

ASX ANNOUNCEMENT

5th MAY 2021

HIGH-GRADE COPPER AT WIRLONG CONTINUES; MALLEE BULL COPPER RESOURCE UPGRADE DRILLING UNDERWAY;

KEY POINTS

WIRLONG

- Latest assays confirm a further **high-grade copper intercept** at Wirlong in hole **WLDD009**:
 - o 17m @ 4.00% Cu, 12g/t Ag from 269m including:
 - 11m @ 5.88% Cu, 17g/t Ag from 271m
- Further significant zones of copper mineralisation in recent drilling; processing and sampling is continuing with assays pending for four holes (WLDD010 WWLD013) with visible sulphide mineralisation
- Maiden resource drilling ongoing with two diamond rigs
- **High-grade copper** mineralisation at Wirlong Central has been defined from near surface to more than 600m below surface and remains open in all directions

MALLEE BULL

- Mallee Bull **copper resource upgrade drilling now underway** with one diamond rig; second diamond rig to follow
- ~20,000m diamond drilling program is primarily designed to **convert Inferred classified resources to Indicated classification**
- Mallee Bull represents one of Australia's highest-grade undeveloped copper deposits and resource upgrade drilling is designed to enable detailed development studies

Peel Mining Limited (ASX:PEX) (Peel or the Company) is pleased to report that ongoing drilling at its 100%-owned Wirlong copper deposit has returned a further very high-grade copper-mineralised intercept whilst resource upgrade drilling at the Company's 100%-owned Mallee Bull copper deposit has now commenced. Wirlong and Mallee Bull are part of Peel's South Cobar Project, centred around 100km south of Cobar in Western NSW.

Drilling at Wirlong and Mallee Bull is part of the Company's "Hub & Spoke" strategy to advance each of the Company's deposits to mineable resources, to achieve critical mass in support of a new substantial centrally located processing plant. These deposits also form the basis of the Company's focus on advancing its copper resources.

PEEL MINING MANAGING DIRECTOR ROB TYSON COMMENTED:

"Wirlong has returned yet another excellent copper intersection continuing to highlight the strong tenor of mineralisation present within this developing copper system. Drilling at Wirlong is continuing, with results returned to date advancing our understanding and highlighting the open nature of the deposit.

The commencement of resource upgrade drilling at Mallee Bull marks the next stage of Peel's focus on advancing our South Cobar Project. Mallee Bull's current resource is predominantly inferred reflecting the limited drilling completed at depth due to its Cobar-style pipe-like shape. The primary aim of the resource drilling is to convert inferred resources to indicated classification, to enable detailed mine concept and feasibility studies. Mallee Bull has historically returned some world-class copper-rich intercepts and we look forward to the upcoming drill results and the advancement of this high-grade copper system."

WIRLONG

As previously reported, WLDD009 was recognised as hosting significant copper mineralisation. WLDD009 deviated from its original design, and as a result transected WLRC083 intercepting high grade mineralisation ~10m updip from a similar width and grade of intercept reported in WLRC083 – 9m @ 4.10% Cu, 15g/t Ag from 270m. Whilst not designed as a "twin" drillhole WLDD009 indicates that Wirlong mineralisation has continuity and repeatability.

Recently returned assays from WLDD009 confirmed multiple mineralised zones including the aforementioned high-grade intersection; better assays include:

WLDD009

0

- 27m @ 0.68% Cu, 5g/t Ag from 57m including:
 - 8m @ 1.24% Cu, 9g/t Ag from 66m
 - 13m @ 0.74% Cu, 3g/t Ag from 96m including:
 - 3m @ 1.23% Cu, 5g/t Ag from 98m
- o 39m @ 0.42% Cu, 2g/t Ag from 131m
- o **17m @ 4.00% Cu**, 12 g/t Ag from 269m including:
 - 11m @ 5.88% Cu, 17g/t Ag from 271
- o 29m @ 0.78% Cu, 6g/t Ag from 301m including:
 - 10m @ 1.25% Cu, 9g/t Ag from 307m

Since last report, further drillholes have intersected significant zones of chalcopyrite-dominant mineralisation as determined by visual inspection and portable XRF analyses. Table 7 shows visual estimates of mineralisation for drillholes with assays pending.

The current result is in addition to previously reported drillholes which intersected substantial chalcopyrite-dominant sulphide mineralisation over significant downhole widths. Better resource drilling results reported to date include:

WLDD006

- o **3.61m @ 3.12% Cu**, 25g/t Ag from 165m; and
- o 5m @ 2.84% Cu, 10g/t Ag from 291m
- WLDD007
- o 4m @ 1.70% Cu, 6g/t Ag from 255m

WLDD008

- o 10m @ 2.09% Cu, 8g/t Ag from 193m
- **WLRC068**
- o 51m @ 1.35% Cu, 6g/t Ag, 0.11g/t Au from 177m including:
 - 9m @ 4.33% Cu, 14g/t Ag, 0.34g/t Au from 181m

WLRC069

- **15m @ 3.80% Cu**, 17g/t Ag, 0.04g/t Au from 255m including:
 - 6m @ 8.64% Cu, 37g/t Ag, 0.11g/t Au from 255m

WLRC071

- o 28m @ 1.83% Cu, 8g/t Ag from 263m including:
 - **10m @ 4.02% Cu**, 16g/t Ag from 275m

WLRC073

- 163m @ 1.08% Cu, 4g/t Ag from 233m to end of hole including:
 - 21m @ 2.00% Cu, 9g/t Ag from 283m; and
 - 11m @ 1.73% Cu, 5g/t Ag from 337m; and
 - **19m @ 1.58% Cu**, 5g/t Ag from 359m

WLRC075

o 9m @ 1.78% Cu, 5g/t Ag from 294m

WLRC077

- o 91m @ 0.93% Cu, 5g/t Ag from 254m including:
 - 11m @ 2.08% Cu, 16g/t Ag from 268m; and
 - 6m @ 1.40% Cu, 6g/t Ag from 303m; and
 - 7m @ 3.58% Cu, 8g/t Ag from 334m

