

<u>Highlights</u>

- The first test in a series of metallurgical tests on the lower-grade intrusion-hosted mineralisation at the Hualilan Gold Project has produced outstanding results:
 - gold recovery of 94.9% from gravity separation followed by single stage flotation;
 - production of an attractive, and saleable, gold and silver concentrate.
 - Analysis of the concentrate from the high-grade material confirms it has significant advantages:
 - it is low in all deleterious elements and exceptionally low in arsenic; and
 - discussions with potential off-takers have indicated it will have high payability.
- These results compliment the recoveries of 91-94% from the high-grade skarn mineralisation from Phase 1 metallurgical testing in February 2021.

Commenting on the results, CEL Managing Director, Mr Kris Knauer, said;

"Hualilan has a foreign resource of over six hundred thousand ounces of high-grade gold, however the Company believes that the recently discovered lower-grade intrusion hosted mineralisation will provide the majority of the gold at Hualilan.

The initial results from metallurgical testing of this lower grade material are outstanding and far exceeded our expectations. They show the viability of a concentrate production and export route which provides us with a simple, low risk industry standard flotation flowsheet that unlocks value of the lower-grade intrusion-hosted material at Hualilan.

We are encouraged by discussions we have had with off -takers and traders. The clear message is that the grades and nature of our concentrates make them attractive and should translate to strong payability. Additionally, we expect to further increase their quality via more test work."

Challenger Exploration (ASX: CEL) ("CEL" or the **"Company"**) is pleased to announce further results from ongoing Phase 1 metallurgical testing at the Company's flagship Hualilan Gold project in San Juan Argentina. The results are extremely encouraging and materially above the Company's expectations.

The first test on the low-grade intrusion-hosted mineralisation, which represents the majority of the gold mineralisation at Hualilan, has produced almost 95% gold recovery. Ongoing testing of the concentrate from the high-grade mineralisation has shown it is exceptionally clean and likely to have high payability. Additionally, leach testing of the float tails has shown the potential to significantly increase gold recoveries into the high 90 percent level.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

HIGHLIGHTS

Intrusion-hosted mineralisation

The testing was conducted on a representative composite of the intrusion-hosted mineralisation from the Gap Zone and Magnata grading 1.1 g/t gold 7.0 g/t silver and 0.10 % zinc. The first test produced recoveries of 95% (gold) and 87% (silver) into an attractive gold/silver concentrate from simple gravity separation followed by single stage sulphide flotation at an exceptionally low mass pull of 3.1%. Fine grinding was not required with the results achieved using an 80 micron grind and 65% of the gold was recovered via a gravity into a concentrate grading 283 g/t gold and 693 g/t silver.

These recoveries were significantly better than both the historical recoveries on the high-grade material and the Company's initial expectations. This significantly de-risks the project as it confirms a simple and conventional, and low cost, process route is available for the material the Company believes will provide the bulk of the gold mineralisation at Hualilan.

	Product	Wei	ght	Assa	ays (g/t	- Au/Ag	; % - Cı	ı/Pb/Zr	n/S)		[Distribu	tion (%)	
		g	%	Au	Ag	Cu	Pb	Zn	S	Au	Ag	Cu	Pb	Zn	S
-	Gravity Conc	9.7	0.2	283	693					65.9	16.9				
)	Gravity Conc + Clnr Conc	125.9	3.1	31.4	274	0.51	0.54	2.72	32.2	94.9	86.9	62.2	62.9	85.6	92.3

Table 1 -Summary Metallurgical Test Results - Intrusion-hosted mineralisation

High-grade mineralisation

The results from detailed analysis of the concentrate produced from the high-grade material show that it is low in all deleterious elements and extremely low in Arsenic. The arsenic content was below the 30 ppm detection level which is rare for a gold concentrate creating the potential for the concentrate to attract a significant premium for blending. Clean gold concentrates are becoming more sought after as environmental regulations tighten regarding importation and processing of concentrates high in deleterious elements.

Preliminary discussions with potential off-takers confirm that given its composition, and the good gold grades, the concentrate has a number of advantages over most gold concentrates and it is likely to be highly sought and should achieve a high payability.

Exploratory leach testing

The Company conducted an exploratory cyanide leach test on the tailings from the concentrate from the high-grade mineralisation. The 5-10% of the gold that was not recovered by floatation was lost into the float tailings. The recovery of approximately 70% of this gold and silver in the float tails via a cyanide leach is a positive, and unexpected, result. This has the potential to increase gold recoveries from the high-grade material into the high 90 percent range. It also provides the flexibility to target a higher-grade concentrate, and resultant increased payability, while still maintaining high gold recoveries.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

FIRST FLOTATION TEST (LOW-GRADE INTRUSION-HOSTED MATERIAL)

Bulk Sample

The first test was conducted on a 4 kilogram sub-sample of a 55.6 kg bulk sample of quarter core from 4 drill holes across the project; GNDD-113, GNDD113A, GNDD155 (Gap Zone) and GNDD157 (Magnata). The bulk sample provides material which has a grades and composition representative of the low-grade intrusion-hosted mineralisation intersected to date. Assays for holes used for the metallurgical bulk sample are shown in Table 1. The weighted average grade of the bulk sample is 1.1 g/t gold, 7.0 g/t silver, 0.01% copper, 0.03% lead and 0.09% zinc.

Drill hole	From	То	Total	Au	Ag	Zn	Cu	Pb	weight
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)	(kg)
GNDD113	154.00	161.50	7.50	0.86	32.0	0.18	0.06	0.13	10.95
GNDD113A	352.00	360.00	8.00	1.06	0.90	0.02	0.00	0.01	12.88
GNDD155	195.00	200.00	5.00	0.92	1.26	0.10	0.00	0.02	10.38
GNDD155	248.00	253.00	5.00	1.39	0.95	0.07	0.00	0.01	10.06
GNDD157	345.00	352.00	7.00	1.27	0.53	0.11	0.00	0.00	11.38

Table 1: Grades and weights of core samples that contributed to metallurgical sample

Initial Floatation Test Result

The first test on the intrusion-hosted material (Test F7) was a repeat of the Test F5 test conducted on the higher-grade material, which produced excellent recoveries from a combination of gravity separation and single stage bulk sulphide float. It was conducted at a slightly finer $P_{80} = 80$ micron grind. Gravity separation recovered 65.9% of the gold into a gravity concentrate grading 283 g/t gold and 693 g/t silver. As in the tests done on the higher-grade material gravity separation consisted of a Knelson Concentrator followed by a Mozely Table.

The tailings grades of 0.04 g/t Au and 0.90 g/t Ag are exceptionally low and correspond to a combined gravity and bulk rougher gold recovery of 96.4%. A single cleaning stage was added after the bulk sulphide float which was extremely effective. This produced a small (1.5%) reduction in recovery from 96.4% to 94.9% (gold) and 91.6% to 86.9% (silver) at a significantly lower mass pull of 3.1%, down from 7%. The end concentrate, from the combination of the gravity and first cleaner float concentrate, produced a concentrate containing 31.5 g/t gold, 274 g/t silver, 0.5% copper, 0.5% lead, 2.7% zinc and 32% sulphur. Recoveries were **94.9% (gold), 86.8% (silver), 62.2% (copper), 62.9% (lead), 85.6% (zinc).**

The Company is repeating the test using a 12 kg sample as SGS Lakefield have advised the initial test, using a 4gk sample, may have understated the gravity component to the concentrate. The composition of the concentrate from this 12 kg test will be analysed to confirm that, like the concentrate from the high-grade material, it is low in deleterious elements.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

This is the first in a series of tests and, given the effectiveness of the single cleaning stage, the Company expects is will further improve the concentrate grade with minimal trade-off in recovery. Additionally, the likelihood of the recovery of the majority of any residual gold and silver in the cleaner concentrate tails via a cyanide leach provides further flexibility to target a higher-grade concentrate without a significant reduction in overall recoveries.

Higher gold and silver grades in concentrate are likely to further improve the project economics through higher concentrate payability.

The next test will involve evaluating a finer primary grind. Subsequent tests will involve the addition of a second bulk cleaner to reject more non-sulphide minerals. Additionally, given the good rougher recovery, the Company will perform a short regrind of the rougher concentrate rather than a finer primary grind. Sulphides commonly grind preferentially hence a finer primary grind may lead to elevated sulphide fines losses to the rougher tailings.

Regardless of any further improvements the Company is extremely encouraged by the excellent gold and silver recoveries that this first test has demonstrated are able to be achieved from a combination of a gravity and single stage bulk sulphide float.

The production of a single stage bulk concentrate will be the lowest capital and operating expenditure option on a per tonne throughput basis when compared to other processes. It is also a significant positive that these high recoveries from Phase 1 testing have been achieved without the need for fine grinding.

Product	Wei	ght			Assays				D	istributi	ion	
			Au	Ag	Cu	Pb	Zn	Au	Ag	Cu	Pb	Zn
	g	%	(g/t)	(g/t)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Mozley Conc	9.7	0.2	283	693				16.9				
1st Clnr Conc	116.2	2.9	10.4	239	0.55	0.59	2.95	69.9	62.2	62.9	85.6	94.78
1st Clnr Tails	154.0	3.8	0.41	12.1	0.01	0.021	0.059	4.7	1.5	3.0	2.3	1.8
Ro Tails	3722.0	93.0	0.04	0.90	<0.01	<0.01	0.013	8.4	36.3	34.1	12.1	3.4
Head (calc)	4001.9	100.0	1.04	9.92	0.03	0.03	0.10	100	100	100	100	100
Head (direct)			1.72	11.2	0.02	0.06	0.10					

Table 2 -test F7 Metallurgical Balance Table

ANALYSIS OF THE CONCENTRATE FROM THE HIGH-GRADE MATERIAL

Detailed analysis of the composition of the concentrate produced from the high-grade skarn mineralisation (namely the combination of the first cleaner concentrate and the gravity concentrate from the high-grade material test F5 - see metallurgical balance below) has demonstrated that the concentrate has significant advantages over most concentrates.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

The composition of the concentrate is shown in Table 3.

Of particular note is the arsenic content, below the 30 ppm (g/t) detection level which is rare for a gold concentrate, and all other deleterious elements being well below the level at which they would incur smelter penalties. This significantly expands the number of potential treatment routes.

Preliminary discussions with potential offtake partners and concentrate traders have indicated that this concentrate is likely to be highly sought and will attract a significant premium to most similar grade gold concentrates. Early indicative payabilities show that the sale of a concentrate from the combined gravity and single stage float is an attractive and robust option to use to evaluate the economics of the project. The Company will also continue to advance the production and sale of separate zinc, copper, and lead concentrate streams.

Ag g/t	Al g/t	As g/t	Ba g/t	Be g/t	Bi g/t	Ca g/t	Cd g/t	Cl g/t	Co g/t	Cr g/t	Cu g/t
(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
113	1,510	< 30	7.5	0.28	< 20	4.6	1,130	20	< 5	65	0.6
Fe g/t	F %	Hg g/t	Kg/t	Li g/t	Mg g/t	Mn g/t	Mo g/t	Na g/t	Ni g/t	Pg/t	Pb g/t
(ppm)	(%)										
30.3	22	< 0.3	344	< 40	2,460	7,130	< 5	185	< 20	< 200	1.4
Sb g/t	Se g/t	Sn g/t	Sr g/t	Ti g/t	Tl g/t	U g/t	V g/t	Yg/t	Zn g/t	Au	
(ppm)	(%)	(ppm)									
< 30	< 30	< 20	32.6	60.1	< 30	< 50	< 4	1.7	11.6	54.2	

Table 3 - Composition of combined gravity and first cleaner concentrate test F5 (high grade skarn)

Product	Weigh	nt			Ass	ays					Perc	entage		
			Au	Ag	Cu	Pb	Zn	S	Au	Ag	Cu	Pb	Zn	Zn
	(g)	(%)	(g/t)	(g/t)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Mozley Conc	8.3	0.4	1538		0.14	40.3	0.58	32.4	42.8					
1st Clnr Conc	470.4	23.5	28.0	147.0	0.70	1.67	13.9	42.8	44.1	77.8	83.7	73.6	75.4	94.78
1st Clnr Tails	148.4	7.4	7.5	40.6	0.19	0.42	2.15	2.6	3.7	6.8	7.2	5.8	3.7	1.8
Ro Tails	1372.9	68.6	2.05	10.0	0.03	0.16	1.32	0.53	9.4	15.4	9.1	20.6	20.9	3.4
Head (calc)	2000.0	100.0	14.9	44.5	0.20	0.53	4.33	10.62	100	100	100	100	100	100
Head (direct)			17.2	44.0	0.20	0.70	4.45							

Table 4 -Test F5 Metallurgical Balance Table (high grade skarn)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

EXPLORATORY CYANIDE LEACH OF THE FLOAT TAILS

For completeness, the Company undertook an exploratory cyanide leach of the F5 concentrate tails produced in the flotation testing of the high-grade skarn material. Some 9.4% of the gold from the higher grade sample is lost into the float tails in the combined gravity single stage float with the float tails grading 2.1 g/t gold and less than 10 g/t silver. Additionally, the first cleaner float tails contain 3.7% of the gold at a grade of 7.5 g/t.

Given that historical bulk sample bottle roll testing, which was used to determine the effectiveness of cyanide to recover the gold at Hualilan, had produced recoveries of 20-40% it was not expected that cyanide would recover a significant portion of the residual gold In the float tails.

Testing was conducted on a 1.34 kg sample of the F5 float tails over a 48 hour leach duration. Surprisingly, the testing resulted in the recovery of 70% of the gold and 72% of the silver. The cyanide consumption of 4.25 kg/t NaCn was at the higher end, however it represents a viable option to significantly increase recoveries. Additionally, no attempt has been made to further clean the float tails to remove the residual zinc and copper which are likely to be responsible for the majority of the cyanide consumption.

The likelihood of the recovery of the majority of any residual gold and silver in the concentrate tails provides not only improved recoveries and most likely a better outcome. It also provides the flexibility to target a higher grade concentrate without significantly reducing overall recoveries.

Ends

This ASX announcement was approved and authorised by the Board.

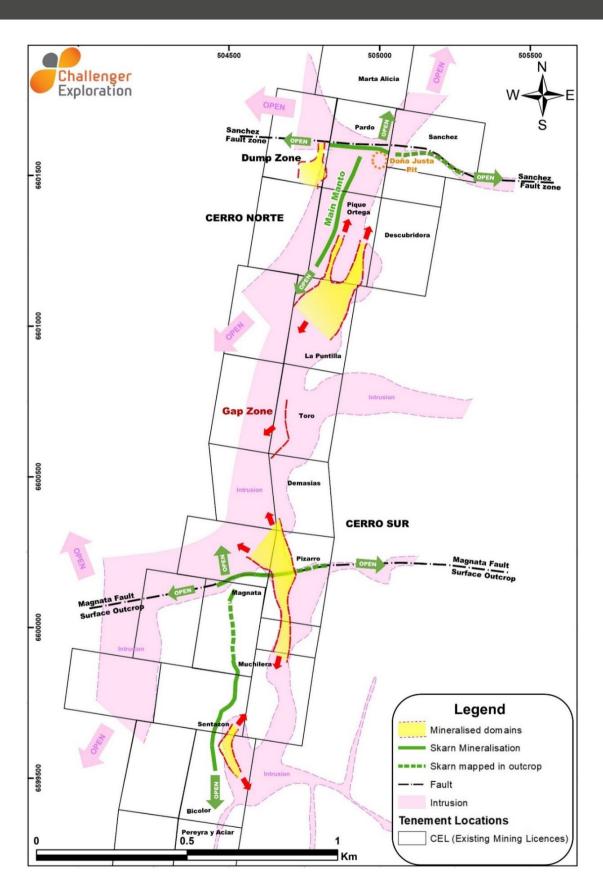
For further information contact:

Kris Knauer Managing Director +61 411 885 979 kris.knauer@challengerex.com Scott Funston Chief Financial Officer +61 413 867 600 scott.funston@challengerex.com

Media Enquiries Jane Morgan + 61 405 555 618 jm@janemorganmanagement.com.au

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

About Challenger Exploration


Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation in Ecuador.

The Company is fully funded for the next 2 years with cash at bank of \$50 million and it has committed to an 8-rig 120,000 metre drill program at its Flagship Hualilan Gold project.

