.1	0.7	0.7	5	2.64
SK21_006	99	100	1	0.9	4.9	1.9	4.2	8	2.71
SK21_006	100	100.7	0.7	0.63	11.8	10.2	2.3	55	2.9
SK21_006	100.7	101.75	1.05	0.945	20.9	6.7	20.3	48	3.15
SK21_006	101.75	102.7	0.95		2.7	0.2	3.5	10	2.64
SK21_006	102.7	103.5	0.8		7.5	2.3	7.4	23	2.87
SK21_006	103.5	104.4	0.9		15.2	6.1	12.9	71	2.97
SK21_006	104.4	105.1	0.7		2.6	1.0	2.3	11	2.61
SK21_006	105.1	106.2	1.1		21.2	10.5	15.2	76	3.14
SK21_006	106.2	107.3	1.1		3.1	1.7	2.0	9	2.8
SK21_006	107.3	108.2	0.9		10.9	7.9	4.2	88	3.04
SK21_006	108.2	109	0.8		84.3	83.5	0.4	992	6.88
SK21_006	109	109.8	0.8		76.9	74.9	2.3	794	6.12
SK21_006	109.8	110.9	1.1		0.3	0.1	0.3	2	2.8
SK21_006	110.9	112	1.1		2.1	1.0	1.6	9	2.72
SK21_009	140	140.85	0.85		0.9	0.3	0.8	3	2.55
SK21_009	140.85	141.5	0.65		22.2	10.9	16.2	47	3.1
SK21_009	141.5	142.1	0.6		22.7	2.8	28.4	47	3.19
SK21_009	142.1	142.8	0.7		16.9	14.0	4.0	93	3.1
SK21_009	142.8	143.4	0.6		31.2	21.3	14.0	119	3.45
SK21_009	143.4	144.1	0.7		16.8	10.7	8.7	52	3
SK21_009	144.1	145.1	1		8.3	7.5	1.1	50	2.83
SK21_009	145.1	146.1	1		6.2	5.1	1.5	28	2.84
SK21_009	146.1	147.1	1		1.0	0.8	0.3	4	2.62
SK21_009	147.1	148.1	1		43.8	38.2	7.9	221	3.83
SK21_009	148.1	149	0.9		28.3	14.4	19.9	87	3.35
SK21_009	149	149.5	0.5		2.3	1.5	1.2	7	2.7
SK21_009	149.5	150.5	1		8.1	5.6	3.5	26	2.83
SK21_009	150.5	151.3	0.8		24.4	19.2	7.4	79	3.38
SK21_009	151.3	151.7	0.4		13.3	2.4	15.6	42	3.08
SK21_009	151.7	152.7	1		0.8	0.2	0.9	2	2.62
SK21_017	175.4	176.4	1	0.9	1.6	1.5	0.1	7	2.67
SK21_017	176.4	177	0.6	0.54	48.6	31.3	24.4	399	4.4
SK21_017	177	177.9	0.9	0.81	67.9	58.9	12.3	679	5.34
SK21_017	177.9	178.8	0.9	0.81	0.5	0.3	0.2	4	2.64

Hole ID	From (m)	To (m)	Downhole Int (m)	True width (m)	PbEq%	Pb%	Zn%	Ag g/t ₍₁₎	S.G (2)
SK21_017	178.8	180	1.2	1.08	1.3	1.0	0.5	7	2.63
SK21_017	180	181.2	1.2	1.08	0.5	0.5	0.1	5	2.64
SK21_017	181.8	182.6	0.8	0.72	60.3	40.8	27.4	553	5.32
SK21_017	182.6	183.3	0.7	0.63	47.1	43.0	5.6	329	4.38
SK21_017	183.3	184	0.7	0.63	3.5	1.5	3.0	21	2.79
SK21_017	184	184.9	0.9	0.81	16.7	11.3	7.7	77	3.04
SK21_017	184.9	185.7	0.8	0.72	10.4	6.7	5.2	48	2.81
SK21_017	185.7	186.9	1.2	1.08	2.3	0.3	2.8	5	2.67
SK21_017	186.9	188	1.1	0.99	52.0	39.5	17.5	437	4.35
SK21_017	188	189	1	0.9	48.7	32.7	22.5	373	4.46
SK21_017	189	190	1	0.9	22.1	10.2	17.0	114	3.33