WLRC079

o 7m @ 5.78% Cu, 19g/t Ag from 249m

WLRC080

- 72m @ 1.01% Cu, 6g/t Ag from 120m including:
 - **12m @ 1.70% Cu**, 10g/t Ag from 137m
 - 13m @ 1.83% Cu, 10g/t Ag from 172m

WLRC083

- 42m @ 1.26% Cu, 5g/t Ag from 258m to end of hole including:
 - 9m @ 4.10% Cu, 15g/t Ag from 270m

WLRC088

- 51m @ 0.94% Cu, 3g/t Ag from 208m to end of hole including:
 - 4m @ 2.17% Cu, 8g/t Ag from 231m
 - **3m @ 4.34% Cu**, 13g/t Åg from 255m

Mineralisation returned from the resource definition drilling so far is generally consistent with the position of electromagnetic conductor plates, and Peel's geophysical and geological modelling.

Drilling at Wirlong has been designed to test the upper ~300m of the Wirlong Central Zone where highgrade copper (chalcopyrite) mineralisation is understood to be structurally controlled on a NW-SE orientation. The resource definition drill program originally comprised ~15,000m of drilling. At review of Wirlong results to date is currently underway with a view to modifying the programme to optimise the resource modeling. Drill results to date have highlighted the open nature of this evolving copper mineral system.

The true width of intercepts reported is estimated to be approximately 40-60% of the downhole widths. The geology of the Wirlong deposit comprises intercalated and sheared/deformed felsic volcanics and siltstones/sediments with associated alteration including silica, sericite and dark/black chlorite.

WIRLONG BACKGROUND

Wirlong is located within Peel's 100%-owned EL8307, located ~80km SSE of Cobar or ~35km N of Mallee Bull. It is defined by 2km strike of sheared volcanics and sediments; large multi-element soil geochemical anomalies; and coincident/semi-coincident geophysical anomalies. It has since proven to represent a very large hydrothermal system hosting significant copper mineralisation along more than 2.5km strike length and to depths of up to 950m. To date some of the better copper intercepts returned from the Wirlong prospect include:

- 9m @ 3.29% Cu, 18 g/t Ag from 70m in WLRC035
- 27m @ 5.3% Cu, 23 g/t Ag from 286m in WLRC026
- 31m @ 3.19% Cu, 11 g/t Ag from 299m in WLRC052
- 9m @ 8% Cu, 17g/t Ag, 0.21 g/t Au from 616m in WLDD001
- 17m @ 4.59% Cu, 8 g/t Ag from 738m in WLRCDD043

A program consisting of three diamond drillholes at Wirlong Central was undertaken at the end of 2019/early 2020 to test a new structural model (NW-SE) for the controls on high-grade copper mineralisation (*see ASX announcement dated 3rd April 2020 "Wirlong Drill Results and Covid-19 update"*).

Assay results returned significant intercepts in all three drillholes with results including:

- 4.26m @ 2.22% Cu, 7 g/t Ag from 380m and 0.74m @ 14.3% Cu, 66 g/t Ag from 396.2m in WLDD003
- 1.15m @ 7.71% Cu, 30 g/t Ag from 54.45m and 30m @ 1.64% Cu, 8 g/t Ag from 305m (incl. 14m
 @ 2.63% Cu, 12 g/t Ag) from 320m in WLDD004
- 5.9m @ 3.19% Cu, 13 g/t Ag from 347.1m in WLDD005

Down-hole EM was completed on drillholes WLDD003 and WLDD004 with modelling defining a late-time conductor, with approximate dimensions of 120m x 150m and its geometry consistent with the new structural model. High-grade copper mineralisation at Wirlong Central has been defined from near surface to more than 600m below surface and remains open in all directions.

MALLEE BULL

As previously flagged, resource upgrade drilling at the Company's 100%-owned Mallee Bull copper deposit has now commenced. Mallee Bull represents one of Australia's highest grade undeveloped copper deposits and resource upgrade drilling is part of the Company's "Hub & Spoke" strategy to advance each of the Company's deposits to mineable resources, to achieve critical mass in support of a new substantial centrally located processing plant.

The resource upgrade drilling program, comprising ~20,000m of diamond drilling, is primarily designed to convert Inferred classified resources to Indicated classification. The current resource breakdown is shown in Table 1.

The bulk of Mallee Bull's contained copper is located at below ~350m below surface where resources are predominantly of an Inferred nature. Drilling has been designed to target this area and will initially commence with a double shifting multipurpose drill rig however this is anticipated to increase to as many three rigs over the coming months.

The 2017 resource estimate for Mallee Bull comprises 6.76 Mt at 1.8% Cu, 31g/t Ag, 0.4g/t Au, 0.6% Pb, 0.6% Zn (2.6% CuEq) containing approximately 119,000t Cu, 6.6 Moz Ag, 83,000 oz Au, 38,000t Pb, 38,000t Zn) (using a 1% CuEq cut-off) – Table 1. Refer to 6th July 2017 announcement "Mallee Bull Resource Grows by 65% to 175,000t CuEq" for further details.

Resource Classification	Kt	CuEq %	Cu %	Ag g/t	Au g/t	Pb %	Zn %
Indicated	1,340	2.15	0.91	30	0.4	0.96	1.23
Inferred	5,420	2.7	2	31	0.4	0.5	0.4
Total Resource	6,760	2.6	1.8	31	0.4	0.6	0.6

Table 1: Mallee Bull Mineral Resource estimate based on 1% CuEq cutoff grade. The figures in
this table are rounded to reflect the precision of the estimates and include rounding errors.