- 1. **Hualilan Gold Project**, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and a non-JORC historical resource ⁽¹⁾ of 627,000 Oz @ 13.7 g/t gold which remains open in most directions. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. In the past 20 months CEL has completed 250 drill holes for more than 55,000 metres of drilling. Results have included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over almost 2 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 116m at 1.0 g/t Au, 4.0 g/t Ag, 0.2% Zn and 39.0m at 5.5 g/t Au, 2.0 g/t Ag, 0.3% Zn in porphyry dacites. CEL's current program which is fully funded includes a 120,000 metres of drilling, metallurgical test work of key ore types, and an initial JORC Compliant Resource and PFS.
- 2. El Guayabo Gold/Copper Project covers 35 sq kms in southern Ecuador and was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t which have never been followed up. The Project has multiple targets including breccia hosted mineralisation, an extensive flat lying late-stage vein system and an underlying porphyry system target neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134m at 1.0 g/t gold and 4.1 g/t silver including 63m at 1.6 g/t gold and 5.1 g/t silver. The Company is completing preparations for its maiden drill program which will; commence In July 2021.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Hualilan Project Location Map

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

Challenger Exploration Limited

ACN 123 591 382

ASX: CEL

Issued Capital

658.2m shares

86.6m options

16m perf rights

120m perf shares

La Mancha Resources 2003 foreign	resource estimate for th	e Hualilan Project ^	
Category	Tonnes (kt)	Gold Grade (g/t)	Contained Gold (koz)
Measured	218	14.2	100
Indicated	226	14.6	106
Total of Measured & Indicated	445	14.4	206
Inferred	977	13.4	421
Measured, Indicated & Inferred	1,421	13.7	627

^ Source: La Mancha Resources Toronto Stock Exchange Release dated 14 May 2003 -Independent Report on Gold Resource Estimate. Rounding errors may be present. Troy ounces (oz) tabled here

^{#1} For details of the foreign non-JORC compliant resource and to ensure compliance with LR 5.12 please refer to the Company's ASX Release dated 25 February 2019. These estimates are foreign estimates and not reported in accordance with the JORC Code. A competent person has not done sufficient work to clarify the foreign estimates as a mineral resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign estimate will be able to be reported as a mineral resource. The company is not in possession of any new information or data relating to the foreign estimates or CEL's ability to verify the foreign estimates estimate as minimal resources in accordance with Appendix 5A (JORC Code). The company confirms that the supporting information provided in the initial market announcement on February 25, 2019 continues to apply and is not materially changed.

Competent Person Statement – Exploration results

The information that relates to sampling techniques and data, exploration results and geological interpretation has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Competent Person Statement – Foreign Resource Estimate

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to Mineral Resources has been compiled by Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration to qualify as Competent Person as defined in the 2012 Edition of the JORC Code for Reporting of, Mineral Resources and Ore Reserves. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data -Hualilan Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or 	For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling.
	 handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample 	For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples lengths are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts.
	representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are	For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine.
	 Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg 	Core samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75µm. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination.
	was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	A 10g charge was analysed for 48 elements by 4-acid digest and ICP-MS determination. Elements determined were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10% were re-analysed by the same method using a different calibration.
		Sample intervals were selected according to geological boundaries. There was no coarse gold observed in any of the core.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in WGS84, zone 19s which is the standard projection used by CEL for the Project. Collar locations have been check surveyed using differential GPS (DGPS) by CEL to verify if the site coincides with a marked collar or tagged drill site. In most cases the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.
		Hole_id Type East North Elevation Azimuth Dip Depth Date (m) (m ASL) (°) (°) (m)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

riteria	JORC Code explanation	Commenta	ry							
		AG01	DD	2504908.0	6602132.3	1807.6	000	-90	84.5	Jan-84
		AG02	DD	2504846.5	6602041.1	1803.4	112	-70	60.0	Jan-84
		AG03	DD	2504794.5	6601925.6	1803.1	080	-55	110.0	Jan-84
		AG04	DD	2504797.1	6602065.5	1806.6	000	-90	168.0	Jan-84
		AG05	DD	2504843.5	6601820.3	1798.1	000	-90	121.8	Jan-84
		AG06	DD	2504781.9	6601922.8	1803.8	000	-90	182.2	Jan-84
		AG07	DD	2504826.3	6601731.0	1796.9	000	-90	111.5	Jan-84
		AG08	DD	2504469.8	6600673.7	1779.7	090	-57	80.2	Jan-84
		AG09	DD	2504455.7	6600458.5	1772.6	000	-90	139.7	Jan-84
		AG10	DD	2504415.5	6600263.9	1767.7	000	-90	200.8	Jan-84
		AG11	DD	2504464.8	6600566.5	1775.9	000	-90	141.0	Jan-84
		AG12	DD	2504847.6	6602161.7	1808.8	000	-90	171.4	Jan-84
		AG13	DD	2504773.6	6601731.3	1798.7	000	-90	159.5	Jan-84
		AG14	DD	2504774.7	6601818.8	1801.2	000	-90	150.2	Jan-84
		AG15	DD	2504770.7	6601631.4	1796.7	000	-90	91.3	Jan-84
		AG16	DD	2504429.5	6600665.8	1779.8	000	-90	68.8	Jan-84
				Foot	North	Elevation	Azimuth	Dim	Donth	
		Hole_id	Туре	East (m)	North (m)	(m ASL)	(°)	Dip (°)	Depth (m)	Date
		MG01	RC	2504825.5	(m) 6602755.4	1800.0	100	-60	51.0	Jan-95
		MG01A	RC	2504825.5	6602755.4	1800.0	100	-60	116.0	Jan-95
				2004010.0	0002755.4	1000.0	100			
				2504925 5	6602805 4	1900 0				
		MG02	RC	2504835.5	6602805.4	1800.0 1795 0	100	-60	90.0	Jan-95
		MG02 MG03	RC RC	2504853.5	6602880.4	1795.0	100 100	-60 -60	90.0 102.0	Jan-95 Jan-95
		MG02 MG03 MG04	RC RC RC	2504853.5 2504843.5	6602880.4 6602975.4	1795.0 1800.0	100 100 100	-60 -60 -60	90.0 102.0 120.0	Jan-95 Jan-95 Jan-95
		MG02 MG03 MG04 MG05	RC RC RC RC	2504853.5 2504843.5 2506130.5	6602880.4 6602975.4 6605055.4	1795.0 1800.0 1750.0	100 100 100 85	-60 -60 -60 -60	90.0 102.0 120.0 96.0	Jan-95 Jan-95 Jan-95 Jan-95
		MG02 MG03 MG04 MG05 MG06	RC RC RC RC RC	2504853.5 2504843.5 2506130.5 2506005.5	6602880.4 6602975.4 6605055.4 6605115.4	1795.0 1800.0 1750.0 1750.0	100 100 100 85 100	-60 -60 -60 -60 -60	90.0 102.0 120.0 96.0 90.0	Jan-95 Jan-95 Jan-95 Jan-95 Jan-95
		MG02 MG03 MG04 MG05 MG06 MG07	RC RC RC RC RC RC	2504853.5 2504843.5 2506130.5 2506005.5 2506100.5	6602880.4 6602975.4 6605055.4 6605115.4 6605015.4	1795.0 1800.0 1750.0 1750.0 1750.0	100 100 100 85 100 100	-60 -60 -60 -60 -60	90.0 102.0 120.0 96.0 90.0 96.0	Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95
		MG02 MG03 MG04 MG05 MG06 MG07 MG08	RC RC RC RC RC RC RC	2504853.5 2504843.5 2506130.5 2506005.5 2506100.5 2505300.5	6602880.4 6602975.4 6605055.4 6605115.4 6605015.4 6603070.4	1795.0 1800.0 1750.0 1750.0 1750.0 1740.0	100 100 85 100 100 95	-60 -60 -60 -60 -60 -60 -70	90.0 102.0 120.0 96.0 90.0 96.0 66.0	Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95
		MG02 MG03 MG04 MG05 MG06 MG07 MG08 MG09	RC RC RC RC RC RC RC RC	2504853.5 2504843.5 2506130.5 2506005.5 2506100.5 2505300.5 2505285.5	6602880.4 6602975.4 6605055.4 6605115.4 6605015.4 6603070.4 6603015.4	1795.0 1800.0 1750.0 1750.0 1750.0 1740.0 1740.0	100 100 85 100 100 95 0	-60 -60 -60 -60 -60 -60 -70 -90	90.0 102.0 96.0 90.0 96.0 66.0 102.0	Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95
		MG02 MG03 MG04 MG05 MG06 MG07 MG08 MG09 MG10	RC RC RC RC RC RC RC RC	2504853.5 2504843.5 2506130.5 2506005.5 2506100.5 2505300.5 2505285.5 2505285.5	6602880.4 6602975.4 6605055.4 6605115.4 6605015.4 6603070.4 6603015.4 6600225.4	1795.0 1800.0 1750.0 1750.0 1750.0 1740.0 1740.0 1724.0	100 100 85 100 95 0 100	-60 -60 -60 -60 -60 -70 -90 -60	90.0 102.0 96.0 90.0 96.0 66.0 102.0 120.0	Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95
		MG02 MG03 MG04 MG05 MG06 MG07 MG08 MG09 MG10 MG11	RC RC RC RC RC RC RC RC RC	2504853.5 2504843.5 2506130.5 2506005.5 2506100.5 2505300.5 2505285.5 2505285.5 2505025.5 2503380.5	6602880.4 6602975.4 6605055.4 6605115.4 6605015.4 6603070.4 6603015.4 6600225.4 6598560.5	1795.0 1800.0 1750.0 1750.0 1750.0 1740.0 1740.0 1724.0 1740.0	100 100 85 100 100 95 0 100 100	-60 -60 -60 -60 -60 -70 -70 -90 -60	90.0 102.0 96.0 90.0 96.0 66.0 102.0 120.0 78.0	Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95
		MG02 MG03 MG04 MG05 MG06 MG07 MG08 MG09 MG10	RC RC RC RC RC RC RC RC	2504853.5 2504843.5 2506130.5 2506005.5 2506100.5 2505300.5 2505285.5 2505285.5	6602880.4 6602975.4 6605055.4 6605115.4 6605015.4 6603070.4 6603015.4 6600225.4	1795.0 1800.0 1750.0 1750.0 1750.0 1740.0 1740.0 1724.0	100 100 85 100 95 0 100	-60 -60 -60 -60 -60 -70 -90 -60	90.0 102.0 96.0 90.0 96.0 66.0 102.0 120.0	Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95
		MG02 MG03 MG04 MG05 MG06 MG07 MG08 MG09 MG10 MG11	RC RC RC RC RC RC RC RC RC	2504853.5 2504843.5 2506130.5 2506005.5 2506100.5 2505300.5 2505285.5 2505285.5 2505025.5 2503380.5	6602880.4 6602975.4 6605055.4 6605115.4 6605015.4 6603070.4 6603015.4 6600225.4 6598560.5	1795.0 1800.0 1750.0 1750.0 1750.0 1740.0 1740.0 1724.0 1740.0	100 100 85 100 100 95 0 100 100	-60 -60 -60 -60 -60 -70 -70 -90 -60	90.0 102.0 96.0 90.0 96.0 66.0 102.0 120.0 78.0 66.0	Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95
		MG02 MG03 MG04 MG05 MG06 MG07 MG08 MG09 MG10 MG11 MG12	RC RC RC RC RC RC RC RC RC	2504853.5 2504843.5 2506130.5 2506005.5 2506100.5 2505300.5 2505285.5 2505285.5 2503380.5 2503270.5	6602880.4 6602975.4 6605055.4 6605115.4 6605015.4 6603070.4 6603015.4 6600225.4 6598560.5 6597820.5 North	1795.0 1800.0 1750.0 1750.0 1750.0 1740.0 1740.0 1724.0 1740.0 1740.0 Elevation	100 100 85 100 95 0 100 100 100 100 Azimuth	-60 -60 -60 -60 -60 -70 -90 -60 -60 -60 -60	90.0 102.0 96.0 90.0 96.0 66.0 102.0 120.0 78.0 66.0 Depth (m)	Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95 Jan-95

Challenger Explo ACN 123 591 382 ASX: CEL

www.challengerex.com

658.2m shares 86.6m options 120m perf shares 16m perf rights

Level 1 1205 Hay Street West Perth WA 6005 Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