SK21_017	190	191	1	0.9	26.0	8.0	25.7	116	3.42
SK21_017	191	192	1	0.9	13.2	2.7	15.1	37	3.17
SK21_017	192	193	1	0.9	13.8	3.1	15.4	35	3.2
SK21_017	193	194	1	0.9	12.2	1.3	15.5	16	3.19
SK21_017	194	195	1	0.9	21.8	12.2	13.7	78	3.35
SK21_017	195	196	1	0.9	16.9	2.2	21.0	46	3.3
SK21_017	196	196.8	0.8	0.72	17.8	12.5	7.6	50	3.22
SK21_017	196.8	197.8	1	0.9	32.2	4.7	39.2	48	3.66
SK21_017	197.8	198.6	0.8	0.72	13.6	1.0	18.0	32	3.32
SK21_017	198.6	199.4	0.8	0.72	25.3	1.5	34.0	17	3.29
SK21_017	199.4	200.4	1	0.9	21.4	2.1	27.6	16	3.19
SK21_017	200.4	201.4	1	0.9	23.6	0.7	32.8	14	3.26
SK21_017	201.4	202.4	1	0.9	2.5	0.1	3.4	5	2.87
SK21_017	202.4	202.9	0.5	0.45	4.3	0.1	5.9	6	3.39
SK21_017	202.9	203.3	0.4	0.36	0.5	0.1	0.6	2	2.64
SK21_017	203.3	203.8	0.5	0.45	30.5	1.3	41.5	135	3.48
SK21_017	203.8	204.5	0.7	0.63	10.9	0.5	14.9	20	2.9
SK21_017	204.5	205.4	0.9	0.81	2.3	0.3	2.9	4	2.7
SK21_017	205.4	206	0.6	0.54	2.3	0.4	2.7	4	2.68
SK21_017	206	207	1	0.9	0.6	0.2	0.6	2	2.63
SK21_017	207	208	1	0.9	8.5	1.2	10.5	26	2.88
SK21_017	208	209	1	0.9	5.3	0.6	6.7	7	2.74
SK21_017	209	210	1	0.9	3.5	0.3	4.5	4	2.69
SK21_017	210	211	1	0.9	2.8	0.9	2.8	5	2.67
SK21_017	211	212	1	0.9	6.5	3.2	4.7	17	2.75
SK21_017	212	213	1	0.9	5.0	0.3	6.8	6	2.68
SK21_017	213	214	1	0.9	16.6	2.4	20.2	23	3.09
SK21_017	214	215	1	0.9	11.3	1.1	14.6	25	3.38
SK21_017	215	215.8	0.8	0.72	39.0	34.9	5.7	186	4.44
SK21_017	215.8	216.8	1	0.9	19.2	6.9	17.5	158	3.76
SK21_017	216.8	217.8	1	0.9	24.0	13.0	15.7	125	3.5

Hole ID	From (m)	To (m)	Downhole Int (m)	True width (m)	PbEq%	Pb%	Zn%	Ag g/t ₍₁₎	S.G (2)
SK21_017	217.8	218.8	1	0.9	17.8	3.6	20.2	81	3.29
SK21_017	218.8	219.6	0.8	0.72	54.9	45.5	13.2	319	4.71
SK21_017	219.6	220.1	0.5	0.45	13.7	4.5	13.2	60	3.17
SK21_017	220.1	221.2	1.1	0.99	51.5	31.7	28.0	348	4.59
SK21_017	221.2	222	0.8	0.72	2.7	0.2	3.5	7	3
SK21_017	222	223	1	0.9	0.9	0.3	1.0	3	2.74
SK21_017	223	224	1	0.9	0.4	0.2	0.3	2	2.7
SK21_017	224	225	1	0.9	1.4	0.1	1.9	3	2.73
SK21_017	225	226	1	0.9	0.4	0.1	0.5	2	2.67
SK21_017	226	227	1	0.9	0.1	0.0	0.1	1	2.66
SK21_017	227	227.8	0.8	0.72	0.2	0.2	0.1	1	2.72
SK21_017	227.8	228.5	0.7	0.63	8.7	1.9	9.8	16	2.87
SK21_017	228.5	229.5	1	0.9	0.7	0.1	0.8	2	2.68
SK21_017	249	249.9	0.9	0.81	1.6	1.5	0.2	4	3.09