MALLEE BULL BACKGROUND & HISTORY

The Mallee Bull copper deposit is located approximately 100km south of Cobar in western NSW and is situated on a 20,000-acre pastoral lease owned by Peel Mining. Mallee Bull has been a flagship project for Peel since its initial discovery of 2011 and exhibits classic 'Cobar-style' Cu-Ag-Au-Zn-Pb mineralisation analogous to Cobar's world class CSA Mine.

In 2010, Peel was granted exploration lease EL7461 which encompassed the historic Gilgunnia and 4-Mile goldfields. Exploration initially focused on the known polymetallic potential of the May Day deposit located within ML1361 (wholly contained within EL7461) until, in late 2010, an airborne electromagnetic geophysical survey resulted in the recognition of a coincident late time conducting anomaly and magnetic high proximal to the historic 4-Mile goldfields. The anomaly was confirmed by a subsequent

ground-based geophysical survey in early 2011, and follow-up RC and diamond drilling resulted in the discovery of strongly anomalous polymetallic (Cu-Pb-Zn-Ag-Au) mineralisation.

In 2012, CBH Resources entered a farm-in agreement to acquire 50% of the Mallee Bull and May Day projects for \$8.3m expenditure. During the JV partnership, seven drill programs were completed at Mallee Bull, providing the basis for the reporting of a maiden mineral resource in 2014 and an updated mineral resource in 2017. In 2020, Peel exercised its pre-emptive right to acquire CBH Resources' 50% share of the Mallee Bull Joint Venture by matching a third party's offer of \$17m, regaining 100% control of the Mallee Bull and May Day deposits.

Since discovery in 2011, drilling activities at Mallee Bull and proximal targets have comprised 125 RAB holes, 153 RC holes (including 42 with diamond tails), and 51 diamond holes (including 11 wedge holes) for a total of ~9,500m of RAB drilling, ~28,400m of RC drilling, and ~30,500m of diamond drilling at end 2020.

Mineralisation at Mallee Bull commences at ~60m below surface and has been defined to at least 800m below surface and remains open along strike and at depth.

Mallee Bull has historically returned many significant drill intercepts - see Table 2:

Table 2: Mallee Bull Selection of Significant Intercepts

	allee bull Selectio	in or Sigin	incunt in	cicepts					
Mineralisation	Hole ID	From m	To m	Width m	Cu %	Ag g/t	Au g/t	Zn %	Pb %
7	4MRCDD006	267.35	274	6.65	2.94	33	0.88	0.12	0.62
	4MRC016	232	244	12	2.49	33	0.24	0.12	0.13
	4MRC024	174	184	10	2.22	33	0.44	0.16	0.11
	MBDD002	361	404	43	1.63	29	1.76	0.07	0.15
	and	415	446	31	2.58	47	0.18	0.53	0.74
	MBDD003	409	433	14	1.92	56	0.29	0.04	0.10
\bigcirc	and	441	466	25	3.24	34	0.08	0.04	0.36
	MBDD006	396	418	22	1.48	28	0.63	0.12	0.21
	and	445	457	12	1.26	16	0.19	0.03	0.11
\mathcal{D}	and	461	475	14	2.37	14	0.17	0.03	0.08
Copper	MBDD009	538	592	54	4.16	40	0.16	0.05	0.27
	and	596	606	10	1.72	16	0.06	0.10	0.15
	MBDD009W1	468	523	55	4.02	42	0.22	0.05	0.30
	MBDD009W2	708	727	19	2.41	44	0.12	0.02	0.04
	MBDD009W2W1	575	659	84	4.42	38	0.14	0.03	0.10
2	MBDD009W3	502	512	10	4.53	31	0.13	0.07	0.06
	MBDD010	634	666	32	3.62	46	0.21	0.05	0.08
	MBRCDD050	465	527	62	3.15	42	0.28	0.11	0.12
	MBRCDD064	233	242	9	3.69	42	0.64	0.48	0.61
	MBRCDD110	262	276.15	14.15	4.32	52	0.25	0.15	0.11
	MBRCDD115	296	307	11	9.92	125	0.41	0.37	0.41
Zinc-Lead-Silver	4MRCDD006	253	263	10	0.14	41	0.77	11.00	9.01
Zinc-Leau-Silver	MBDD028	79	96	17	0.28	126	0.00	9.93	6.64

MBRC018	104	119	15	0.11	223	0.88	10.79	5.31
MBRC024	81	95	14	0.47	266	1.37	17.53	12.76
MBRC028	71	82	11	0.01	130	0.00	13.80	8.26
MBRC085	87	103	16	0.17	195	1.11	11.97	6.21
MBRCDD065	73	91	18	0.11	146	1.01	10.36	5.84

Other exploration activities completed at Mallee Bull and surrounds include extensive surface geochemical sampling, geological mapping, and numerous airborne, surface and downhole geophysical surveys.

Mallee Bull is interpreted to be in a favourable geological and structural position; it is situated in an interpreted high-stress environment of the "nose" of an anticline and occurs in a geological sequence of turbidite and volcaniclastic sediments which are thought to be age equivalent to the Chesney and Great Cobar Slate Formations found in the immediate Cobar region. Mineralisation occurs either as massive sulphide or hydrothermal breccia styles within a package of brecciated volcaniclastic and turbidite sediments comprising siltstones and mudstones and is interpreted to occur as a shoot/lens-like structure dipping moderately to the west. The deposit is currently subdivided into three lenses: Silver Ray, Union, and Mallee Bull.

This announcement has been approved for release by the Board of Directors.

For further information, please contact: Rob Tyson – Peel Mining, Managing Director +61 (0)420 234 020

PREVIOUS RESULTS

Previous results referred to herein have been extracted from previously released ASX announcements. Previous announcements and reports are available to view on <u>www.peelmining.com.au</u> and <u>www.asx.com.au</u>. Additional information regarding Mallee Bull and Wirlong is available in the Company's quarterly reports from December 2010 through to March 2021 and in progress reports as reported to the ASX. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

COMPETENT PERSONS STATEMENTS

The information in this report that relates to Exploration Results is based on information compiled by Mr Rob Tyson who is a fulltime employee of the company. Mr Tyson is a member of the Australasian Institute of Mining and Metallurgy. Mr Tyson has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Tyson consents to the inclusion in this report of the matters based on information in the form and context in which it appears. Exploration results are based on standard industry practices, including sampling, assay methods, and appropriate quality assurance quality control (QAQC) measures.