teria	JORC Code explanation	Commenta	iry							
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90	100.0	199
		Hua04	RC	2504873.3	6602169.1	1809.7	000	-90	100.0	19
		Hua05	RC	2505003.2	6602152.6	1810.7	180	-60	100.0	19
		Hua06	RC	2505003.3	6602161.6	1810.7	360	-60	100.0	19
		Hua07	RC	2504967.7	6602153.2	1810.2	000	-90	100.0	19
		Hua08	RC	2504973.2	6602153.7	1810.2	000	-90	13.0	19
		Hua09	RC	2504940.7	6602150.3	1809.7	180	-60	100.0	19
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60	100.0	19
		Hua11	RC	2504913.3	6602167.4	1809.7	360	-60	88.0	19
		Hua12	RC	2504912.8	6602165.9	1809.7	000	-90	100.0	19
		Hua13	RC	2504912.3	6602156.9	1809.7	180	-60	90.0	19
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60	100.0	19
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60	100.0	19
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90	100.0	19
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50	42.0	19
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90	106.0	19
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90	54.0	19
		Holo id	Turno	East	North	Elevation	Azimuth	Dip	Depth	Data
		Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)		Depth (m)	Date
		Hole_id	Type							1999
				(m)	(m)	(m ASL)	(°)	(°)	(m)	1999
		DDH20 DDH21 DDH22	DD	(m) 2504977.3	(m) 6602133.3	(m ASL) 1804.8	(°) 116	(°) -54	(m) 49.1	1999 1999 1999
		DDH20 DDH21	DD DD	(m) 2504977.3 2504978.3	(m) 6602133.3 6602118.3	(m ASL) 1804.8 1804.8	(°) 116 000	(°) -54 -90	(m) 49.1 88.6	1999 1999 1999 1999
		DDH20 DDH21 DDH22	DD DD DD	(m) 2504977.3 2504978.3 2504762.9	(m) 6602133.3 6602118.3 6601587.1	(m ASL) 1804.8 1804.8 1769.8	(°) 116 000 116	(°) -54 -90 -65	(m) 49.1 88.6 66.0 58.8 100.3	1999 1999 1999 1999 1999
		DDH20 DDH21 DDH22 DDH23	DD DD DD DD	(m) 2504977.3 2504978.3 2504762.9 2504920.4	(m) 6602133.3 6602118.3 6601587.1 6601994.3	(m ASL) 1804.8 1804.8 1769.8 1767.9	(°) 116 000 116 000	(°) -54 -90 -65 -90	(m) 49.1 88.6 66.0 58.8	1999 1999 1999 1999 1999
		DDH20 DDH21 DDH22 DDH23 DDH24	DD DD DD DD DD	(m) 2504977.3 2504978.3 2504762.9 2504920.4 2504821.0	(m) 6602133.3 6602118.3 6601587.1 6601994.3 6601938.8	(m ASL) 1804.8 1804.8 1769.8 1767.9 1802.0	(°) 116 000 116 000 116	(°) -54 -90 -65 -90 -80	(m) 49.1 88.6 66.0 58.8 100.3	1999 1999 1999 1999 1999 1999 1999
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25	DD DD DD DD DD DD	(m) 2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6	(m) 6602133.3 6602118.3 6601587.1 6601994.3 6601938.8 6601964.5	(m ASL) 1804.8 1804.8 1769.8 1767.9 1802.0 1803.7	(°) 116 000 116 000 116 116	(°) -54 -90 -65 -90 -80 -74	(m) 49.1 88.6 66.0 58.8 100.3 49.2	1999 1999 1999 1999 1999 1999 1999
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH25 DDH26 DDH27 DDH28	DD DD DD DD DD DD DD DD	(m) 2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4	(m) 6602133.3 6602118.3 6601587.1 6601994.3 6601938.8 6601964.5 6601975.3	(m ASL) 1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0	(°) 116 000 116 000 116 116 312	(°) -54 -90 -65 -90 -80 -74 -60	(m) 49.1 88.6 66.0 58.8 100.3 49.2 80.3	1999 1999 1999 1999 1999 1999 1999 199
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29	DD DD DD DD DD DD DD DD DD	(m) 2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7	(m) 6602133.3 6602118.3 6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1	(m ASL) 1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6	(°) 116 000 116 000 116 116 312 116	(°) -54 -90 -65 -90 -80 -74 -60 -60	(m) 49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2	1999 1999 1999 1999 1999 1999 1999 199
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH25 DDH26 DDH27 DDH28	DD DD DD DD DD DD DD DD DD DD	(m) 2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504920.4 2504752.7 2505003.6	(m) 6602133.3 6602118.3 6601587.1 6601994.3 6601994.3 6601964.5 6601975.3 6601565.1 6602174.3	(m ASL) 1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6	(°) 116 000 116 000 116 116 312 116 116 116	(°) -54 -90 -65 -90 -80 -74 -60 -60 -60 -50	(m) 49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7	Date 1999 1999 1999 1999 1999 1999 1999 19
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29	DD DD DD DD DD DD DD DD DD DD DD	(m) 2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1	(m) 6602133.3 6602118.3 6601587.1 6601994.3 6601994.3 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6	(m ASL) 1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0	(°) 116 000 116 116 116 312 116 116 116 350	(°) -54 -90 -65 -90 -80 -74 -60 -60 -50 -52	(m) 49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5	1999 1999 1999 1999 1999 1999 1999 199
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32	DD DD DD DD DD DD DD DD DD DD DD	(m) 2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1	(m) 6602133.3 6602118.3 6601587.1 6601994.3 6601994.3 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3	(m ASL) 1804.8 1804.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3	(°) 116 000 116 116 116 312 116 116 350 059	(°) -54 -90 -65 -90 -80 -74 -60 -50 -50 -52 -85 -75 -51	(m) 49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7	1999 1999 1999 1999 1999 1999 1999 199
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31	DD DD DD DD DD DD DD DD DD DD DD DD DD	(m) 2504977.3 2504978.3 2504920.4 2504821.0 2504862.6 2504920.4 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2505004.1	(m) 6602133.3 6602118.3 6601587.1 6601994.3 6601994.3 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602156.3 6602112.7	(m ASL) 1804.8 1804.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1	(°) 116 000 116 116 116 312 116 116 350 059 116	(°) -54 -90 -65 -90 -80 -74 -60 -50 -50 -52 -85 -75	(m) 49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4	1999 1999 1999 1999 1999 1999 1999 199
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32	DD DD DD DD DD DD DD DD DD DD DD DD DD	(m) 2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504920.4 2504920.4 2504920.4 2505003.6 2504964.1 2505004.1 2505004.1 2504897.6 2504939.4	(m) 6602133.3 6602118.3 6601587.1 6601994.3 6601994.3 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2	(m ASL) 1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1 1809.1	(°) 116 000 116 116 116 312 116 116 350 059 116 350	(°) -54 -90 -65 -90 -80 -74 -60 -50 -50 -52 -85 -75 -51	(m) 49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7	1999 1999 1999 1999 1999 1999 1999 199
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32 DDH32 DDH33	DD DD DD DD DD DD DD DD DD DD DD DD DD	(m) 2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504920.4 2504920.4 2504920.4 2504920.4 2504964.1 2505004.1 2504964.1 2504997.6 2504939.4	(m) 6602133.3 6602118.3 6601587.1 6601994.3 6601994.3 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602156.3 6602139.2 6602139.2	(m ASL) 1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1 1809.1	(°) 116 000 116 116 116 312 116 116 350 059 116 350 350 350	(°) -54 -90 -65 -90 -80 -74 -60 -50 -52 -85 -75 -51 -65	(m) 49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9	1999 1999 1999 1999 1999 1999 1999 199
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH30 DDH31 DDH32 DDH33 DDH33 DDH33 DDH34	DD DD DD DD DD DD DD DD DD DD DD DD DD	(m) 2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2504964.1 2504964.1 2504964.1 2504964.1 2504939.4 2504939.4 2504939.4	(m) 6602133.3 6601587.1 6601994.3 6601994.3 6601964.5 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602156.3 6602139.2 6602139.2 6601920.2	(m ASL) 1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1 1809.1 1809.1 1801.3	(°) 116 000 116 116 116 312 116 116 350 059 116 350 350 116	(°) -54 -90 -65 -90 -80 -74 -60 -60 -50 -52 -52 -51 -65 -70	(m) 49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9 69.4	1999 1999 1999 1999 1999 1999 1999 199

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

(7)

riteria	JORC Code explanation	Commenta	ry							
		DDH38	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999-0
		DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999-
		DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999-
		DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999-
		DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999-
		DDH43	DD	2504829.2	6601952.5	1801.8	116	-70	70.8	1999-
		DDH44	DD	2504811.3	6601895.1	1802.0	116	-60	102.2	1999-
		DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999-
		DDH46	DD	2504884.4	6601976.3	1805.9	116	-45	71.6	1999-
		DDH47	DD	2504884.4	6601976.3	1805.9	116	-65	71.0	1999-
		DDH48	DD	2504866.9	6601962.7	1803.1	116	-47	30.7	1999-
		DDH49	DD	2504866.9	6601962.7	1803.1	116	-72	41.9	1999-
		DDH50	DD	2504821.4	6601913.9	1801.1	116	-77	87.5	1999-
		DDH51	DD	2504821.4	6601913.9	1801.1	116	-80	87.5	1999-
		DDH52	DD	2504825.5	6601901.1	1800.9	116	-83	74.0	1999-
		DDH53	DD	2504504.1	6600714.0	1788.7	090	-62	85.7	1999-
		DDH54	DD	2504504.1	6600714.0	1788.7	090	-45	69.1	1999-
		DDH55	DD	2504997.9	6602163.5	1808.6	360	-53	63.1	1999-
		DDH56	DD	2504943.1	6602171.3	1810.5	360	-75	50.6	1999-
		DDH57	DD	2504943.1	6602171.3	1810.5	000	-90	66.2	1999-
		DDH58	DD	2504970.3	6602153.3	1809.1	360	-71	62.0	1999-
		DDH59	DD	2504970.3	6602153.3	1809.1	000	-90	66.3	1999-
		DDH60	DD	2504997.9	6602162.5	1809.0	360	-67	59.9	1999-
		DDH61	DD	2504997.9	6602162.5	1809.0	000	-90	58.1	1999-
		DDH62	DD	2504751.4	6601602.6	1789.2	170	-45	68.4	1999-
		DDH63	DD	2504751.4	6601602.6	1789.2	170	-70	131.5	1999-
		DDH64	DD	2504776.3	6601596.9	1789.1	170	-45	66.7	1999-
		DDH65	DD	2504552.7	6600792.0	1793.8	194	-45	124.8	1999-
		DDH66	DD	2504552.7	6600792.0	1793.8	194	-57	117.0	1999-
		DDH67	DD	2504552.7	6600792.0	1793.8	194	-66	126.1	1999-
		DDH68	DD	2504623.9	6600779.0	1800.7	000	-90	79.5	1999-
		DDH69	DD	2504623.9	6600779.0	1800.7	194	-60	101.5	1999-
		DDH70	DD	2504595.5	6600797.7	1798.1	190	-81	128.0	1999-
		DDH71	DD	2504631.6	6600797.4	1799.0	194	-63	136.3	1999
		DDH72	DD	2504547.2	6600764.1	1799.6	194	-45	75.6	1999-
		DDH73	DD	2504593.4	6600766.5	1807.5	190	-57	70.8	1999-
		DDH74	DD	2504598.2	6600831.8	1795.3	190	-62	190.9	1999-
		DDH75	DD	2504731.2	6600784.7	1821.4	194	-45	40.2	1999-

Chall

ACN 123 591 382 ASX: **CEL** 658.2m shares 86.6m options 120m perf shares 16m perf rights Level 1 1205 Hay Street West Perth WA 6005 Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

Criteria	JORC Code explanation	Commentar								
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7	1999-0
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90		1999-0
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75		1999-0
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6	1999-(
		Hole_id	Тур е	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	
		03HD01A	DD	2504627.8	6600800.1	1798.4	180	-60	130.	2
		03HD02	DD	2504457.9	6600747.8	1782.9	180	-60	130.	5
		03HD03	DD	2504480.1	6600448.6	1774.0	360	-45	100.	2
		04HD04	DD	2504436.6	6600439.3	1773.4	360	-60	104.	
		04HD05	DD	2504420.9	6600256.8	1769.5	110	-68	122.	
		04HD06	DD	2504428.6	6600236.6	1768.1	110	-68	136.	
		04HD07	DD	2504415.7	6600277.7	1769.0	100	-63	108.	2
		04HD08	DD	2504826.5	6601920.2	1801.3	116	-70	70.	
		04HD09	DD	2504832.3	6601928.1	1801.7	116	-70	75.	9
		04HD10	DD	2504648.5	6600788.9	1801.5	205	-60	120.	
		04HD11	DD	2504462.0	6600428.3	1773.6	075	-62	95.	1
		04HD12	DD	2504449.3	6600648.9	1779.6	360	-60	77.	4
		04HD13	DD	2504434.5	6600646.6	1779.7	360	-60	74.	
		04HD14	DD	2504461.1	6600748.4	1783.1	180	-70	130.	6
		04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	160.	0
		04HD16C	DD	2504457.1	6600311.7	1770.3	195	-65	225.	5
		04HD17	DD	2504417.5	6600256.6	1769.5	110	-72	213.	2
		04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	140.	7
		04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	120.	0
		04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	120.	0
		04HD21	DD	2504648.5	6600788.9	1801.5	205	-60	120.	0
		04HD23	DD	2504441.0	6600456.0	1772.5	075	-82	499.	7
		04HD24	DD	2504389.0	6600252.0	1766.5	090	-81	188.	2
		04HD25	DD	2504456.0	6600294.0	1768.5	155	-84	500.	8
		04HD26	DD	2504424.0	6600409.0	1771.5	180	-69	464.	9
		04HD27	DD	2504461.0	6600428.0	1773.0	100	-45	60.	
		04HD28	DD	2504461.0	6600428.0	1773.0	100	-60	63.	7
		04HD29	DD	2504438.0	6600087.0	1764.5	108	-45	265.	0
		04HD30	DD	2504421.0	6600044.0	1764.0	108	-45	128.	
		04HD31	DD	2504687.0	6601326.0	1794.0	045	-60	242.	
		04HD32	DD	2504828.0	6601916.0	1801.3	116	-70	68.4	4

ACN 123 591 382 ASX: CEL Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explana	tion	Commentary	/							
			05HD33	DD	2505410.0	6601983.0	1765.0	000	-60	8	1.4
			05HD34	DD	2505451.0	6602079.0	1763.0	273	-60	26	9.0
			05HD35	DD	2504905.0	6601689.0	1794.0	140	-65	35	0.0
			05HD36	DD	2504880.0	6601860.0	1802.0	295	-70	13	0.0
			05HD37	DD	2504866.0	6601888.0	1797.0	295	-70	13	0.0
			05HD38	DD	2504838.0	6601937.0	1796.0	115	-70	7	0.0
			05HD39	DD	2504964.0	6602128.0	1814.0	030	-70	21	7.5
			05HD40	DD	2504964.0	6602128.0	1814.0	030	-50	15	0.0
			05HD41	DD	2504931.0	6602125.0	1812.0	022	-60	14	2.5
			05HD42	DD	2504552.7	6600791.5	1797.0	194	-57	12	
			05HD43	DD	2504552.7	6600791.5	1797.0	194	-45	9	5.5
			05HD44	DD	2504603.0	6600799.0	1798.0	190	-61.5	5 13	0.5
			05HD45	DD	2504362.0	6600710.0	1767.0	088	-60	12	1.5
			05HD46	DD	2504405.0	6600282.0	1766.0	090	-75	13	0.7
			05HD47	DD	2504212.0	6599177.0	1729.0	065	-45	18	
				DD	2504160.0	6599164.0	1728.0	065	-60	10	0.7
			are operated not been orie CEL drilling of drill rig set up	f HQ3 co by vario ented. f reverso o for rev	ore (triple tube) ous Argentinian e circulation (R0 erse circulatior	was done using drilling compani C) drill holes is be drilling. Drilling	various truck es based in M ing done usin is being done	and trac endoza g a tracl using a	and San k-mounte 5.25 incl	Juan. The ed LM650 h hammer	core ha universa bit.
			CEL drilling of are operated not been orie CEL drilling of drill rig set up Collar details projection. C	f HQ3 co by vario ented. f reverso for rev for DD Collar loo	ore (triple tube) ous Argentinian e circulation (RG erse circulatior drill holes and F cations for drill	was done using drilling compani C) drill holes is be drilling. Drilling	various truck es based in M ing done usin is being done pleted by CEI 15 are surveye	and trac endoza g a track using a . are shc d using	and San k-mounte 5.25 incl own below DGPS. Co	Juan. The ed LM650 h hammer w in WGS8 ollar locati	o core has universa bit. 34, zone : on for
			CEL drilling of are operated not been orie CEL drilling of drill rig set up Collar details projection. C	f HQ3 cd by varid ented. f reverse o for rev for DD o Collar loc d holes	ore (triple tube) ous Argentinian e circulation (RG erse circulatior drill holes and F cations for drill	was done using drilling compani C) drill holes is be drilling. Drilling C drill holes com holes to GNDD10	various truck es based in M ing done usin is being done pleted by CEI 15 are surveye	and trac endoza g a track using a . are sho d using GPS to n D	and San k-mounte 5.25 incl own belov DGPS. Co be follow	Juan. The ed LM650 h hammer w in WGS8 ollar locati	universa bit. 84, zone on for
			CEL drilling of are operated not been orie CEL drilling of drill rig set up Collar details projection. C GNDD060 and	f HQ3 cd by varid ented. f reverse o for rev for DD o Collar loc d holes	ore (triple tube) ous Argentinian e circulation (RG erse circulatior drill holes and F cations for drill from GNDD106	was done using drilling compani C) drill holes is be drilling. Drilling C drill holes com holes to GNDD10 are surveyed wi	various truck es based in N ing done usin is being done pleted by CEI 5 are surveye th a handheld Elevatio (m)	and trac endoza g a tracl using a . are shc d using GPS to n D ('	and San k-mounte 5.25 incl bwn belov DGPS. Co be follow	Juan. The ed LM650 h hammer w in WGS8 ollar locati ved up wit zimuth	core ha universa bit. 34, zone on for h DGPS. Depth (m)
			CEL drilling of are operated not been orie CEL drilling of drill rig set up Collar details projection. C GNDD060 and Hole_id	f HQ3 cd by varid ented. f reverse o for rev for DD o Collar loc d holes	ore (triple tube) ous Argentinian e circulation (RG erse circulatior drill holes and F cations for drill from GNDD106 East (m)	was done using drilling compani C) drill holes is be drilling. Drilling C drill holes com holes to GNDD10 are surveyed wi North (m)	various truck es based in M ing done usin is being done pleted by CEI 15 are surveye th a handheld Elevatio (m) 7 1829.2	and trac endoza g a tracl using a . are sho d using GPS to n D (' 89 -	and San k-mounte 5.25 incl bwn below DGPS. Co be follow ip Az °)	Juan. The ed LM650 h hammer w in WGS8 ollar locati ved up wit zimuth (°)	core ha universa bit. 34, zone on for h DGPS. Depth
			CEL drilling of are operated not been orie CEL drilling of drill rig set up Collar details projection. C GNDD060 and Hole_id GNDD001	f HQ3 cd by varie ented. f reverse o for rev for DD Collar loo d holes	ore (triple tube) ous Argentinian e circulation (Ro erse circulatior drill holes and F cations for drill from GNDD106 East (m) 504803.987	was done using drilling compani C) drill holes is be drilling. Drilling C drill holes com holes to GNDD10 are surveyed wi North (m) 6601337.06	various truck es based in N ing done usin is being done pleted by CEI 5 are surveye th a handheld Elevatio (m) 7 1829.2 5 1829.3	and trac endoza g a tracl using a . are shc d using GPS to n D (' 89 - 93 -	and San k-mounte 5.25 incl own belov DGPS. Co be follow ip Az 57	Juan. The ed LM650 h hammer w in WGS8 ollar locati ved up wit zimuth (°) 115	core ha universa bit. 34, zone on for h DGPS. Depth (m) 109. 25. 84.
			CEL drilling of are operated not been orie CEL drilling of drill rig set up Collar details projection. C GNDD060 and Hole_id GNDD001 GNDD002	f HQ3 cd by varie ented. f reverse o for rev for DD Collar loo d holes	ore (triple tube) ous Argentinian e circulation (RG erse circulation drill holes and F cations for drill from GNDD106 East (m) 504803.987 504793.101	was done using drilling compani C) drill holes is be drilling. Drilling C drill holes com holes to GNDD10 are surveyed wi North (m) 6601337.06 6601312.09	various truck es based in M ing done usin is being done pleted by CEI 5 are surveye th a handheld Elevatio (m) 7 1829.2 5 1829.3 4 1829.2	and trac endoza g a tracl using a . are shc d using GPS to n D (' 89 - 93 - 86 -	and San k-mounte 5.25 incl DGPS. Co be follow ip Az °) -57	Juan. The ed LM650 h hammer w in WGS8 ollar locati ved up wit zimuth (°) 115 115	univers bit. 34, zone on for h DGPS Depti (m) 109 25 84
			CEL drilling of are operated not been orie CEL drilling of drill rig set up Collar details projection. C GNDD060 and Hole_id GNDD001 GNDD002 GNDD002A GNDD003 GNDD004	f HQ3 cd by varie ented. f reverse o for rev for DD Collar loo d holes	ore (triple tube) ous Argentinian e circulation (RG erse circulation drill holes and F cations for drill from GNDD106 East (m) 504803.987 504793.101 504795.405	vas done using drilling compani C) drill holes is be drilling. Drilling C drill holes com holes to GNDD10 are surveyed wi North (m) 6601337.06 6601311.10 6601313.62 6601546.30	various truck es based in N ing done usin is being done bleted by CEI 5 are surveye th a handheld Elevatio (m) 7 1829.2 5 1829.3 4 1829.2 8 1827.7 2 1835.3	and trace endoza g a track using a . are sho d using GPS to n D (' 89 - 93 - 86 - 68 - 45 -	and San k-mounte 5.25 incl bown below DGPS. Co be follow ip Az *) -57 -60	Juan. The ed LM650 h hammer w in WGS8 ollar locati ved up wit cimuth (°) 115 115 115 115 115 115	core ha univers bit. 34, zone on for h DGPS Depth (m) 109 25 84 90 100
			CEL drilling of are operated not been orie CEL drilling of drill rig set up Collar details projection. C GNDD060 and Hole_id GNDD001 GNDD002 GNDD002A GNDD003	f HQ3 cd by varie ented. f reverse o for rev for DD Collar loo d holes	ore (triple tube) bus Argentinian e circulation (RG erse circulatior drill holes and F cations for drill from GNDD106 East (m) 504803.987 504793.101 504795.405 504824.427	2 was done using drilling compani C) drill holes is be drilling. Drilling C drill holes com holes to GNDD10 are surveyed wi North (m) 6601337.06 6601312.09 6601311.10 6601313.62	various truck es based in N ing done usin is being done bleted by CEI 5 are surveye th a handheld Elevatio (m) 7 1829.2 5 1829.3 4 1829.2 8 1827.7 2 1835.3	and trace endoza g a track using a . are sho d using GPS to n D (' 89 - 93 - 86 - 68 - 45 -	and San k-mounte 5.25 incl own below DGPS. Co be follow ip Az •) •57 •60 •60	Juan. The ed LM650 h hammer w in WGS8 ollar locati ved up wit timuth (°) 115 115 115 115	core h univers bit. 34, zono on for h DGPS Depti (m) 109 25 84 90