SK21_022	152.4	153.5	1.1	0.99	0.3	0.3	0.0	3	2.66
SK21_022	153.5	154.15	0.65	0.585	14.5	3.7	15.5	43	3.35
SK21_022	154.15	155.1	0.95	0.855	2.3	1.5	1.2	9	2.6
SK21_022	155.1	155.6	0.5	0.45	30.2	24.8	7.6	127	3.67
SK21_022	155.6	156.4	0.8	0.72	0.0	0.0	0.0	1	2.65
SK21_022	284.3	285.3	1	0.9	0.0	0.0	0.0	1	2.59
SK21_022	285.3	285.9	0.6	0.54	0.0	0.0	0.0	1	2.67
SK21_022	285.9	286.5	0.6	0.54	0.0	0.0	0.0	1	2.68
SK21_022	286.5	287.5	1	0.9	0.8	0.0	1.1	1	2.66
SK21_022	287.5	288.5	1	0.9	0.0	0.0	0.0	1	2.62
SK21_022	288.5	289.5	1	0.9	0.7	0.0	0.9	1	2.63
SK21_022	289.5	290.4	0.9	0.81	1.5	0.0	2.2	2	2.65
SK21_022	290.4	291.4	1	0.9	4.1	0.0	5.8	12	2.84
SK21_022	291.4	292	0.6	0.54	0.9	0.0	1.2	2	2.89
SK21_022	292	292.7	0.7	0.63	1.2	0.1	1.6	2	3.01
SK21_022	292.7	293.6	0.9	0.81	0.0	0.0	0.0	1	2.63
SK21_022	293.6	294.5	0.9	0.81	0.0	0.0	0.0	1	2.63
SK21_022	294.5	295.3	0.8	0.72	0.0	0.0	0.0	1	2.59
SK21_022	295.3	296.1	0.8	0.72	0.2	0.0	0.2	1	2.68
SK21_022	296.1	296.9	0.8	0.72	0.0	0.0	0.0	1	2.72
SK21_022	296.9	297.7	0.8	0.72	0.0	0.0	0.0	1	2.67
SK21_022	297.7	298.7	1	0.9	0.0	0.0	0.0	1	2.62
SK21_024	186	187	1	0.9	1.2	1.1	0.1	5	2.68
SK21_024	187	188	1	0.9	0.7	0.7	0.0	2	2.64
SK21_024	188	189	1	0.9	3.5	1.7	2.6	13	2.73
SK21_024	189	190	1	0.9	0.2	0.2	0.0	2	2.63
SK21_024	190	191	1	0.9	1.1	0.9	0.3	5	2.63
SK21_024	191	192	1	0.9	2.0	1.7	0.6	8	2.67

Hole ID	From (m)	To (m)	Downhole Int (m)	True width (m)	PbEq%	Pb%	Zn%	Ag g/t ₍₁₎	S.G (2)
SK21_024	192	193	1	0.9	5.2	4.7	0.7	20	3
SK21_024	193	194	1	0.9	2.0	1.0	1.4	7	2.65
SK21_024	194	195	1	0.9	9.1	8.6	0.7	54	2.83
SK21_024	195	195.8	0.8	0.72	0.3	0.3	0.0	2	2.61
SK21_024	195.8	196.8	1	0.9	19.3	16.4	4.0	83	3.32
SK21_024	196.8	198	1.2	1.08	34.4	31.9	3.3	393	3.97
SK21_024	198	199	1	0.9	8.3	6.2	3.1	31	2.82
SK21_024	199	200	1	0.9	5.6	2.5	4.4	11	2.68
SK21_024	200	201	1	0.9	1.8	1.8	0.0	7	2.63
SK21_024	201	202	1	0.9	0.3	0.3	0.0	2	2.61
SK21_024	202	203	1	0.9	21.9	21.4	0.6	65	3.15
SK21_024	203	204	1	0.9	0.2	0.2	0.0	1	2.68
SK21_024	204	205	1	0.9	0.4	0.2	0.3	2	2.6
SK21_024	205	206	1	0.9	0.0	0.0	0.0	1	2.57
SK21_024	206	207	1	0.9	0.0	0.0	0.0	1	2.56
SK21_024	207	208	1	0.9	0.0	0.0	0.0	1	2.6
SK21_024	208	209	1	0.9	0.0	0.0	0.0	1	2.57
SK21_024	209	210.2	1.2	1.08	0.0	0.0	0.0	1	2.58