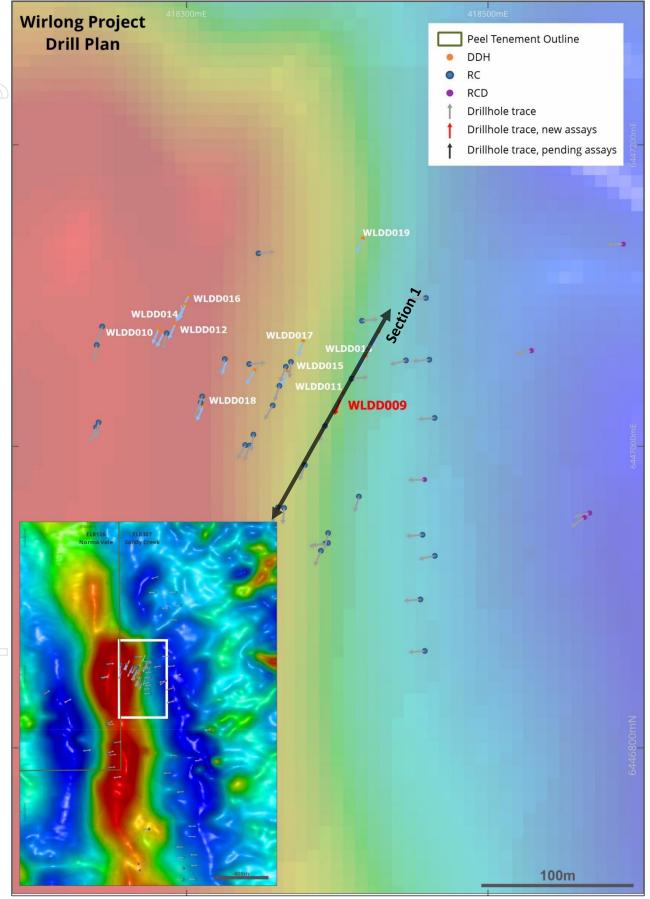


Figure 1 – Wirlong Drill Plan on Magnetics

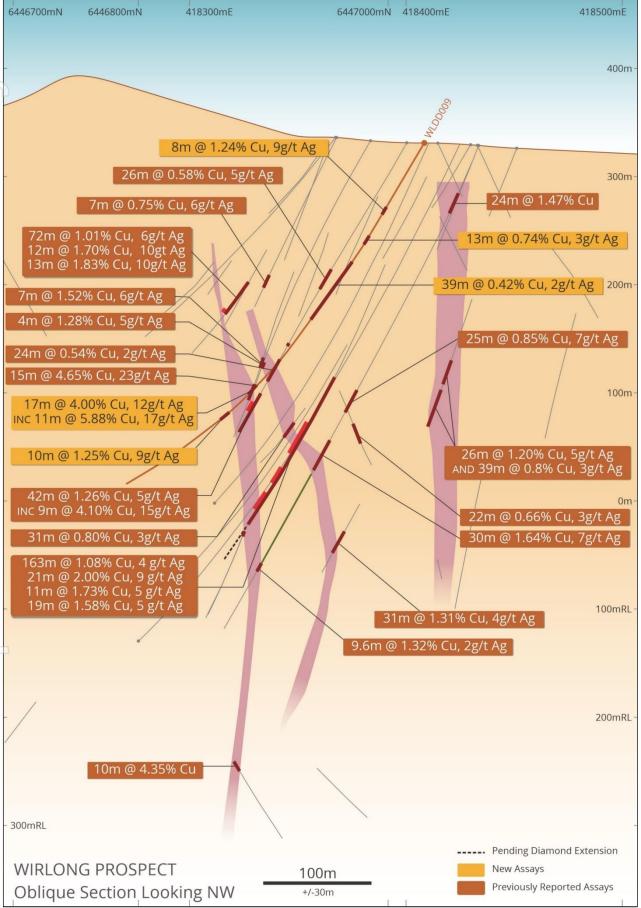
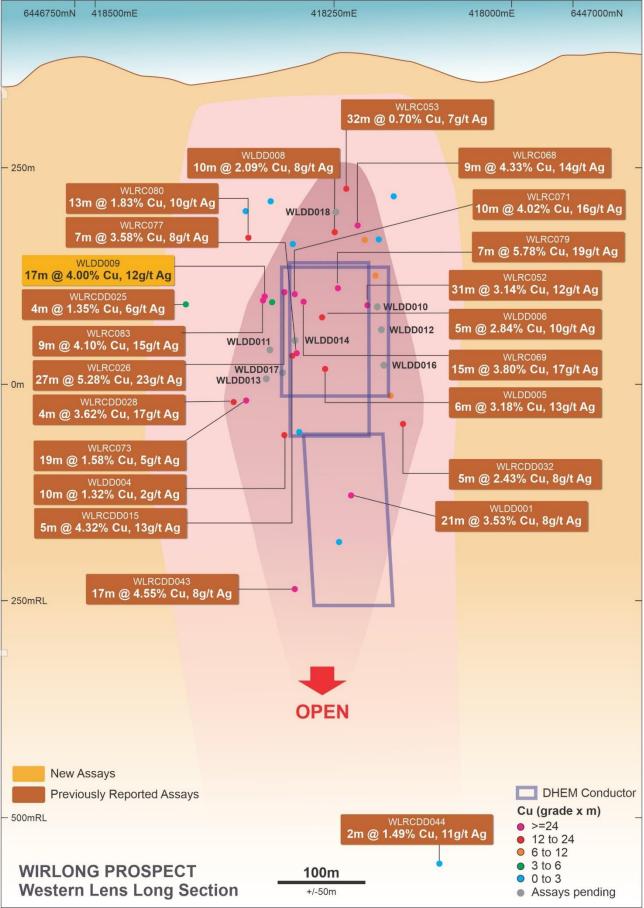