1205 Hay Street

West Perth WA 6005

E: admin@challengerex.com

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

www.challengerex.com

86.6m options

16m perf rights

120m perf shares

ASX: CEL

Criteria	JORC Code explar	nation	Commentary						
			GNDD007	504623.738	6600196.677	1823.447	-68	190	86
			GNDD007A	504624.021	6600198.394	1823.379	-68	190	219
			GNDD008	504625.047	6600198.059	1823.457	-60	184	109
			GNDD008A	504625.080	6600199.718	1823.264	-60	184	169
			GNDD009	504412.848	6599638.914	1794.22	-55	115	14
			GNDD010	504621.652	6600196.048	1823.452	-68	165	14
			GNDD011	504395.352	6599644.012	1794.025	-64	115	16
			GNDD012	504450.864	6599816.527	1798.321	-55	115	12
			GNDD013	504406.840	6599613.052	1792.378	-58	112	14
			GNDD014	504404.991	6599659.831	1793.728	-59	114	14
			GNDD015	504442.039	6600159.812	1808.700	-62	115	16
			GNDD016	504402.958	6599683.437	1794.007	-60	115	17
			GNDD017	504460.948	6600075.899	1806.143	-55	115	13
			GNDD018	504473.781	6600109.152	1806.458	-60	115	13
			GNDD019	504934.605	6601534.429	1834.720	-70	115	8
			GNDD020	504463.598	6600139.107	1807.789	-58	115	15
			GNDD021	504935.804	6601567.863	1835.631	-60	115	12
			GNDD022	504835.215	6601331.069	1828.015	-60	113	10
			GNDD023	504814.193	6601336.790	1828.535	-55	117	10
			GNDD024	504458.922	6600123.135	1807.237	-70	115	15
			GNDD025	504786.126	6601137.698	1823.876	-60	115	14
			GNDD026	504813.588	6601444.189	1831.810	-55	115	10
			GNDD027	504416.311	6599703.996	1794.702	-55	115	13
			GNDD028	504824.752	6601321.020	1827.837	-57	115	10
			GNDD029	504791.830	6601316.140	1829.344	-71	115	12
			GNDD030	504454.538	6599860.757	1799.266	-60	115	14
			GNDD031	504622.013	6600198.726	1823.191	-60	130	14
			GNDD032	504619.803	6600203.906	1822.790	-55	097	16
			GNDD033	504830.792	6601385.842	1829.315	-55	115	6
			GNDD034	504862.613	6601524.893	1834.263	-60	115	6

Cha ACN ASX: CEL

-

658.2m shares 86.6m options 120m perf shares 16m perf rights Level 1 1205 Hay Street West Perth WA 6005 Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explana	ition	Commentary						
			GNDD035	504782.969	6601234.234	1827.709	-78	115	119.5
			GNDD036	504303.325	6599128.637	1779.458	-55	115	131.0
			GNDD037	504462.875	6599831.674	1798.456	-55	115	83.5
			GNDD038	504465.362	6600097.111	1806.580	-55	115	87.7
			GMDD039	504815.800	6601318.000	1829.100	-70	115	80.0
			GMDD040	504402.100	6599641.500	1794.800	-55	115	135.5
			GMDD041	504473.000	6600104.000	1806.400	-55	095	95.0
			GNDD042	504392.551	6599574.224	1790.603	-60	115	140.
			GMDD043	504815.800	6601320.000	1829.100	-67	115	80.
			GNDD044	504380.090	6599622.578	1791.934	-65	115	185.
			GNDD045	504366.823	6599679.058	1793.712	-57	115	242.
			GNDD046	504364.309	6599702.621	1794.533	-60	115	191
			GNDD047	504459.642	6599644.133	1793.422	-60	115	101
			GNDD048	504792.642	6601286.638	1828.497	-74	115	95
			GNDD049	504807.030	6601419.483	1831.588	-60	115	90
			GNDD050	504826.614	6601509.677	1833.357	-60	115	80
			GNDD051	504766.792	6601032.571	1823.273	-60	115	120
			GNDD060	504803.0	6601065.0	1822.0	-60	115	200
			GNDD073	504367.546	6599724.992	1795.493	-57	115	150
			GNDD074	504366.299	6599725.496	1795.450	-73	115	152
			GNDD077	504821.005	6601145.026	1823.951	-60	115	222
			GNDD079	504636.330	6600286.824	1823.053	-60	115	181
			GNDD082	504769.532	6601169.127	1825.621	-60	115	266
			GNDD083	504646.604	6600336.172	1823.893	-60	115	181
			GNDD085	504456.068	6599888.509	1799.895	-60	115	90
			GNDD088	504815.0	6601194	1825.2	-60	115	237
			GNDD088A	504815.621	6601193.811	1825.210	-60	115	265
			GNDD089	504635.811	6600285.352	1823.032	-55	133	200
			GNDD092	504839.792	6601208.375	1824.849	-60	115	300
			GNDD093	504679.396	6600332.075	1827.365	-55	115	209

Mr Fletcher Quinn, Chairman

16m perf rights www.challengerex.com

120m perf shares

West Perth WA 6005

Criteria	JORC Code explanation	on	Commentary						
			GNDD095	504804.597	6601219.844	1826.834	-67	115	203.
			GNDD096	504666.622	6600602.793	1820.371	-60	115	215
			GNDD099	504384.933	6599759.693	1796.525	-60	115	150
			GNDD100	504424.250	6599784.711	1796.728	-60	115	120
			GNDD101	504781.691	6600986.509	1821.679	-60	115	22
			GNDD102	504787.340	6601285.049	1828.549	-57	115	26
			GNDD103	504432.004	6599482.162	1788.500	-55	115	29
			GNDD105	504701.392	6601025.961	1824.818	-60	115	30
			GNDD106	504459.3	6599614.7	1792.9	-55	115	30
			GNDD108	504895.0	6601154.9	1824.0	-60	115	20
			GNDD109	504792.0	6601026.4	1822.0	-60	115	20
			GNDD112	504898.2	6601197.6	1825.8	-60	115	18
			GNDD113	504704.7	6601067.1	1826.3	-60	115	23
			GNDD114	504436.0	6600111.0	1808.0	-50	115	1
			GNDD115	504862.0	6601285.0	1824.4	-60	115	2
			GNDD116	504443.7	6599555.8	1789.5	-65	115	20
			GNDD117	504436.0	6600111.0	1808.0	-60	115	1
			GNDD118	505086.0	6601110.0	1811.2	-60	295	30
			GNDD119	504827.0	6601540.0	1837.6	-66	115	1
			GNDD120	504408.2	6600102.0	1808.3	-60	110	16
			GNDD121	504867.0	6601137.0	1822.1	-57	115	18
			GNDD122	504658.0	6600647.6	1816.8	-60	115	25
			GNDD123	504822.0	6601512.0	1835.6	-63	130	13
			GNDD124	504408.2	6600102.0	1808.3	-70	115	16
			GNDD125	505138.0	6601130.0	1808.4	-60	295	30
			GNDD126	504719.2	6601148.6	1828.0	-60	115	19
			GNDD127	504892.0	6601505.0	1837.0	-55	115	30
			GNDD128	504712.3	6601108.0	1827.1	-60	115	23
			GNDD129	504636.0	6600284.0	1820.0	-55	185	29
			GNDD130	504839.0	6601092.8	1821.4	-60	115	22

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

16m perf rights
www.challengerex.com

86.6m options 120m perf shares 1205 Hay Street

West Perth WA 6005

ASX: CEL

(7)

Criteria	JORC Code explanat	tion	Commentary						
			GNDD131	504655.5	6600737.1	1818.4	-60	115	280
			GNDD132	504822.0	6601358.0	1830.5	-55	115	300
			GNDD133	504870.3	6601640.9	1838.5	-60	170	182
			GNDD134	504636.0	6600284.0	1820.0	-55	154	29
			GNDD135	504846.0	6601548.7	1834.8	-64	350	13
			GNDD136	504844.5	6601443.3	1829.3	-55	115	31
			GNDD137	504650.0	6600695.0	1818.2	-60	115	37
			GNDD138	504888.0	6601538.0	1837.5	-65	350	23
			GNDD139	504759.7	6601085.5	1825.3	-60	115	20
			GNDD140	504994.4	6601546.3	1835.3	-60	60	23
			GNDD141	504788.4	6601251.8	1827.9	-70	115	27
			GNDD142	504432.8	6599627.0	1793.2	-62	115	36
			GNDD143	504898.2	6601197.6	1825.8	-20	115	12
			GNDD144	504964.6	6601519.7	1837.3	-70	40	41
			GNDD145	504560.7	6600224.1	1816.1	-64	170	20
			GNDD146	504776.1	6601210.3	1827.9	-70	115	35
			GNDD147	504964.6	6601519.7	1837.3	-60	355	24
			GNDD148	504844.5	6601443.3	1829.3	-24	115	8
			GNDD149	504844.5	6601443.3	1829.3	-5	115	8
			GNDD150	504850.2	6601523.3	1836.8	-65	350	25
			GNDD151	504672.6	6601214.5	1833.6	-60	115	43
			GNDD152	504893.0	6601470.0	1835.0	-15	115	16
			GNDD153	504693.0	6600984.0	1824.2	-70	115	32
			GNDD154	504894.3	6601504.8	1836.3	-65	350	21
			GNDD155	504780.1	6601120.2	1824.0	-60	115	42
			GNDD156	504839.1	6601401.6	1829.4	-37	115	5
			GNDD157	504636.0	6600284.0	1820.0	-55	170	52
			GNDD158	504807.6	6601535.3	1837.0	-60	350	17
			GNDD159	504907.7	6601149.3	1825.0	-40	115	20
			GNDD160	504968.0	6601543.0	1835.4	-55	350	17

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

16m perf rights
www.challengerex.com

86.6m options 120m perf shares 1205 Hay Street

West Perth WA 6005

Criteria	JORC Code explanation	on	Commentary						
			GNDD161	504667.0	6600820.0	1819.0	-60	115	251.0
			GNDD162	504723.0	6601279.3	1832.1	-60	115	180.0
			GNDD163	504750.3	6601575.5	1840.3	-60	115	180.0
			GNDD164	504673.4	6601523.0	1840.2	-60	115	311.
			GNDD165	504488.0	6599861.0	1805.4	-10	115	253.
			GNDD166	504565.3	6600337.7	1819.6	-60	115	327
			GNDD167	504730.0	6600879.0	1818.0	-60	115	251
			GNDD168	504559.6	6600384.5	1815.5	-60	115	314
			GNDD169	504683.8	6601562.4	1841.0	-60	115	416
			GNDD170	504663.0	6600335.0	1822.9	-60	170	123
			GNDD170A	504663.0	6600335.0	1822.9	-60	170	380
			GNDD171	504679.0	6600903.0	1821.0	-70	115	350
			GNDD172	504488.0	6599861.0	1805.4	-45	115	119
			GNDD173	504694.5	6601336.6	1835.6	-60	115	191
			GNDD174	504473.0	6600105.9	1806.4	-11	115	329
			GNDD175	504650.3	6601092.5	1829.4	-60	115	353
			GNDD176	504734.7	6600655.9	1813.5	-60	115	350
			GNDD177	504761.8	6601481.8	1836.2	-60	115	160
			GNDD178	504626.0	6600177.0	1823.3	-60	185	145
			GNDD179	504405.5	6600183.0	1811.3	-55	170	192
			GNDD180	504653.1	6600782.2	1819.1	-60	115	341
			GNDD181	504678.0	6600330.0	1824.0	-60	160	400
			GNDD182	504666.9	6601128.9	1828.8	-60	115	337
			GNDD183	504777.0	6601519.0	1837.3	-65	115	146
			GNDD184	504672.7	6601170.3	1830.3	-60	115	321
			GNDD185	504730.7	6601408.1	1834.9	-60	115	180
			GNDD186	504738.8	6600742.2	1814.0	-60	115	208
			GNDD187	504620.9	6601547.6	1843.4	-67	115	320
			GNDD188	504658.0	6601044.8	1827.4	-60	115	280
			GNDD189	504473.0	6600105.9	1806.4	-29	115	320

16m perf rights

86.6m options 120m perf shares Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