SK21_024	210.2	211.2	1	0.9	0.0	0.0	0.0	1	2.58
SK21_024	211.2	212.2	1	0.9	0.1	0.1	0.0	1	2.6
SK21_024	212.2	213.2	1	0.9	0.4	0.4	0.1	1	2.61
SK21_024	213.2	214.2	1	0.9	2.8	2.6	0.3	82	2.69
SK21_024	214.2	215.2	1	0.9	2.2	2.1	0.0	10	2.66
SK21_024	215.2	216.2	1	0.9	1.2	1.2	0.0	4	2.65
SK21_024	216.2	217.25	1.05	0.945	1.0	1.0	0.1	4	2.64
SK21_024	217.25	218.1	0.85	0.765	7.8	7.1	1.0	28	2.85
SK21_024	218.1	218.8	0.7	0.63	2.5	1.0	2.2	8	2.67
SK21_024	218.8	219.8	1	0.9	1.1	1.0	0.3	5	2.65
SK21_024	219.8	220.4	0.6	0.54	0.8	0.7	0.1	5	2.64
SK21_024	220.4	221.4	1	0.9	0.1	0.1	0.0	2	2.3
SK21_024	221.4	222	0.6	0.54	0.0	0.0	0.0	1	1.56
SK21_024	222	223	1	0.9	0.3	0.1	0.3	2	2.61
SK21_024	240.2	241.2	1	0.9	0.4	0.3	0.1	5	2.6
SK21_024	241.2	242.2	1	0.9	6.9	4.2	3.8	30	2.74
SK21_024	242.2	243.2	1	0.9	1.0	0.8	0.3	4	2.62
SK21_024	243.2	244.2	1	0.9	0.7	0.2	0.8	2	2.63
SK21_024	244.2	245	0.8	0.72	5.1	4.5	0.8	16	2.73
SK21_024	245	246	1	0.9	1.4	1.4	0.0	5	2.69
SK21_024	246	247	1	0.9	0.4	0.4	0.0	2	2.74
SK21_024	247	248	1	0.9	0.5	0.5	0.0	3	2.61
SK21_024	248	249	1	0.9	3.7	3.7	0.0	17	2.74
SK21_024	249	250	1	0.9	0.8	0.8	0.0	7	2.66

Hole ID	From (m)	To (m)	Downhole Int (m)	True width (m)	PbEq%	Pb%	Zn%	Ag g/t ₍₁₎	S.G (2)
SK21_024	250	251	1	0.9	0.1	0.1	0.0	2	2.67
SK21_024	251	251.9	0.9	0.81	0.1	0.1	0.0	1	2.67
SK21_024	251.9	252.4	0.5	0.45	3.1	0.6	3.6	8	2.75
SK21_024	252.4	253.4	1	0.9	19.4	14.8	6.7	63	3.15
SK21_024	253.4	254.2	0.8	0.72	55.8	45.7	14.0	587	4.79
SK21_024	254.2	255	0.8	0.72	83.9	82.7	1.1	794	6.91
SK21_024	255	256.1	1.1	0.99	55.7	46.9	12.2	543	4.77
SK21_024	256.1	257.2	1.1	0.99	15.8	12.0	5.4	67	3.12
SK21_024	257.2	258.3	1.1	0.99	26.1	14.5	16.6	89	3.62
SK21_024	258.3	259.2	0.9	0.81	1.6	1.3	0.4	6	2.8
SK21_024	259.2	260.3	1.1	0.99	23.0	5.5	24.9	66	3.31
SK21_024	260.3	261.3	1	0.9	12.7	9.6	4.4	35	2.97
SK21_024	261.3	262.4	1.1	0.99	23.9	17.2	9.6	111	3.21
SK21_024	262.4	263.4	1	0.9	4.9	3.3	2.4	19	2.76
SK21_024	263.4	264.4	1	0.9	0.0	0.0	0.0	1	2.65
SK21_024	264.4	265	0.6	0.54	0.5	0.5	0.0	3	2.67
SK21_024	265	266	1	0.9	0.9	0.1	1.1	3	2.63
SK21_024	266	267	1	0.9	0.0	0.0	0.0	1	2.64
SK21_024	267	268	1	0.9	0.4	0.1	0.4	2	2.66
SK21_024	268	269	1	0.9	0.7	0.4	0.4	2	2.68
SK21_024	269	270	1	0.9	0.4	0.3	0.1	2	2.66
SK21_024	270	271	1	0.9	2.0	1.7	0.5	6	3.13