Figure 2 – Wirlong Section 1

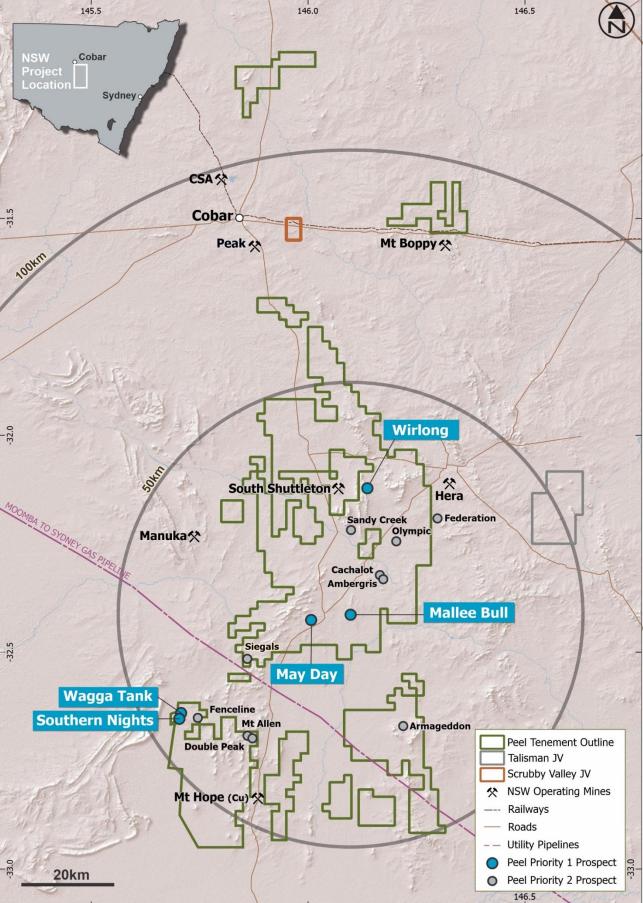


Figure 4 – Peel Mining Cobar Tenure

Table 3: Wirlong RC Drillhole Collars

Hole ID	Easting	Northing	Azi (grid)	Dip	Final Depth (m)
					-
WLRC067	418338.93	6447000.80	210.00	-54.00	144
WLRC068	418341.91	6447000.52	199.23	-59.82	268
WLRC069	418344.37	6447007.80	188.00	-70.64	310
WLRC070	418364.72	6446959.16	185.00	-60.00	173
WLRC071	418357.19	6447027.13	210.00	-60.00	352
WLRC072	418360.60	6446959.50	200.90	-51.00	252
WLRC073	418369.26	6447055.99	184.59	-69.57	396
WLRC074	418378.52	6446987.56	199.61	-59.69	263
WLRC075	418365.89	6447052.82	201.68	-72.29	438
WLRC076	418309.37	6447029.00	202.82	-47.89	213
WLRC077	418361.61	6447040.12	198.41	-68.00	380
WLRC078	418389.17	6446930.74	202.42	-51.68	179
WLRC079	418310.34	6447033.06	200.36	-60.44	299
WLRC080	418393.97	6446942.44	192.88	-60.88	243
WLRC081	418325.32	6447057.86	199.95	-60.47	204
WLRC082	418239.97	6447012.65	200.20	-50.85	198
WLRC083	418391.83	6447013.49	200.28	-60.11	300
WLRC084	418241.58	6447015.88	189.66	-60.26	221.5
WLRC085	418243.99	6447079.50	195.78	-56.62	290
WLRC086	418240.37	6447067.17	187.00	-51.30	201
WLRC087	418286.80	6447074.97	193.02	-61.69	296
WLRC088	418414.37	6446966.75	195.38	-60.91	259

Table 4: Wirlong DDH Drillhole Collars

		Table 4. V	viniong DD		e collars	
Hole ID	Easting	Northing	Azi	Dip	Final Depth	Status
			(grid)		(m)	
WLDD006	418326.99	6447057.91	199.77	-61.15	372.80	Completed
WLDD007	418284.89	6447075.52	206.60	-53.00	300.40	Completed
WLDD008	418312.00	6447033.00	205.64	-55.91	280.10	Completed
WLDD009	418402.19	6447031.06	201.70	-59.98	426.70	Completed
WLDD010	418281.45	6447077.88	202.90	-58.90	339.50	Assays pending
WLDD011	418404.00	6447035.08	203.20	-65.77	388.70	Assays pending
WLDD012	418292.45	6447081.11	204.10	-62.00	405.60	Assays pending
WLDD013	418419.08	6447059.82	203.35	-63.86	549.80	Assays pending
WLDD014	418298.02	6447092.43	207.50	-60.00	144.40	Assays pending
WLDD015	418367.00	6447049.70	203.30	-65.07	411.70	Assays pending
WLDD016	418299.34	6447094.26	202.60	-64.00	400.00	Processing underway
WLDD017	418377.35	6447069.94	199.04	-63.99	468.80	Processing underway
WLDD018	418311.16	6447026.70	204.80	-44.80	240.00	Processing underway
WLDD019	418417.00	6447138.00	203.10	-63.85	605.60	Processing underway
WLDD020	418336.00	6446997.00	205.00	-45.00	211.90	Processing underway
WLDD021	418342.00	6447004.00	205.00	-57.00	270.80	Processing underway
WLDD022	418415.00	6446970.00	205.82	-63.04	Current	Continuing
WLDD023	418345.00	6447011.00	205.00	-63.00	Current	Continuing