Criteria	JORC Code explan	nation	Commentary						
			GNDD191	504600.0	6601422.7	1841.1	-70	115	260.0
			GNDD192	504618.4	6600577.7	1818.6	-60	115	260.0
			GNDD193	504689.4	6601427.3	1837.5	-60	115	293.
			GNDD194	504678.0	6600330.0	1824.0	-60	140	300.
			GNDD196	504638.4	6600391.9	1821.4	-60	115	296.
			GNDD197	504860.8	6601484.0	1831.5	-68	350	72.
			GNDD198	504789.3	6601248.3	1828.3	-60	115	161.
			GNDD199	504812.0	6601476.0	1834.9	-56	350	266.
			GNDD201	504307.8	6599795.7	1800.0	-65	115	170.
			GNRC052	504443.927	6599554.145	1790.676	-60	115	
			GNRC053	504452.888	6599589.416	1791.660	-60	115	
			GNRC054	504458.908	6599679.484	1794.408	-60	115	
			GNRC055	504461.566	6599726.253	1795.888	-60	115	1
			GNRC056	504463.187	6599763.817	1796.276	-60	115	1
			GNRC057	504453.440	6599901.106	1800.270	-60	115	
			GNRC058	504716.992	6600488.640	1825.624	-60	115	1
			GNRC059	504785.101	6600721.845	1817.042	-60	115	
			GNRC061	504963.888	6601521.567	1835.635	-60	115	
			GNRC062	504943.260	6601531.855	1834.917	-60	115	
			GNRC063	504914.884	6601499.583	1833.781	-60	115	
			GNRC064	504895.067	6601472.101	1833.039	-60	115	
			GNRC065	504865.673	6601481.570	1831.536	-60	115	
			GNRC066	504896.480	6601506.894	1834.226	-60	115	
			GNRC067	504911.268	6601541.124	1836.127	-60	115	
			GNRC068	504990.546	6601552.694	1835.287	-60	030	1
			GNRC069	504934.855	6601579.782	1836.179	-60	115	1
			GNRC070	504925.545	6601566.505	1835.127	-60	350	
			GNRC071	504878.397	6601572.030	1833.873	-60	350	
			GNRC072	504877.872	6601568.814	1833.843	-70	350	
			GNRC075	504842.742	6601573.984	1835.428	-60	350	

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

Cha ACN ASX: CEL

86.6m options

120m perf shares

1205 Hay Street

West Perth WA 6005

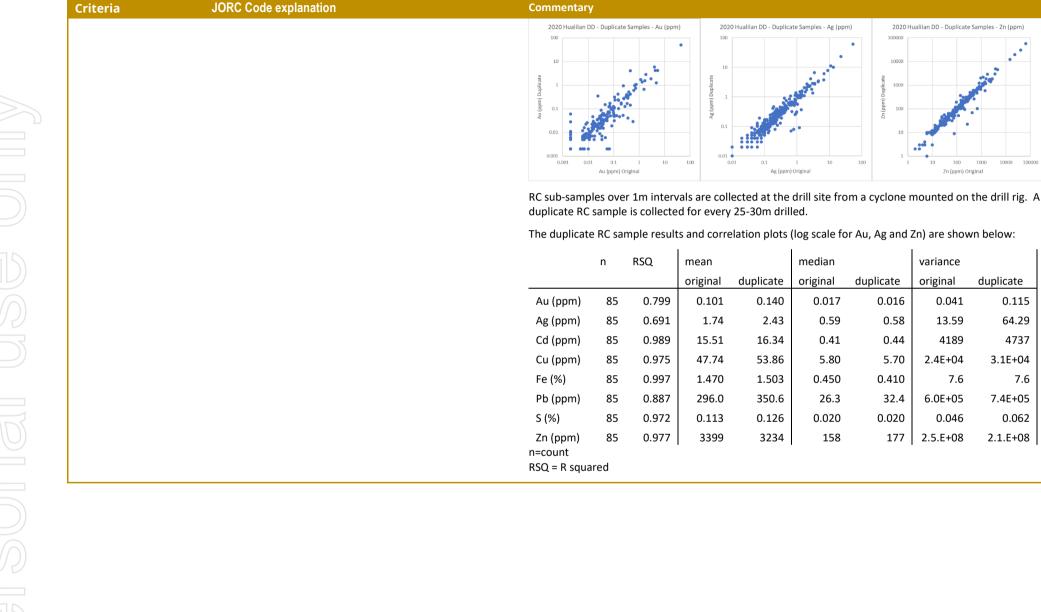
 $\overline{(7)}$

Criteria	JORC Code explanation	Commentary						
		GNRC076	504828.279	6601539.638	1835.244	-60	115	76
		GNRC078	504842.744	6601450.106	1830.180	-60	115	70
		GNRC080	504864.734	6601560.758	1834.333	-60	115	86
		GNRC081	504815.835	6601460.850	1832.033	-73	115	86
		GNRC084	504965.730	6601530.280	1836.056	-55	030	145
		GNRC086	504838.724	6601402.481	1829.645	-60	115	60
		GNRC087	504858.585	6601345.400	1828.417	-60	115	30
		GNRC090	504821.284	6601359.986	1829.379	-60	115	60
		GNRC091	504789.111	6601376.410	1830.448	-60	115	80
		GNRC094	504852.454	6601307.187	1827.304	-60	115	60
		GNRC097	504831.396	6601289.723	1827.153	-60	115	70
		GNRC098	504784.865	6601253.409	1827.869	-76	115	96
		GNRC104	504780.186	6601228.313	1827.663	-64	115	150
		GNRC107	504623.1	6600197.1	1823.3	-60	185	120
		GNRC110	504502.0	6600107.0	1814.0	-62	90	60
		GNRC111	504427.8	6599739.8	1796.4	-60	115	120
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	•	ed into wooden boxe run. These depths ar	,	•			
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	Triple tube drillir	ng has been being do	one by CEL to maxim	nise core recov	ery.		
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	kg sub-samples is every 25-30 sam	are collected from a s collected for each r ples using a riffle spl sure sample recovery	metre of RC drilling. itter to split out a 2	Duplicate san -4 kg sub-samp	nples are t	aken at the r	ate of I
		whereby low rec available to more fracturing in the	onship has been obse overies have resulte e accurately quantify rock. A positive corr erally post mineral a	d in underreporting this. Core recover relation between re	of grade. Insu y is influenced covery and RQ	fficient inf by the inte D has beer	ormation is r ensity of natu n observed.	ot yet ural
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies 	core photograph	available for most o s from the historic d ect. No RC sample c	rilling have been fo	und. No drill c			

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentar	y							
	 and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	structure to work. RC dr	a level II chips Geolo	that is suita s are logged ogical loggir	able for geo I for geolog ng is done in	logical mode y, alteration n MS Excel ir	elling resour and minera a format tl	g lithology all rce estimation lisation. Whe nat can readil	n and metall ere possible	lurgical test logging is
<i>Sub-sampling techniques and sample preparation</i>	 If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	split using a the drill core Sample inter lengths aver samples has From hole G duplicate dia (log scale for Au (ppm) Ag (ppm) Cd (ppm) Cu (ppm) Fe (%)	wide b where vals ar age 1.3 been r NDD07 mond	lade chisel e the saw cu re selected l 88m. No se retained in t 73, duplicate core sampl	or a manua ut is to be m based on lit cond-half co the core tra e diamond es are ¼ co	l core split p hade to ensu hology altera ore samples ys for future core samples. re samples.	ress. The go re half-core ation and m have been s reference. s have been	sampling of eologist loggin sample repre- ineralization submitted. Th collected for ore sample re duplicate 0.008 0.19 0.17 3.35 1.445 15.0	ng the core i esentivity. boundaries. ne second ha every 25-30	indicates of Sample alf of the co Om drilled.
		Pb (ppm) S (%)	288	0.994	0.409	0.401	0.080	0.080	1.867	1.68
		Zn (ppm) n=count RSQ = R squa The correlat provides at F	on for			677 1 pair, where	83 e Cu results	79 vary significa	2.3.E+07 ntly. Remov	1.6.E+C ving this ou

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office


Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

17

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

658.2m shares 86.6m options 120m perf shares 16m perf rights

Issued Capital

Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com 10000 100000

0.115

64.29

4737

7.6

0.062

Quality of assay data and laboratory tests-The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.The MSA laboratory used for sam (Exploration Manager) and Sergi procedures are consistent with i The ALS laboratory in Mendozal Internal laboratory standards we CEL submit blank samples (cobb both the MSA laboratory and the immediately after samples that immediately after samples that or quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack ofThe sample preparation. The sam mineralization present in the Pro- Sample sizes are appropriate for The MSA laboratory used for sam (Exploration Manager) and Sergi procedures are consistent with i The ALS laboratory in Mendozal Internal laboratory standards we CEL submit blank samples (cobb both the MSA laboratory and the immediately after samples that immediately after samples during or contamination proce	Quality of assay data and laboratory tests - The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - The NASA laboratory used for sare (Exploration Manager) and Sergi procedures are consistent with i The ALS laboratory undersa we analysis including instrument make and model reading times calibrations factors applied and their derivation etc. - The MASA laboratory used for sare (Exploration Manager) and Sergi procedures are consistent with i The ALS laboratory used for sare (Exploration Manager) and Sergi procedures are consistent with i The ALS laboratory used for sare (Exploration Manager) and Sergi procedures are consistent with i The ALS laboratory and the model reading times calibrations factors applied and their derivation etc. - Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) - CEL submit blank samples (cobbl) both the MSA laboratory and the immediately after samples that to repartice not at mainten procedure is adopted (eg standards blanks duplicates external laboratory checks)	Criteria	JORC Code exp	lanation	Comme	ntary
Quality of assay data and laboratory testsThe nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.The MSA laboratory used for sar (Exploration Manager) and Sergi procedures are consistent with i The ALS laboratory in Mendozal Internal laboratory standards we CEL submit blank samples (cobb both the MSA laboratory and the immediately after samples that preparation contamination proc contamination proc	Quality of assay data and laboratory testsThe nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.The MSA laboratory used for sar (Exploration Manager) and Sergi procedures are consistent with i The ALS laboratory in Mendoza H Internal laboratory standards were cell submit blank samples (cobble both the MSA laboratory and the immediately after samples that to preparation contamination proce ontamination proce				CEL sam	Des have been submitte ble preparation. The sam
data and laboratory testsand laboratory procedures used and whether the technique is considered partial or total.(Exploration Manager) and Sergi procedures are consistent with i 	data and laboratory testsand laboratory procedures used and whether the technique is considered partial or total.(Exploration Manager) and Sergi procedures are consistent with it The ALS laboratory in Mendoza H Internal laboratory standards we CEL submit blank samples (cobbl both the MSA laboratory and the immediately after samples that we preparation contamination proce ontamination procedata and laboratory testsand laboratory procedures used and whether the technique is considered partial or total.(Exploration Manager) and Sergi procedures are consistent with it The ALS laboratory in Mendoza H Internal laboratory standards we CEL submit blank samples (cobbl both the MSA laboratory and the immediately after samples that we preparation contamination proce contamination proce contamination proce contamination proce				Sample	sizes are appropriate for
 analysis including instrument make and model reading times calibrations factors applied and their derivation etc. Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of 	analysis including instrument make and model reading times calibrations factors applied and their derivation etc. - Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of	data and labor	atory and laborato technique is	ry procedures used and whether th considered partial or total.	e (Explora procedu	tion Manager) and Sergio res are consistent with in
			analysis inclu times calibra - Nature of qu standards blo and whether	Iding instrument make and model i tions factors applied and their deri ality control procedures adopted (e anks duplicates external laboratory acceptable levels of accuracy (i.e.)	reading vation etc. CEL subr g both the checks) preparat	nit blank samples (cobble MSA laboratory and the ately after samples that v tion contamination proce
		Challenger Exploration Limited ACN 123 591 382 ASX: CEL	Issued Capital 658.2m shares 86.6m options	Australian Registered Office Level 1 1205 Hay Street	Directors Mr Kris Knauer, MD and Mr Scott Funston, Finar	ice Director E: admin@challe

0.01 0.01 0.1 10 0.01 0.1 1 10 100 10 100 1000 Au (ppm) Original Ag (ppm) Original Zn (ppm) Original ples have been submitted to the MSA laboratory in San Juan and the ALS laboratory in Mendoza ple preparation. The sample preparation technique is considered appropriate for the style of ization present in the Project. sizes are appropriate for the mineralisation style and grain size of the deposit.

2020 Hualilan RC - Duplicate Samples - Ag (ppm)

100

Vg (pp

T: +61 8 6380 9235

E: admin@challengerex.com

Mr Fletcher Quinn, Chairman

2020 Hualilan RC - Duplicate Samples - Zn (ppm

10000 100000

100000 10000 1000

A laboratory used for sample preparation in San Juan has been inspected by Stuart Munroe ition Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory ires are consistent with international best practice and are suitable for samples from the Project. laboratory in Mendoza has not yet been inspected by CEL representatives.

laboratory standards were used for each job to ensure correct calibration of elements.

mit blank samples (cobble and gravel material from a quarry nearby to Las Flores San Yuan) to MSA laboratory and the ALS laboratory which were strategically placed in the sample sequence ately after samples that were suspected of containing high grade Au Ag Zn or Cu to test the lab tion contamination procedures. The values received from the blank samples suggest rare cross ination of samples during sample preparation.

www.challengerex.com

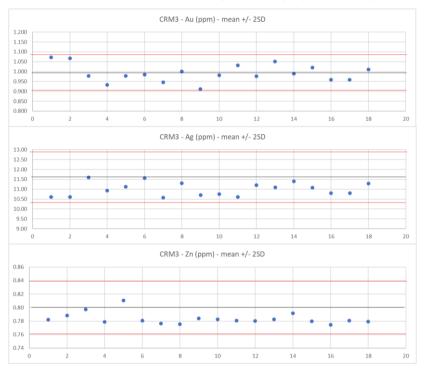
120m perf shares

16m perf rights

West Perth WA 6005

Criteria	JORC Code explanation	Commentary
		Blank (gravel) - MSA (San Juan) - Au (ppm)
		0.40
		Blank (gravel) - MSA (San Juan) - Ag (ppm)
		150
		1.00
		0 50 100 150 200 250
		Blank (gravel) - MSA (San Juan) - Zn (ppm)
		2000
		1500
		500
		0 50 100 150 200 250
		Blank (gravel) - ALS (Mendoza) - Au (ppm)
		1.00
		0.80
		020
		Blank (gravel) - ALS (Mendoza) - Ag (ppm)
		200
		1.50
		0.50
		0.00 50 100 150 200 250
		Blank (gravel) - ALS (Mendoza) - Zn (ppm)
		2000
		1500
		1000
		500
		For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard
		Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted

ACN 123 591 382 ASX: CEL


658.2m shares 86.6m options 120m perf shares 16m perf rights

Level 1 1205 Hay Street West Perth WA 6005 Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

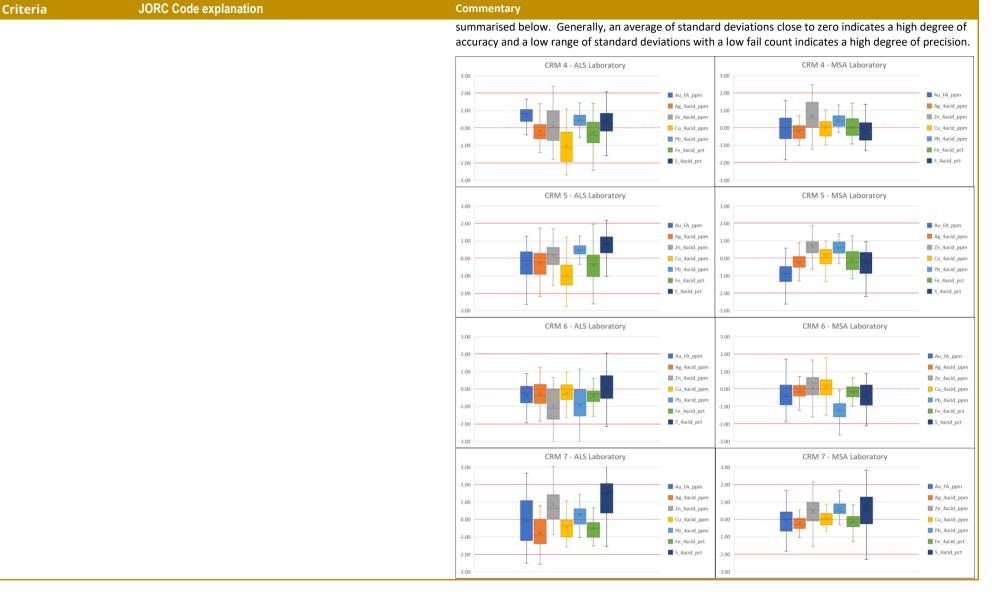
JORC Code explanation

Commentary

samples of drill core to test the precision and accuracy of the analytic procedures and determination of the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . 26 reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned an Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned an Au value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value > 2SD above the certified value. All other analyses are within 2SD of the expected value. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed.