SK21_024	271	272	1	0.9	24.2	24.0	0.2	77	3.86
SK21_024	272	273.1	1.1	0.99	14.1	12.4	2.3	83	3.42
SK21_024	273.1	274	0.9	0.81	0.1	0.1	0.1	1	2.8
SK21_024	274	275	1	0.9	0.1	0.1	0.1	1	2.7
SK21_024	275	276	1	0.9	0.0	0.0	0.0	1	2.74
SK21_024	276	277	1	0.9	0.0	0.0	0.1	1	2.69
SK21_024	277	278	1	0.9	0.4	0.1	0.5	1	2.68
SK21_024	278	279	1	0.9	0.0	0.0	0.0	1	2.6
SK21_024	279	280	1	0.9	0.0	0.0	0.0	1	2.59
SK21_024	280	281	1	0.9	0.0	0.0	0.0	1	2.66
SK21_024	281	282	1	0.9	0.1	0.0	0.1	1	2.62
SK21_024	282	283	1	0.9	0.6	0.0	0.8	1	2.65
SK21_024	283	284	1	0.9	0.2	0.0	0.2	1	2.75
SK21_024	284	285	1	0.9	0.7	0.0	1.0	1	2.93
SK21_024	285	286	1	0.9	0.0	0.0	0.1	1	2.84
SK21_024	286	287	1	0.9	1.1	0.0	1.5	1	2.64
SK21_024	287	288	1	0.9	0.2	0.0	0.2	1	2.87
SK21_024	288	289	1	0.9	0.0	0.0	0.0	1	2.89
SK21_024	289	289.5	0.5	0.45	0.0	0.0	0.0	1	2.97
SK21_024	289.5	290.5	1	0.9	0.0	0.0	0.0	1	2.66

Hole ID	From (m)	To (m)	Downhole Int (m)	True width (m)	PbEq%	Pb%	Zn%	Ag g/t ₍₁₎	S.G (2)
SK21_026	204	205	1	0.9	0.2	0.1	0.1	3	2.56
SK21_026	205	206	1	0.9	1.7	1.4	0.5	5	2.69
SK21_026	206	207	1	0.9	7.2	5.7	2.1	18	2.78
SK21_026	207	208	1	0.9	0.8	0.8	0.0	3	2.64
SK21_026	208	209	1	0.9	0.3	0.1	0.2	1	2.59
SK21_026	209	210	1	0.9	0.3	0.1	0.2	2	2.7
SK21_026	210	211	1	0.9	0.3	0.1	0.3	2	2.67
SK21_026	211	212	1	0.9	2.1	0.4	2.3	6	2.76
SK21_026	212	213	1	0.9	2.7	0.6	3.0	7	2.79
SK21_026	213	214	1	0.9	2.9	0.8	2.9	9	2.77
SK21_026	214.05	214.9	0.85	0.765	0.2	0.2	0.1	3	2.98
SK21_026	214.9	216	1.1	0.99	0.0	0.0	0.0	1	2.77
SK21_026	216	217	1	0.9	0.7	0.1	0.8	3	2.72
SK21_026	217	218	1	0.9	0.3	0.2	0.2	2	2.82
SK21_026	218	219	1	0.9	0.5	0.1	0.6	2	2.67
SK21_026	219	220	1	0.9	0.0	0.0	0.0	1	2.68
SK21_026	220	221	1	0.9	0.0	0.0	0.0	1	2.74
SK21_026	221	221.9	0.9	0.81	1.3	0.4	1.4	5	2.72
SK21_026	221.9	222.9	1	0.9	41.5	29.1	17.5	357	4.3
SK21_026	222.9	223.8	0.9	0.81	3.8	0.2	5.1	20	2.99
SK21_026	223.8	224.9	1.1	0.99	0.1	0.0	0.1	1	2.85
SK21_031	140.2	141.2	1	0.9	0.1	0.1	0.0	3	2.57
SK21_031	141.2	142.2	1	0.9	10.3	5.6	6.8	41	3.06
SK21_031	142.2	143.2	1	0.9	16.5	1.1	21.9	183	3.07
SK21_031	143.2	144	0.8	0.72	6.2	1.5	6.8	16	2.82
SK21_031	144	145	1	0.9	0.1	0.0	0.1	1	2.63

⁽¹⁾ <1 designates below assay method lower detection limit.

⁽²⁾ Specific gravity by water immersion method.