Table 5: Wirlong RC Significant Assays

	Table 5: Wirlong RC Significant Assays							
Hole ID	From (m)	To (m)	Width (m)	Cu (%)	Ag (g/t)	Au (g/t)	Zn (%)	Pb (%)
WLRC068	177.00	228.00	51.00	1.35	6	0.11	0.15	0.05
including	181.00	190.00	9.00	4.33	14	0.34	0.20	0.01
WLRC069	255.00	270.00	15.00	3.80	17	0.04	0.42	0.17
including	255.00	261.00	6.00	8.64	37	0.11	0.83	0.32
WLRC070	141.00	148.00	7.00	0.75	5	0.01	0.02	0.01
and	171.00	173.00**	2.00	0.95	4	0.01	0.08	0.01
WLRC071	251.00	255.00	4.00	1.13	9	0.04	0.04	0.02
and	263.00	291.00	28.00	1.83	8	0.02	0.32	0.07
including	275.00	285.00	10.00	4.02	16	0.02	0.26	0.10
WLRC072	241.00	244.00	3.00	0.89	6	0.03	0.02	0.01
WLRC073	233.00	396.00**	163.00	1.08	4	0.01	0.06	0.02
including	283.00	304.00	21.00	2.00	9	0.01	0.29	0.09
and including	310.00	317.00	7.00	2.09	6	0.01	0.04	0.01
and including	337.00	348.00	11.00	1.73	5	0.01	0.02	0.01
and including	359.00	378.00	19.00	1.58	5	0.02	0.02	0.01
WLRC074	203.00	215.00	12.00	0.52	2	0.01	0.02	0.01
and	226.00	234.00	8.00	0.93	4	0.01	0.03	0.01
WLRC075	272.00	304.00	32.00	0.78	2	0.01	0.02	0.01
including	294.00	303.00	9.00	1.78	5	0.02	0.01	0.01
and	334.00	338.00	4.00	0.58	1	0.01	0.01	0.01
and	413.00	416.00	3.00	0.74	1	0.01	0.02	0.01
WLRC076	187.00	195.00	8.00	1.17	6	0.04	0.48	0.20
and	210.00	213.00	3.00	0.81	2	0.02	0.05	0.02
WLRC077	254.00	345.00	91.00	0.93	5	0.01	0.06	0.02
including	268.00	279.00	11.00	2.08	16	0.01	0.31	0.08
and including	303.00	309.00	6.00	1.40	6	0.03	0.08	0.05
and including	334.00	341.00	7.00	3.58	8	0.03	0.04	0.01
WLRC079	249.00	256.00	7.00	5.78	19	0.06	0.80	0.19
WLRC080	120.00	192.00	72.00	1.01	6	0.01	0.07	001
including	137.00	149.00	12.00	1.70	10	001	0.04	0.01
and including	172.00	185.00	13.00	1.83	10	0.01	0.03	0.10
WLRC081	120.00	122.00	2.00	0.08	11	0.13	1.82	0.63
WLRC083	122.00	148.00	26.00	0.58	5	0.00	0.14	0.03
and	206.00	208.00	2.00	2.17	22	0.07	0.06	0.15
and	222.00	246.00	24.00	0.54	2	0.00	0.01	0.00
and	258.00	300.00**	42.00	1.26	5	0.00	0.07	0.03
including	270.00	279.00	9.00	4.10	15	0.01	0.23	0.09
WLRC087	262.00	264.00	2.00	1.11	13	0.06	0.27	0.07
WLRC088	71.00	75.00	4.00	1.21	5	0.01	0.13	0.01
and	208.00	259.00**	51.00	0.94	3	0.01	0.01	0.01
including	231.00	235.00	4.00	2.17	8	0.01	0.03	0.01
and including	255.00	259.00	4.00	3.35	10	0.01	0.02	0.01
**denotes end o	fhole							

**denotes end of hole

Table 6: Wirlong DDH Significant Assays

	Table 6. Willong DDIT Significant Assays							
Hole ID	From (m)	To (m)	Width (m)	Cu (%)	Ag (g/t)	Au (g/t)	Zn (%)	Pb (%)
WLDD006	165.00	168.61	3.61	3.12	25	0.14	0.27	0.03
including	166.00	168.61	2.61	4.12	33	0.19	0.34	0.04
and	213.00	216.00	3.00	0.67	10	0.08	0.28	0.23
and	239.00	244.00	5.00	0.27	14	0.06	1.36	0.66
and	291.00	296.00	5.00	2.84	10	0.01	0.30	0.10
and	333.00	344.00	11.00	0.88	5	0.02	0.26	0.06
including	340.00	344.00	4.00	1.67	6	0.03	0.38	0.04
WLDD007	255.00	259.00	4.00	1.70	6	0.03	0.27	0.06
WLDD008	193.00	203.00	10.00	2.09	8	0.05	0.32	0.05
WLDD009	57.00	84.00	27.00	0.68	5	0.00	0.07	0.01
including	66.00	74.00	8.00	1.24	9	0.00	0.06	0.01
and	96.00	109.00	13.00	0.74	3	0.00	0.02	0.00
including	98.00	101.00	3.00	1.23	5	0.00	0.03	0.00
and	131.00	170.00	39.00	0.42	2	0.00	0.02	0.00
and	269.00	286.00	17.00	4.00	12	0.00	0.07	0.02
including	271.00	282.00	11.00	5.88	17	0.00	0.09	0.02
and	301.00	330.00	29.00	0.78	6	0.00	0.02	0.01
including	307.00	317.00	10.00	1.25	9	0.10	0.02	0.00