For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures of both the MSA and ALS. In the results received to date there has been no observed bias in results of the CRM. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed. A summary of the standard deviations from the expected values for CRM's used is

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

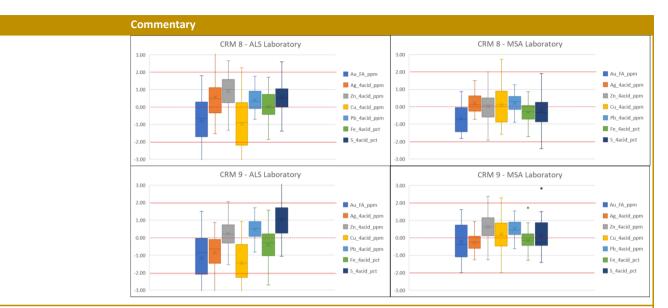

Criteria

Issued Capital 658.2m shares 86.6m options 120m perf shares

16m perf rights

Australian Registered Office Level 1 1205 Hay Street

1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman



Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares

16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

Criteria

The verification of significant intersections by either independent or alternative company personnel.

The use of twinned holes. -

JORC Code explanation

Documentation of primary data entry procedures data verification data storage (physical and electronic) protocols.

Discuss any adjustment to assay data. -

Repeat sampling of 186 coarse reject samples from 2019 drilling has been done to verify sampling. Original samples were from the 2019 DD drilling which were analysed by MSA (San Juan preparation and Vancouver analysis). Repeat samples were analysed by ALS (Mendoza preparation and Vancouver analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate very closely with the original analyses providing a high confidence in the sample preparation and analysis from MSA and ALS. A summary of the results for the 186 sample pairs for key elements is provided below:

	Mean		Median		Std Devia	ation	
Element	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient
Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972
Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903
Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997
Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994
Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997
S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987
Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights

-

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

Criteria	JORC Code explanation	Commentary											
		As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983				
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994				
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954				
		Cd values >1000 are set at REE is the sum off Ce, La, S		s set at 50	0. Below	detectior	is set at ze	ero					
		CEL have sought to twin so analysis of the twin holes I GNDD003 – DDH34 and 04 GNRC110 – DDH53 GNDD144 – 05HD39 GNRC107 – GNDD008/008	nas yet to be co HD08				sults of pre	evious exp	loration. A				
		Final sample assay analyse backed-up and the data co						-	files are				
		Assay results summarised figures. No assay data hav		•		een roun	ded approj	oriately to	2 significan				
<i>Location of data points</i>	- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys) trenches mine workings and other locations used in Mineral Resource estimation.	Following completion of d Argentinian SGM survey. WGS84 UTM zone 19s.	-		-		-	-) relative into the				
	 Specification of the grid system used. Quality and adequacy of topographic control. 	The drill machine is set-up on the drill pad using hand-held equipment according to the proposed hole design.											
		Diamond core drill holes are surveyed at 30-40m intervals down hole using a Reflex tool. RC dr are surveyed down hole every 10 metres using a gyroscope to avoid magnetic influence from th rods.											
		All current and previous di surveyed using DGPS to pr				-	gic surface	ooints hav	e been				
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve 	No regular drill hole spacir spacing is being applied to to check previous explorat establish controls on mine	infill and exten ion, extend min	sion drilli eralisatio	ng where on along st	appropria rike, and	ate. The cu provide so	rrent drilli me inform	ing is design nation to				

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

ed Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	estimation procedure(s) and classifications applied.	2012 reporting standards has been made at this time.
	- Whether sample compositing has been applied.	Samples have not been composited.
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which 	As far as is currently understood the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation.
geological structure	 this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	- The measures taken to ensure sample security.	Samples were under constant supervision by site security, senior personnel and courier contractors prior to delivery to the preparation laboratory in San Juan or Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

I Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary						
<i>Mineral tenement and land tenure status</i>	 Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings. 	The current Hualilan project comprises 15 Minas (equivalent of mining leases) and 2 Demasias (mining lease extensions). This covers approximately 4 km of strike and includes all of the currently defined mineralization. There are no royalties on the project. CEL is earning a 75% interest in the Project by funding exploration to a Definitive Feasibility Study (DFS). Granted mining leases (Minas Otorgadas) at the Hualilan Project						
	- The security of the tenure held at the time of	Name	Number	Current Owner	Status	Grant Date	Area (ha)	
	reporting along with any known impediments to obtaining a licence to operate in the area.	Cerro Sur						
	5 1	Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
		Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
		Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
		Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
		Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
		Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
		Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
		Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
		Cerro Norte						
		La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
		La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights

Level 1

Australian Registered Office 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

		_					
		D)	\mathbf{c}	Coo	le exp	ana	lior
ria	50	к	6	600	е ехо		чот

Crite

Commentary					
Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Mining Lease extensions (Demasias) at the Hualilan Project

Name	Number	Current Owner	Status	Grant date	Area (ha)
Cerro Sur					
North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	05/12/2014	1.9
Cerro Norte					
South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	05/12/2014	1.9

Additional to the Minas and Demasias an application for an Exploration Licence covering 26 km2 surrounding the 15 Minas has been accepted by the San Juan Department of Mines and is currently being processed.

Exploration licence application surrounding the Minas and Demasias at the Hualilan Project

Name	Number	Status	Grant Date	Expiry Date	Area (ha)
Josefina	30.591.654	Pending	-	5 year application	2570

There are no know impediments to obtaining the exploration license or operating the Project.

Intermittent sampling dating back over 500 years has produced a great deal of information and data including sampling geologic maps reports trenching data underground workings drill hole results geophysical surveys resource estimates plus property examinations and detailed studies by several geologists. Prior to the current exploration no work has been completed since 2006.

There is 6 km of underground workings that pass through mineralised zones. Records of the underground

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 658.2m shares 86.6m options 120m perf shares

16m perf rights

other parties.

-

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Acknowledgment and appraisal of exploration by

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Exploration done

by other parties

Criteria	JORC Code explanation	n	Commentary				
				ently being compiled and digitised as are sample data geological mapping trench ole results. Geophysical surveys exist but have largely yet to be check located and			
			o ,	: (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key nd sampling results are listed below.			
			 1995 - Plata Mining Li 1998 - Chilean consu channel sampling 1999 - Compania Mir program 2003 - 2005 - La Mar Detailed resource est (1999 revised 2000) b 2006. The collection of all e 	inel sampling & 16 RC holes (AG1-AG16) totalling 2040m (mited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1500 samples (ting firm EPROM (on behalf of Plata Mining) systematic underground mapping and heral El Colorado SA ("CMEC") 59 core holes (DDH-20 to 79) plus 1700m RC (hcha (TSE Listed) undertook 7447m of DDH core drilling (HD-01 to HD-48) (imation studies were undertaken by EPROM Ltda. (EPROM) in 1996 and CMEC (both of which were written to professional standards and La Mancha 2003 and (xploration data by the various operators was of a high standard and had techniques intervals and custody procedures were used.			
Geology			Mineralisation occurs in all rock types where it preferentially replaces limestone, shale and sandstone and occu in fault zones and in fracture networks within dacitic intrusions.				
			Au-Ag mineralisation. It has b	usly been classified as a Zn-Cu distal skarn (or manto-style skarn) with vein-hosted een divided into three phases – prograde skarn retrograde skarn and a late quartz- the hydrothermal system and mineral paragenesis is the subject of more detailed			
				as inclusions with sulphide and pyroxene. The mineralisation also commonly phalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.			
			dacitic intrusions, at lithology bedding at a high angle. The f	I to bedding in bedding-parallel faults, in veins or breccia matric within fractured contacts or in east-west striking steeply dipping siliceous faults that cross the aults have thicknesses of 1–4 m and contain abundant sulphides. The intersection mineralisation and east-striking cross veins seems to be important in localising the			
Drill hole Information	understanding of th	ormation material to the e exploration results including a lowing information for all	equivalent (calculated using a	sections have been reported by previous explorers. A cut-off grade of 1 g/t Au price of US\$1,300/oz for Au, \$15/oz for Ag and \$2,500/t. for Zn) has been used on or a cut-off grade of 0.2 g/t Au equivalent and up to 4m of internal diltion has			
Illenger Exploration Limited N 123 591 382 CEL	Issued Capital 658.2m shares 86.6m options 120m perf shares	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman	Contact T: +61 8 6380 9235 E: admin@challengerex.com			

16m perf rights

	Criteria	JORC Code explanation		Comment	tary						
		Material drill holes: - easting and northing of th	e drill hole collar	been allow previous s		ircial or reco	overy factors have	e been used.	Drill collar lo	cation is provided in	າ the
		- elevation or RL (Reduced L			Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)	
		level in metres) of the drill			AG16	38.6	1.2	0.1	28.6	1.7	
		- dip and azimuth of the hol			MG10	108.0	3.0	1.3	No assay	No assay	
		- down hole length and inte	rception depth		DDH36	24.7	9.3	1.6	46.3	1.2	
		- hole length.			DDH53	17.3	1.4	1.0	1.7	0.00	
		- If the exclusion of this info			DDH53	24.0	8.9	3.7	239.5	0.03	
		basis that the information			DDH53	35.7	3.9	3.9	87.8	0.06	
			from the understanding of		DDH53	41.0	3.0	2.6	7.6	0.20	
		the report the Competent			DDH54	20.0	1.1	1.2	0.7	0.00	
		explain why this is the case	2.		DDH54	31.1	8.3	3.9	32.1	0.80	
					DDH65	62.0	8.2	11.0	60.6	1.2	
					DDH65	82.0	1.0	1.8	33.4	0.30	
					DDH66	83.1	7.2	23.7	42.9	2.4	
					DDH66	87.9	2.4	69.9	114.4	2.2	
					DDH66	104.9	2.8	1.8	29.0	0.10	
					DDH67	98.7	1.3	0.2	7.8	1.3	
					DDH68	4.0	17.9	2.2	6.3	0.20	
					DDH68	73.7	0.5	0.8	9.0	1.2	
					DDH69	4.0	16.1	2.3	1.6	0.10	
					DDH69	76.9	0.3	0.1	7.0	28.0	
					DDH69	79.7	0.8	1.3	120.0	4.5	
					DDH70	84.0	7.0	5.2	13.5	0.70	
					DDH71	11.0	2.0	0.5	218.0	0.06	
					DDH71	39.9	1.0	1.3	6.0	0.03	
					DDH71	45.5	1.1	0.4	22.8	0.60	
					DDH71	104.0	10.0	33.5	126.7	7.9	
					DDH72	26.0	11.7	3.8	14.1	1.3	
					DDH72	52.7	6.3	1.5	30.4	0.04	
					DDH73	62.5	3.5	0.5	15.6	0.60	
					DDH74	119.9	0.5	7.3	98.5	2.6	
					DDH76	61.3	0.7	4.0	11.1	0.50	
					DDH76	74.4	4.0	0.8	8.8	0.30	
					DDH76	84.8	1.2	1.4	10.9	2.0	
					DDH78	109.1	0.7	1.1	13.4	1.9	
					03HD01A	90.1	1.7	2.1	37.4	2.4	
A	Challenger Exploration Limited ACN 123 591 382 ASX: CEL	Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Mr Scott F	auer, MD and CEO unston, Finance Direc er Quinn, Chairman		ct 8 6380 9235 iin@challengerex.com				

Criteria	JORC Code explanation		Commentary						
			03HD03	55.0	2.4	2.5	25.6	2.3	
			04HD05	80.3	2.0	0.9	42.7	0.02	
			04HD05	97.5	1.8	1.9	35.0	0.04	
			04HD05	102.0	1.0	1.3	42.1	0.01	
			04HD05	106.0	1.0	0.7	28.0	0.05	
			04HD05	108.0	5.6	2.8	19.9	1.2	
			04HD06	65.4	1.2	46.6	846.0	0.50	
			04HD06	75.0	1.0	1.0	2.9	0.01	
			04HD06	104.5	7.6	1.8	5.0	1.2	
			04HD06	115.1	0.9	16.4	23.1	7.7	
			04HD07	98.3	2.2	1.4	32.5	0.90	
			04HD10	44.3	0.2	3.9	81.5	5.6	
			04HD10	55.5	0.5	1.3	11.5	0.46	
			04HD10	78.6	1.7	4.8	93.7	2.4	
			04HD11	28.0	1.0	0.1	9.3	1.4	
			04HD12	49.3	0.7	1.5	16.1	0.10	
			04HD13	61.5	1.0	0.8	7.9	0.20	
			04HD15	103.7	0.3	1.7	32.9	0.80	
			04HD16C	107.5	6.8	8.6	117.1	9.1	
				111.8	2.5	7.6	75.6	11.5	
			04HD16C	144.9	1.9	9.1	31.2	5.5	
				171.1	0.4	0.5	9.4	1.7	
				134.9	0.7	2.5	14.3	4.1	
			04HD17	139.1	0.5	10.5	9.4	0.20	
			04HD17	199.6	0.2	0.8	3.5	5.9	
			04HD17	202.1	1.9	4.5	1.5	0.70	
			04HD20	43.2	1.8	0.9	83.9	0.20	
			04HD21	70.1	0.2	4.8	60.6	6.4	
			04HD21	141.1	0.6	12.9	105.0	4.8	
			04HD24	72.0	2.0	2.5	3.2	0.04	
			04HD24	83.0	2.0	3.1	25.3	0.04	
			04HD24	94.0	4.2	0.7	21.2	0.10	
			04HD25	92.0	1.7	2.4	51.5	6.3	
			04HD26	21.7	2.3	1.5	32.5	3.0	
			04HD28	42.8	0.4	1.9	4.5	0.10	
			04HD29	37.0	1.0	0.1	112.0	0.01	
			05HD42	90.5	1.0	1.9	6.1	0.03	
lenger Exploration Lin 123 591 382	nited Issued Capital 658.2m shares	Australian Registered Office Level 1	Directors Mr Kris Knauer, MD and CEO	Contact T: +61 8 6380 9	0225				
CEL	86.6m options	Level 1 1205 Hay Street West Perth WA 6005	Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Eletcher Quipp, Chairman	E: admin@chal					

Mr Fletcher Quinn, Chairman

www.challengerex.com

120m perf shares

16m perf rights

West Perth WA 6005

Criteria	JORC Code explanation	Commentary					
		05HD42	115.0	3.0	29.0	103.1	0.20
		05HD43	69.0	1.0	1.8	2.3	0.01
		05HD43	81.0	3.0	2.8	51.5	0.50
		05HD43	90.7	2.3	1.4	29.6	0.30
		05HD44	87.5	1.1	3.8	3.4	0.01
		05HD44	91.2	1.4	0.0	3.6	2.8

From GNDD001 the following significant assay results have been received reported to a cut-off of 1.0 g/t AuEq (gold equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.