***ORANGE denotes new results.**

Table 7: Wirlong mineralised intersection descriptions (Visual Estimate)

li li	Interval (m)		Mineralization Description Sulphide %
From	То	Width	while anzation Description Sulphide %
	WLDD010		
72	76	4	Volcanic + Qtz veins + vein/blebby sulphide (Sph-Gn) 1 – 3%
256	257	1	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
284	285	1	Sediment + Qtz veins + vein/semi-massive sulphide (Cpy) 20 – 40%
285	293	8	Sediment + volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
293	309	16	Sediment + volcanic + Qtz veins + vein/blebby sulphide (Sph-Gn) 1 –
	WLDD011		
59	81	22	Sediment + volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
81	82	1	Volcanic + Qtz veins + vein/semi-massive sulphide (Cpy) 20 – 40%
82	87	5	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
120	123	3	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 3 – 5%
123	126	3	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
256	300	44	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
300	305	5	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
305	310	5	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 2 – 5%
310	312	2	Volcanic + Qtz veins + vein/semi-massive sulphide (Cpy) 20 – 40%
312	317	5	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
317	323	6	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
323	328	5	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
328	329	1	Volcanic + Qtz veins + vein/semi-massive sulphide (Cpy) 20 – 40%
329	334	5	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 2 – 5%
334	345	11	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
345	348	3	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 2 – 5%
348	349	1	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
	WLDD012		
96	97	1	Volcanic + Qtz veins + vein/blebby sulphide (Sph-Gn) 2 – 5%
238	239	1	Volcanic + Qtz veins + vein/blebby sulphide (Sph-Gn) 1 – 3%
310	311	1	Sediments + volcanics + Qtz veins + vein/blebby (Cpy) 1 – 3%
319	325	6	Sediments + Qtz veins + vein/blebby (Cpy) 0.2 – 1%
	WLDD013	1	
217	255	48	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
255	261	6	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1-3%

Peel Mining Limited ACN 119 343 734

	1		
261	286	25	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
286	301	15	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1-3%
301	350	49	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
350	353	3	Volcanic + Qtz veins + vein/semi-massive sulphide (Cpy) 20 – 40%
353	367	14	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
367	375	8	Volcanic + Qtz veins + vein/semi-massive sulphide (Cpy) 20 – 40%
375	386	11	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
386	388	2	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 2 – 5%
388	393	5	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
	WLDD015		
255	273	18	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
273	277	4	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 2 – 5%
277	283	6	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
283	302	19	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
302	312	10	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 2 – 5%
312	317	5	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
317	322.85	5.85	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
322.85	323.4	0.55	Volcanic + Qtz veins + vein/semi-massive sulphide (Cpy) 20 – 40%
323.4	340	16.6	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
340	342	2	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
342	345	3	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
	WLDD016	5	
325	330	5	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
330	331	1	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
331	353.25	22.25	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 5// Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
353.25	355	1.75	Volcanic + Qtz veins + vein/semi-massive sulphide (Cpy) 20 – 40%
355	359		Volcanic + Qtz veins + vein/serni-hassive sulphide (Cpy) 2 – 40%
359	365	4	Volcanic + Qtz veins + vein/slebby subfilde (Cpy) 2 – 5% Volcanic + Qtz veins + vein/semi-massive sulphide (Cpy) 0.2 – 1%
	WLDD017	6	
97	90	2	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
271	273	3 2	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3% Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
	273	1	
273			Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
274	290	16	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
290	301	11	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 2 – 5%
301	304	3	Volcanic + Qtz veins + vein/semi-massive sulphide (Cpy) 20 – 40%
304	310	6	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 2 – 5%
310	326	16	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
326	339	13	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
339	342	3	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
342	343	1	Volcanic + Qtz veins + vein/semi-massive sulphide (Cpy) 20 – 40%
343	362	19	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
362	365	3	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 2 – 5%
365	375	10	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
375	387	12	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
387	395	8	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
395	396	1	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 2 – 5%
396	418	22	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%
418	440	22	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 1 – 3%
440	468.8	28.8	Volcanic + Qtz veins + vein/blebby sulphide (Cpy) 0.2 – 1%

In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of sulphide and oxide material abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available.

JORC CODE (2012 Edition) – Table 1 Checklist of Assessment and Reporting Criteria Section 1: Sampling Techniques and Data for South Cobar Project

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation (RC) drilling were used to obtain samples for geological logging and assaying. RC drill holes were sampled at 1m intervals and split using a cone splitter attached to the cyclone to generate a split of 2-4kg to ensure sampler representivity. Multi-element readings were taken of the diamond core and RC drill chips using an Olympus Delta Innov-X portable XRF machine or an Olympus Vanta portable XRF machine. Portable XRF machines are routinely serviced, calibrated and checked against blanks/standards.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• RC drilling utilised a 5 1/2 inch diameter hammer.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC samples are not weighed on a regular basis but no significant sample recovery issues have been encountered in a drilling program to date. When poor sample recovery is encountered during drilling, the geologist and driller have endeavoured to rectify the problem to ensure maximum sample recovery.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 All drill chip samples are geologically logged. Drill chip samples are logged at 1m intervals from surface to the bottom of each individual hole to a level that will support appropriate future Mineral Resource studies. Logging of RC samples records lithology, mineralogy, mineralisation, structure (DDH only), weathering, colour and other features of the samples.