Drilling in 2019:

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	
GNDD001	10.00	27.00	0.94	4.9	0.33	1.1	(2)
inc	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	5.00	31.00	0.74	2.7	0.67	1.1	
and	3.00	81.50	3.1	8.6	5.8	5.7	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)
GNDD004	20.50	5.50	1.1	5.3	0.45	1.4	(2)
inc	8.47	6.03	2.0	7.8	0.68	2.4	
and	3.43	18.67	1.2	3.2	0.26	1.3	
GNDD005	19.00	29.00	1.3	8.1	0.62	1.6	(2)
inc	2.00	29.00	0.79	18	3.3	2.5	
and	4.00	43.00	5.1	22	0.49	5.6	
and	7.00	59.00	7.8	72	1.4	9.3	
inc	3.00	61.00	16.5	135	1.6	18.9	(1)
and	10.00	75.00	0.75	38	0.27	1.4	(2)
inc	3.00	77.00	1.7	39	0.43	2.3	
inc	1.00	83.00	1.2	156	0.72	3.5	
GNDD006	6.50	78.50	4.2	21	0.29	4.6	
inc	3.80	78.50	6.8	34	0.41	7.4	
and	1.45	90.00	2.1	41	0.92	3.1	
GNDD007	45.92	13.00	0.43	7.8	0.12	0.58	(2)
inc	3.00	45.00	1.9	5.2	0.26	2.0	
inc	3.00	55.00	2.3	35	0.54	2.9	
GNDD007A	27.00	25.00	0.43	7.2	0.09	0.56	(2)
inc	1.80	46.00	2.4	3.1	0.12	2.5	

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares

16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

Criteria	JORC Code explanation	n	Commentary									
			and	0	.70 6	50.30	C).8	25	0.21	1.	
			and	6	.70 14	19.00	14	1.3	140	7.3	19.	3
			inc	3	.06 15	50.60	27	7.5	260	12.9	36.	5 (1)
			and	0	.60 17	76.40	1	L.9	6.7	0.99	2.	4
			GNDD008	35	.50 1	L6.50	0.	33	8.1	0.10	0.4	7 (2)
			inc	1	.00 3	36.00	1	L.7	6.2	0.08	1.	9
			inc	1	.63 4	13.37	1	L.7	8.4	0.14	1.	9
			inc	1	.15 4	17.85	1	L.2	16	0.56	1.	7
			and	5	.70 9	91.00	12	2.3	182	0.67	15.	0 (1)
			and	1	.00 9	9.70	0.	93	43	0.52	1.	7
			and	2	.40 10	07.00	6	5.3	222	1.9	10.	0
			GNDD008A	35	.50 1	17.50	0.	24	13	0.08	0.4	• •
			and	20	.00 9	95.00	3	3.3	45	0.55	4.	
			inc	2	.64 9	96.60	22	2.8	218	0.68	25.	• •
			inc	10	.00 10)5.00	C).6	28.2	0.71	1.	2
			GNDD009	7		2.00	2	2.3	102	0.08	3.	6
			and	3	.00 10	00.00	0.	85	50	0.02	1.	5
			and	10	.32 10	9.10	10).4	28	4.6	12.	7
			inc	4	.22 11	15.20	21	L.9	58	8.7	26.	• •
			GNDD010	32	.00 2	27.00	0.	29	8.6	0.13	0.4	6 (2)
			inc	5	.00 3	30.00	0.	65	21	0.09	0.9	5
			and			55.00	1	l.1	30	0.80	1.	8
			and	7	.22 13	36.00		7.5	60	1.1	8.	8 (2)
			inc	3	.00 13	89.00	17	7.7	143	2.5	20.	6
			(2) cut-off Drilling in 2020:	of 10 g/t Au of 0.2 g/t Au	JEq							
			Hole_id	from	interval	Au	Ag	Zn (%)	AuEq	Cu (%)	Pb (%)	Note
				(m)	(m)	(g/t)	(g/t)	0.42	(g/t)	0.01	0.00	
			GNDD011	81.00	1.00	1.9	43	0.13	2.5	0.01	0.06	
			and	139.80	4.80	1.4	5.7	2.6	2.6	0.02	0.02	
			and	147.20	0.70	9.4	13	6.6	12.4	0.07	0.00	1
			and	151.40	0.50	1.2	5.5	0.25	1.4	0.00	0.00	
			GNDD012	40.70	1.00	6.3	290	0.12	10.1	0.18	1.2	
			GNDD013	116.40	6.93	1.3	12	2.7	2.6	0.05	0.18	
Illenger Exploration Limite 123 591 382 : CEL	d Issued Capital 658.2m shares 86.6m options 120m perf shares	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Mr Kris Knauer, MD Mr Scott Funston, Fi Mr Fletcher Quinn, (inance Director		6380 9235 i@challeng	erex.com					

www.challengerex.com

Criteria	JORC Code explanation		Commentary									
			inc	122.50	0.83	4.0	61	10.1	9.1	0.21	1.2	
			GNDD014	118.50	7.55	2.4	15	3.6	4.2	0.05	0.16	
			GNDD015	54.00	1.00	0.69	8.6	0.39	1.0	0.03	0.24	
			and	156.00	1.90	1.0	31	2.8	2.6	0.02	0.79	
			GNDD016	64.00	1.00	0.80	27	0	1.1	0.02	0.06	
			and	109.50	5.00	1.8	27	8.3	5.8	0.16	0.01	
			and	116.55	4.45	6.0	83	3.9	8.8	0.13	0.02	
			GNDD017	34.30	1.7	0.31	24	2.0	1.5	0.06	1.0	
			GNDD018	37.75	0.85	1.1	3.6	0.1	1.2	0.01	0.05	
			and	63.20	3.75	7.1	78	3.6	9.6	0.28	3.6	
			inc	64.40	2.55	10.3	114	4.9	13.9	0.41	5.2	1
			GNDD019	24.00	1.90	1.0	5.3	5.3	3.4	0.12	0.03	
			GNDD020	71.25	8.25	17.7	257	0.30	21.1	0.60	0.68	
			inc	74.00	5.50	26.0	355	0.42	30.7	0.05	0.21	1
			and	83.30	0.65	0.03	2.7	10.70	4.7	0.00	0.02	
			GNDD021	14.80	1.20	11.0	9.0	0.39	11.3	0.01	0.08	1
			and	31.50	0.35	28.1	104	5.8	31.9	0.35	0.12	1
			and	98.20	19.80	0.29	2.2	3.4	1.8	0.01	0.04	2
			inc	98.20	9.80	0.40	4.4	6.8	3.4	0.01	0.07	
			inc	104.20	0.80	0.88	13	22.7	10.9	0.02	0.30	1
			GNDD022	NSI								
			GNDD023	58.00	5.00	0.32	3.7	0.1	0.41	0.01	0.09	
			GNDD024	85.00	6.00	2.5	19	0.15	2.8	0.40	1.4	
			inc	88.00	1.00	14.9	107	0.46	16.5	2.4	8.3	1
			GNDD025	53.00	88.00	0.94	2.3	0.10	1.0	0.00	0.08	2
			inc	61.00	14.00	3.1	5.3	0.19	3.2	0.01	0.11	
			inc	79.00	11.00	1.3	4.1	0.16	1.4	0.00	0.25	
			inc	93.00	1.00	1.1	2.5	0.09	1.1	0.00	0.37	
			inc	113.00	2.00	1.2	4.4	0.02	1.2	0.00	0.01	
			inc	139.00	2.00	0.99	0.50	0.01	1.0	0.00	0.00	
			GNDD026	NSI								
			GNDD027	NSI								
			GNDD028	41.40	18.60	0.21	3.2	2.0	1.1	0.08	0.01	2
			inc	52.00	8.00	0.42	6.0	3.8	2.2	0.18	0.02	
			GNDD029	36.00	12.00	0.17	2.1	0.39	0.36	0.01	0.16	2
			GNDD030	33.00	3.00	0.95	53	0.05	1.6	0.01	0.05	
			GNDD031	32.00	28.00	0.43	5.7	0.15	0.56	0.01	0.04	2
allenger Exploration Lim N 123 591 382 (: CEL	nited Issued Capital 658.2m shares 86.6m options	Australian Registered Office Level 1 1205 Hay Street	Directors Mr Kris Knauer, I Mr Scott Funstor	n, Finance Director		5380 9235 @challeng	erex.com					

West Perth WA 6005

16m perf rights www.challengerex.com

120m perf shares

Criteria	JORC Code explanation		Commentary									
			inc	48.00	1.10	3.3	17	0.34	3.7	0.02	0.33	
			inc	53.00	1.00	4.2	54	0.92	5.3	0.12	0.22	
			GNDD032	9.00	20.00	0.16	6.7	0.09	0.29	0.00	0.02	2
			and	49.00	116.00	1.05	4.0	0.20	1.2	0.01	0.07	2
			inc	77.00	3.00	0.93	33.7	2.1	2.3	0.09	0.02	
			and	101.00	10.00	6.1	18.1	0.11	6.4	0.04	0.47	
			inc	101.00	6.00	9.6	18.7	0.15	9.9	0.05	0.61	1
			and	136.00	4.00	9.8	18.5	1.5	10.7	0.06	0.27	
			GNDD033	NSI								
			GNDD034	47.60	0.30	0.03	1.4	24.4	10.6	0.34	0.04	
			GNDD035	88.75	5.75	9.5	28.7	3.5	11.4	0.10	0.44	
			inc	88.75	3.15	17.1	28.8	5.6	19.9	0.14	0.56	1
			GNDD036	NSI								
			GNDD037	NSI								
			GNDD038	71.50	2.85	0.53	15.6	2.8	1.9	0.06	0.13	
			GNDD042	NSI								
			GNDD044	NSI								
			GNDD045	85.90	2.10	1.4	28.8	0.1	1.8	0.01	0.02	
			GNDD046	82.90	0.45	4.1	27	0.06	4.5	0.01	0.03	
			and	124.15	2.85	29.5	522	10.8	40.8	0.41	0.25	1
			GNDD047	61.00	38.50	1.3	1.2	0.04	1.3	0.00	0.02	2
			inc	62.50	6.00	6.3	3.5	0.15	6.4	0.01	0.10	
			and	74.10	1.50	1.0	1.9	0.00	1.0	0.00	0.00	
			and	83.55	0.45	7.3	12.2	0.00	7.5	0.00	0.00	
			and	98.50	1.00	1.2	0.8	0.00	1.2	0.00	0.00	
			GNDD048	36.00	19.00	0.6	5.0	0.25	0.81	0.01	0.06	2
			inc	38.00	3.15	2.7	12.1	0.09	2.9	0.03	0.14	
			GNDD049	NSI								
			GNDD050	21.00	22.00	0.21	2.9	0.53	0.48	0.01	0.15	2
			inc	21.00	2.00	1.4	4.8	0.07	1.5	0.01	0.07	
			GNRC051	NSI			-	-		-	-	
			GNRC052	69	6	1.7	4.4	0.32	1.9	0.03	0.00	
			GNRC053	NSI	-			-	-			
			GNRC054	13	7	0.22	3.9	0.03	0.28	0.00	0.01	2
			and	66	15	0.53	4.0	0.66	0.87	0.01	0.13	2
			inc	77	3	1.3	8.5	1.9	2.3	0.02	0.31	
			GNRC055	18	7	0.28	6.9	0.04	0.38	0.00	0.01	2
					·							_
llenger Exploration Lin	nited Issued Capital	Australian Registered Office	Directors		Contact							
N 123 591 382 X: CEL	658.2m shares 86.6m options	Level 1 1205 Hay Street	Mr Kris Knauer, M	n, Finance Director	T: +61 8 6	5380 9235 @challeng	erex.com					

16m perf rights
www.challengerex.com

120m perf shares

Criteria	JORC Code explanation		Commentary										
			GNRC056		56	1	2.3	138	0.08	4.1	0.01	0.07	
			GNRC057		37	12	0.06	2.4	0.58	0.34	0.01	0.06	2
			GNRC058	NSI									
			GNRC059	NSI									
			GNDD060	NSI									
			GNRC061	NSI									
			GNRC062		17	3	3.8	7.9	2.7	5.0	0.24	0.17	
			GNRC063		19	1	0.01	0.46	2.8	1.2	0.04	0.01	
			GNRC064		22	1	0.01	4.2	3.8	1.7	0.00	0.00	
			and		27	1	0.69	27	1.2	1.6	0.35	0.23	
			GNRC065		33	6	0.00	2.1	4.9	2.1	0.05	0.01	
			GNRC066	NSI									
			GNRC067	NSI									
			GNRC068		9	69	3.4	8.3	2.8	4.7	0.23	0.08	2
			inc		9	27	7.9	16	7.0	11.2	0.59	0.16	
			and		51	1	1.0	40	0.93	1.9	0.08	0.12	
			and		59	1	1.3	4.9	0.09	1.4	0.00	0.02	
			and		66	2	1.6	1.2	0.02	1.7	0.01	0.00	
			and		72	4	1.9	3.0	0.06	1.9	0.01	0.04	
			GNRC069		18	7	0.62	3.0	0.11	0.71	0.01	0.16	2
			inc		19	1	2.2	8.6	0.15	2.4	0.03	0.59	
			and		53	10	0.65	5.7	0.37	0.88	0.01	0.03	2
			inc		59	3	1.7	11	0.84	2.3	0.03	0.07	
			and		84	15	0.54	2.4	0.13	0.63	0.01	0.00	2
			inc		84	4	0.90	5.2	0.36	1.1	0.02	0.01	
			and		96	1	1.0	1.4	0.06	1.0	0.03	0.00	
			GNRC070		41	1	6.6	3.1	0.36	6.8	0.02	0.21	
			GNRC071		48	2	0.45	5.4	2.1	1.4	0.01	0.12	
			GNRC072		43	19	0.16	4.9	0.13	0.28	0.00	0.09	2
			GNDD073		NSI								
			GNDD074		41	2	1.2	20.5	0.04	1.4	0.00	0.02	
			and		47	2	0.8	16.7	0.13	1.1	0.03	0.03	
			GNRC075		31	18	0.78	1.6	0.07	0.83	0.01	0.22	2
			inc		37	2	2.2	1.6	0.08	2.2	0.01	0.32	
			and		46	2	1.8	2.4	0.08	1.9	0.00	0.07	
			GNRC076		35	5	12.2	7.2	0.02	12.3	0.01	0.10	
			inc		35	1	53.1	18	0.00	53.3	0.00	0.02	1
Ilenger Exploration Limite 123 591 382	d Issued Capital 658.2m shares	Australian Registered Office Level 1	Directors Mr Kris Knauer, N	/ID and C	FO	Contact	5380 9235						

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

www.challengerex.com

86.6m options

16m perf rights

120m perf shares

1205 Hay Street

West Perth WA 6005

ASX: CEL

Criteria	JORC Code explanation		Commentary									
			GNDD077	168.50	14.00	0.68	5.9	0.64	1.0	0.01	0.01	2
			inc	168.50	1.00	1.5	59.3	6.6	5.2	0.13	0.08	
			inc	180.60	1.90	1.8	4.9	0.78	2.2	0.02	0.01	
			and	192.90	1.10	0.70	5.5	0.61	1.0	0.02	0.00	
			GNRC078	11	17	0.13	1.7	0.43	0.34	0.01	0.09	2
			inc	12	1	0.74	4.8	0.91	1.2	0.03	0.33	
			GNDD079	21.00	61.00	1.1	1.1	0.11	1.1	0.00	0.02	2
			inc	21.00	9.00	1.9	1.9	0.09	2.0	0.00	0.02	
			inc	40.00	2.00	2.7	1.7	0.08	2.8	0.00	0.06	
			inc	46.00	6.00	5.0	1.2	0.07	5.1	0.00	0.01	
			inc	74.00	3.00	1.0	0.86	0.17	1.1	0.00	0.12	
			GNRC080	NSI								
			GNRC081	23	30	0.28	2.0	0.33	0.45	0.01	0.10	2
			inc	32	5	1.0	3.6	0.73	1.4	0.01	0.20	
			GNDD082	168.00	15.00	0.68	0.39	0.04	0.70	0.00	0.01	2
			inc	168.00	1.00	2.4	0.46	0.11	2.4	0.00	0.02	
			inc	175.00	0.50	10.0	5.6	0.44	10.2	0.01	0.20	
			and	193.40	34.10	1.45	1.0	0.25	1.6	0.02	0.13	2
			inc	193.40	1.00	2.2	7.9	1.6	3.0	0.14	1.7	
			inc	203.50	0.90	2.6	10.6	2.9	4.0	0.16	1.4	
			inc	209.80	2.20	0.59	4.5	0.74	1.0	0.03	0.25	
			and	235.00	31.00	0.4	0.6	0.08	0.43	0.00	0.00	
			inc	242.50	1.50	1.0	2.1	0.21	1.1	0.01	0.01	
			GNDD083	11.00	21.00	0.22	10.0	0.15	0.41	0.00	0.01	2
			inc	19.20	1.80	1.0	6.1	0.10	1.1	0.00	0.00	
			and	170.00	1.00	1.3	3.6	0.22	1.4	0.02	0.26	
			GNRC084	4	1	1.2	2.0	0.07	1.2	0.00	0.06	
			and	41	3	5.2	6.4	5.0	7.5	0.08	0.14	
			and	60	4	3.6	11.6	5.0	6.0	0.02	0.05	
			and	78	21	0.81	2.6	0.08	0.88	0.00	0.00	2
			inc	91	1	6.7	10.7	0.42	7.0	0.01	0.00	
			and	97	2	1.6	1.2	0.03	1.6	0.01	0.00	
			and	143	2	0.67	4.9	0.87	1.1	0.00	0.01	
			GNDD085	22.50	1.30	5.47	75.6	0.08	6.5	0.01	0.09	
			and	39.30	2.20	2.11	2.4	0.55	2.4	0.01	0.24	
			GNRC086	3	21	0.38	1.5	0.33	0.55	0.01	0.08	2
			inc	4	1	0.85	3.4	0.89	1.3	0.03	0.27	
allenger Exploration Lim N 123 591 382 X: CEL	nited Issued Capital 658.2m shares 86.6m options	Australian Registered Office Level 1 1205 Hay Street	Directors Mr Kris Knauer, M Mr Scott Funston,	Finance Director		5380 9235 @challeng	erex.com					