Criteria	JORC Code explanation	Commentary
	• The total length and percentage of the relevant intersections logged.	Chips are photographed as wet samples.All RC drill holes in the current program were geologically logged in full.
Sub-sampling techniques and sample preparation Quality of assay data and Jaboratory tests	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The RC drilling rigs were equipped with an in-built cyclone and splitti system, which provided one bulk sample of approximately 20kg and a susample of 2-4kg per metre drilled. All samples were split using the system described above to maximise at maintain consistent representivity. The majority of samples were dry. Bulk samples were placed in green plastic bags, with the sub-sample collected placed in calico sample bags. Field duplicates were collected by re-splitting the bulk samples from lar plastic bags. These duplicates were designed for lab checks. Laboratory duplicate samples are split using method SPL-21d whit produces a split sample using a riffle splitter. These samples are selected the geologist within moderate and high-grade zones. A sample size of 2-4kg was collected and considered appropriate a representative for the grain size and style of mineralisation. ALS Laboratory Services are used for Au and multi-element analysis were of mineralisation at Wirlong: PUL-23 (Sample preparation code) Au -AA25 Ore Grade Au 30g FA AA Finish, Au-AA26 Ore Grad Au 50g FA AA Finish ME-ICP41 35 element aqua regia ICP-AES, with an appropriate Ore Grade base metal AA finish ME-ICP61 33 element 4 acid digest ICP-AES, with appropriate Ore Grade base metal AA finish ME-MS61 48 element 4 acid digest ICP-AES, with appropriate Ore Grade base metal AA finish ME-MS61 48 element 4 acid digest ICP-AES, with appropriate Ore Grade base metal AA finish ME-MS61 48 element 4 acid digest ICP-AES, with appropriate Ore Grade base metal AA finish ME-MS61 48 element 4 acid digest ICP-AES, with appropriate Ore Grade base metal AA finish ME-MS61 48 element 4 acid digest ICP-AES, with appropriate Ore Grade base metal AA finish ME-MS61 48

Criteria	JORC Code explanation	Commentary
R		Duplicates for percussion drilling are collected directly from the drill rig or the metre sample bag using a half round section of pipe or via sample splitter. In-house QA/QC tests are conducted by the lab on each batch of samples with standards supplied by the same companies that supply our own.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All geological logging and sampling information is completed via Geobank Mobile or in spreadsheets, which are then transferred to a database for validation and compilation at the Peel head office. Electronic copies of all information are backed up periodically. No adjustments of assay data are considered necessary.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A Garmin hand-held GPS is used to define the location of the drill holes. Standard practice is for the GPS to be left at the site of the collar for a period of 5 minutes to obtain a steady reading. Collars are routinely picked up after by DGPS. Down-hole surveys are conducted by the drill contractors using either a Reflex gyroscopic tool with readings every 10m after drill hole completion or a Reflex electronic multi-shot camera will be used with readings for dip and magnetic azimuth taken every 30m down-hole. QA/QC in the field involves calibration using a test stand. The instrument is positioned with a stainless steel drill rod so as not to affect the magnetic azimuth. Grid system used is MGA 94 (Zone 55). All down-hole magnetic surveys were converted to MGA94 grid. DGPS pick-up delivers adequate topographic control.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data/drill hole spacing is variable and appropriate to the geology and historical drilling. 3m to 6m sample compositing is applied to RC drilling for gold and/or multi-element assay where appropriate.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of 	 Most drillholes are planned to intersect the interpreted mineralised structures/lodes as near to a perpendicular angle as possible (subject to access to the preferred collar position). Drillhole deviation may affect the true width of mineralisation and will be

Criteria	JORC Code explanation	Commentary
	key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	further assessed when resource modelling commences.
Sample security	The measures taken to ensure sample security.	 The chain of custody is managed by the project geologist who places calico sample bags in polyweave sacks. Up to 5 calico sample bags are placed in each sack. Each sack is clearly labelled with:
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• Data is validated when loading into the database. No formal external audit has been conducted.

Section 2 - Reporting of Exploration Results for South Cobar Project

20	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Wirlong prospect is located within 100%-owned tenements – EL8126 and EL8307. The Mallee Bull prospect is located within 1005-owned tenement EL7461. The tenements are in good standing and no known impediments exist.
TSOD'N	Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Wirlong is a zone of known mineralisation within a belt of acid volcanic rocks, on which four historic shafts have been sunk. In 1982, CRAE completed reconnaissance exploration including drilling of 1 diamond drillhole and 3 percussion drillholes. Minimal other modern exploration has been completed at Wirlong. Work at Mallee Bull was completed in the area by several former tenement holders including Triako Resources between 2003 and 2009; it included diamond drilling, IP surveys, geological mapping and reconnaissance geochemical sampling around the historic Four Mile Goldfield area. Prior to Triako Resources, Pasminco Exploration explored the Cobar Basin area for a "Cobar-type" or "Elura-type" zinc-lead-silver or copper-gold-lead-zinc deposit.
a	Geology	Deposit type, geological setting and style of mineralisation.	• Wirlong is believed to a VHMS or Cobar-style deposit similar in style to

Criteria	JORC Code explanation	Commentary
		 Peel's Mallee Bull deposit. The Mallee Bull prospect area lies within the Cobar-Mt Hope Siluro-Devonian sedimentary and volcanic units. The northern Cobar region consists of predominantly sedimentary units with tuffaceous member, whilst the southern Mt Hope region consists of predominantly felsic volcanic rocks; the Mallee Bull prospect seems to be located in an area of overlap between these two regions. Mineralisation at the Mallee Bull discovery features the Cobar-style attributes of short strike lengths (<200m), narrow widths (5-20m) and vertical continuity, and occurs as a shoot-like structure dipping moderately to the west.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All relevant information material to the understanding of exploration results has been included within the body of the announcement or as appendices. No information has been excluded.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No length weighting or top-cuts have been applied. No metal equivalent values are used for reporting exploration results.
	Peel Mining Limited ACN 119 3 Unit 1, 34 Kings Park Rd, West Perth, WA 6005. Ph: (08) 9382 3955. E: info	

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 True widths are estimated to be 40-60% of the downhole width unless otherwise indicated.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to Figures in the body of text.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of sulphide and oxide material abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• No other substantive exploration data are available.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling (as part of the current resource drilling) and geophysical surveys are planned at Wirlong. Further drilling (as part of the current resource drilling) and geophysical surveys are planned at Mallee Bull.
	Peel Mining Limited ACN 119 343 734 Unit 1, 34 Kings Park Rd, West Perth, WA 6005. Ph: (08) 9382 3955. E: info@peelmining.com.au www.peelmining.com.au	