www.challengerex.com

120m perf shares

16m perf rights

Criteria	JORC Code explanation		Commentary									
			and	22	2	2.9	1.9	0.08	3.0	0.01	0.03	
			GNRC087	22	4	0.65	15.9	0.26	1.0	0.00	0.04	
			GNDD088	45.05	23.45	0.07	0.23	0.53	0.31	0.00	0.01	2
			and	90.50	1.50	1.8	0.10	0.01	1.8	0.00	0.00	
			and	224.00	39.00	5.5	2.0	0.30	5.6	0.01	0.00	2
			incl	231.50	14.40	14.4	3.3	0.67	14.8	0.00	0.00	
			incl	238.50	7.40	23.4	5.7	1.27	24.1	0.01	0.01	1
			GNDD089	20.00	30.00	0.95	1.69	0.09	1.0	0.00	0.02	2
			inc	22.00	2.00	1.4	2.7	0.18	1.5	0.00	0.00	
			inc	30.50	1.70	2.9	2.3	0.12	3.0	0.00	0.01	
			inc	40.00	10.00	1.4	0.55	0.09	1.4	0.00	0.02	
			and	94.50	21.70	0.88	1.59	0.43	1.1	0.00	0.04	2
			inc	94.50	5.10	2.4	1.6	0.06	2.4	0.01	0.07	
			inc	102.50	1.50	1.9	1.5	0.15	2.0	0.01	0.03	
			inc	109.00	1.50	1.8	11.3	0.32	2.1	0.01	0.16	
			GNRC090	7	13	0.35	2.7	0.25	0.49	0.01	0.07	2
			inc	14	1	1.1	7.3	0.45	1.4	0.02	0.21	
			GNRC091	30	24	0.38	3.7	0.20	0.51	0.01	0.10	2
			inc	43	4	1.4	3.5	0.40	1.6	0.01	0.36	
			GNDD092	164.50	9.00	0.29	0.72	0.12	0.35	0.00	0.05	2
			and	213.00	17.00	0.23	0.63	0.06	0.26	0.00	0.04	2
			and	257.50	1.00	3.6	5.9	0.60	3.9	0.05	0.21	
			GNDD093	75.30	1.40	2.1	10.6	7.8	5.6	0.18	0.22	
			and	153.65	0.50	1.4	7.3	0.17	1.6	0.11	0.03	
			GNRC094	13	12	0.83	4.6	0.44	1.1	0.01	0.06	2
			inc	13	1	1.1	6.3	0.17	1.2	0.02	0.12	
			inc	17	- 1	8.3	20.6	0.27	8.7	0.06	0.52	
			inc	23	- 1	0.21	4.5	3.8	1.9	0.01	0.03	
			GNDD095	47.00	17.47	0.28	1.0	0.44	0.49	0.02	0.09	2
			inc	50.00	1.30	1.0	0.92	2.8	2.3	0.18	0.61	-
			and	121.00	1.00	2.6	1.7	0.01	2.6	0.00	0.00	
			GNDD096	NSI	1.00	2.0	±.,	0.01	2.0	0.00	0.00	
			GNRC097	49	8	0.39	2.2	0.04	0.44	0.00	0.02	2
			inc	49 50	1	1.1	2.2	0.04	1.2	0.00	0.02	2
			GNRC098	30 40	19	0.21	2.8 1.8	0.03	0.32	0.00	0.03	2
			and	40 88	8	4.9	4.5	0.19	5.3	0.01	0.10	2
			inc	88	2	4.9 15.6	4.5 15.9	2.8	17.0	0.02	0.20	2
			IIIC	00	2	10.0	13.5	2.0	17.0	0.07	0.20	2
			.									
lenger Exploration Lin 123 591 382 CEL	nited Issued Capital 658.2m shares 86.6m options 1.0m perf shares	Australian Registered Office Level 1 1205 Hay Street Wast Parth WA 6005	Directors Mr Kris Knauer, M Mr Scott Funston,	Finance Director		380 9235 @challeng	erex.com					

www.challengerex.com

120m perf shares

16m perf rights

Criteria	JORC Code explanation		Commentary									
			inc	94	2	2.6	1.2	0.13	2.7	0.00	0.03	
			GNDD099	53.00	2.80	0.42	19.8	2.0	1.5	0.09	0.33	
			and	64.00	0.90	3.1	9.7	0.22	3.3	0.01	0.01	
			and	101.00	1.00	2.9	64.4	0.04	3.7	0.01	0.04	
			GNDD100	NSI								
			GNDD101	NSI								
			GNDD102	36.00	11.00	0.59	3.2	0.18	0.71	0.01	0.11	2
			inc	36.00	2.00	1.5	5.9	0.13	1.6	0.01	0.14	
			and	77.40	8.90	0.10	2.5	0.82	0.49	0.01	0.06	2
			inc	84.30	0.90	-	1.3	3.3	1.4	0.02	0.03	
			GNDD103	NSI								
			GNRC104	141	1	45.6	40.0	2.6	47.2	0.25	3.4	1
			GNDD105	NSI								
			GNDD106	100.00	25.00	0.66	0.29	0.01	0.67	0.00	0.00	2
			inc	114.00	1.50	1.8	1.7	0.01	1.8	0.00	0.00	
			inc	121.00	4.00	2.6	0.34	0.01	2.6	0.00	0.00	
			and	141.35	1.05	1.2	2.8	0.84	1.6	0.01	0.01	
			and	205.00	8.00	0.48	1.0	0.02	0.50	0.00	0.00	2
			inc	211.00	2.00	1.1	2.2	0.03	1.1	0.00	0.00	
			GNRC107	16	27	3.6	14.8	0.25	3.9	0.01	0.1	2
			inc	23	1	0.17	74.4	0.07	1.1	0.01	0.1	
			inc	29	2	1.2	12.2	0.06	1.3	0.01	0.1	
			inc	35	7	13.3	12.6	0.80	13.8	0.02	0.3	
			and	52	1	0.18	73.2	0.11	1.2	0.00	0.1	
			and	93	1	0.12	51.2	3.1	2.1	0.03	0.65	
			GNDD108	NSI								
			GNDD109	NSI								
			GNRC110	11	44	2.8	62.7	0.05	3.7	0.01	0.25	2
			inc	12	1	1.7	1.0	0.00	1.7	0.00	0.04	
			inc	20	11	1.8	37.2	0.02	2.3	0.01	0.37	
			inc	36	12	8.3	190	0.12	10.7	0.02	0.51	
			inc	41	3	27.3	613	0.05	35.1	0.03	0.87	1
			GNRC111	31	18	0.31	12.2	0.13	0.52	0.01	0.03	2
			inc	33	1	1.3	59.4	0.02	2.1	0.01	0.27	
			inc	41	1	2.1	82.7	0.01	3.2	0.01	0.10	
			GNDD112	95.00	0.40	0.5	26.6	6.0	3.5	0.10	1.9	
			GNDD113	149.50	37.50	0.59	17.0	0.12	0.86	0.01	0.08	2
llenger Exploration Limit 123 591 382 CEL	ted Issued Capital 658.2m shares 86.6m options	Australian Registered Office Level 1 1205 Hay Street	Directors Mr Kris Knauer, M Mr Scott Funston,			380 9235 @challeng	erex.com					

www.challengerex.com

120m perf shares

16m perf rights

Criteria	JORC Code explanation		Commentary									
			inc	151.00	9.00	1.3	56.2	0.17	2.1	0.05	0.11	
			inc	170.50	1.50	1.7	5.7	0.33	2.0	0.01	0.11	
			and	219.00	11.00	0.79	2.2	0.08	0.86	0.00	0.08	2
			inc	223.00	7.00	1.1	2.5	0.09	1.1	0.00	0.05	
			GNDD113A	61.00	2.00	0.59	2.6	0.74	0.95	0.03	0.07	
			and	139.00	107.00	0.30	3.0	0.09	0.37	0.00	0.04	2
			inc	185.00	1.40	1.6	2.5	0.07	1.7	0.00	0.05	
			inc	197.00	2.00	1.2	0.94	0.17	1.3	0.00	0.04	
			inc	202.00	1.50	3.2	2.4	0.90	3.6	0.02	0.16	
			inc	209.00	2.00	1.2	1.9	0.25	1.3	0.01	0.25	
			and	262.00	104.00	1.5	2.7	0.39	1.7	0.01	0.12	2
			inc	266.00	2.00	1.0	1.8	0.22	1.1	0.00	0.02	
			inc	274.00	2.00	1.3	1.4	0.06	1.3	0.00	0.01	
			inc	280.00	15.00	3.6	6.9	0.56	3.9	0.04	0.73	
			inc	289.45	3.65	6.7	20.2	1.5	7.6	0.15	2.6	1
			inc	298.65	7.45	2.9	3.7	0.63	3.2	0.02	0.01	
			inc	315.50	1.20	1.0	1.4	0.13	1.1	0.00	0.02	
			inc	333.80	4.20	11.3	22.8	5.3	13.9	0.12	0.04	
			inc	333.80	0.70	60.8	133	31.4	76.1	0.70	0.22	1
			inc	354.00	4.00	1.4	0.8	0.02	1.4	0.00	0.00	
				274.00	84.00	1.7	3.3	0.48	2.0	0.02	0.14	4
			and	390.00	30.00	0.35	0.36	0.05	0.38	0.00	0.00	2
			inc	394.00	2.00	1.2	0.33	0.04	1.2	0.00	0.00	
				139.00	227.00	0.83	2.7	0.22	1.0	0.01	0.07	3
				139.00	281.00	0.71	2.2	0.19	0.82	0.01	0.06	3
				106.00	314.00	0.65	2.1	0.17	0.75	0.01	0.05	
			GNDD114	64.00	14.70	3.2	3.3	0.08	3.3	0.01	0.06	
			inc	77.80	0.90	50.3	27.2	0.18	50.7	0.03	0.65	
			GNDD115	68.70	1.10	0.62	9.2	2.0	1.6	0.04	0.36	
			and	144.00	2.00	0.30	16.2	1.2	1.0	0.07	0.38	
			and	176.50	34.50	0.28	0.68	0.01	0.29	0.00	0.03	2
			GNDD116	27.50	4.50	1.3	14.6	0.06	1.5	0.00	0.02	2
			inc	27.50	1.00	3.7	41.4	0.13	4.3	0.01	0.05	
			and	73.70	0.80	2.4	3.9	0.26	2.5	0.00	0.00	
			GNDD117	30.00	54.80	0.58	4.2	0.13	0.69	0.01	0.07	2
			inc	61.00	10.00	2.5	10.2	0.16	2.7	0.01	0.14	
			inc	84.20	0.60	1.4	4.1	0.11	1.5	0.01	0.02	
lenger Exploration Limito	ed Issued Capital 658.2m shares	Australian Registered Office	Directors Mr Kris Knauer, MI) and CEO	Contact T: +61 8 6	380 9235						

West Perth WA 6005

16m perf rights www.challengerex.com

120m perf shares

Criteria	JORC Code explanation		Commentary									
			and	106.70	0.40	8.5	43.4	3.3	10.5	0.25	2.92	1
			GNDD118	NSI								
			GNDD119	52.40	0.80	0.21	17.4	4.2	2.3	0.03	0.25	
			GNDD120	NSI								
			GNDD121	NSI								
			GNDD122	11.50	18.10	0.64	2.2	0.03	0.68	0.00	0.01	2
			inc	21.00	6.00	1.1	3.2	0.04	1.2	0.00	0.01	
			and	54.00	21.00	0.41	0.80	0.12	0.47	0.00	0.04	2
			inc	71.00	2.00	1.2	1.0	0.14	1.2	0.00	0.09	
			and	191.00	1.50	1.6	24.4	0.95	2.3	0.10	1.24	
			and	213.80	3.20	1.7	2.1	0.23	1.8	0.01	0.02	
			and	236.00	1.50	4.8	4.9	0.63	5.1	0.03	0.16	
			GNDD123	21.00	30.00	0.11	1.6	0.32	0.27	0.01	0.04	2
			GNDD124	44.00	7.00	0.08	3.6	0.65	0.40	0.02	0.13	2
			GNDD125	NSI								
			GNDD126	107.30	1.10	12.8	10.3	0.74	13.3	0.00	0.16	1
			and	120.00	2.00	3.2	3.6	0.16	3.4	0.01	0.00	
			and	157.30	0.50	1.0	22.1	2.2	2.2	0.11	2.3	
			and	179.00	2.00	1.7	0.62	0.01	1.7	0.00	0.00	
			GNDD127	NSI								
			GNDD128	63.00	20.00	0.49	0.42	0.02	0.50	0.00	0.00	2
			inc	77.50	1.50	4.1	0.36	0.04	4.1	0.00	0.00	
			GNDD129	15.00	21.00	0.72	1.8	0.10	0.79	0.00	0.05	2
			inc	24.00	10.00	1.0	2.1	0.13	1.1	0.00	0.04	
			and	132.50	0.70	6.7	14.1	0.15	7.0	0.01	0.12	
			GNDD130	NSI								
			GNDD131	NSI								
			GNDD134	17.70	15.30	0.80	7.5	0.07	0.92	0.00	0.11	2
			inc	19.00	10.00	1.04	9.9	0.08	1.2	0.01	0.12	
			and	47.00	39.75	0.26	0.5	0.10	0.31	0.00	0.04	2
			and	129.50	7.50	0.45	0.5	0.06	0.48	0.00	0.02	2
			and	161.00	20.00	0.29	3.6	0.23	0.44	0.01	0.03	2
			inc	177.50	0.50	3.79	29.8	5.23	6.4	0.16	0.10	
			and	196.00	4.00	5.3	86.2	10.60	11.0	0.24	0.57	
			and	240.00	2.00	6.2	1.3	0.02	6.2	0.00	0.00	
			and	272.00	50.00	0.22	0.5	0.14	0.28	0.00	0.00	2
			and	500.10	0.95	2.3	8.1	0.16	2.5	0.21	0.00	
lenger Exploration Lim 123 591 382	nited Issued Capital 658.2m shares	Australian Registered Office Level 1	Directors Mr Kris Knauer, Ml	D and CEO	Contact	5380 9235						
123 591 382	658.2m shares	Level 1 1205 Llow Street	Mr Kris Knauer, Mi									

ASX: CEL

16m perf rights www.challengerex.com

86.6m options

120m perf shares

Level 1 1205 Hay Street West Perth WA 6005 Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	n	Commentary									
			and	519.00	20.00	0.73	0.7	1.80	1.5	0.02	0.00	2
			inc	529.50	2.90	4.7	3.6	11.6	9.8	0.12	0.00	
			and	560.25	17.75	0.20	0.7	0.38	0.37	0.01	0.00	2
			inc	560.25	0.75	0.09	2.0	4.94	2.3	0.05	0.00	
			inc	570.20	0.50	1.22	9.6	2.36	2.4	0.17	0.02	
			and	630.30	0.70	0.9	1.6	0.21	1.0	0.18	0.00	
			GNDD137	27.00	38.00	0.38	1.1	0.05	0.42	0.00	0.02	2
			inc	33.00	4.00	1.70	1.2	0.13	1.8	0.00	0.02	
			and	186.25	1.35	8.12	29.5	7.3	11.6	0.12	0.03	
			GNDD139	80.00	207.50	0.75	1.7	0.10	0.82	0.00	0.02	2
			inc	80.00	32.00	1.6	2.5	0.06	1.6	0.00	0.03	
			inc	148.00	4.25	1.2	3.8	0.15	1.3	0.00	0.09	
			inc	167.00	14.00	1.5	0.32	0.01	1.5	0.00	0.01	
			inc	243.00	9.00	2.4	3.7	0.62	2.8	0.00	0.01	
			inc	266.00	6.00	1.6	0.61	0.01	1.6	0.00	0.00	
				243.00	29.00	1.2	1.6	0.24	1.3	0.00	0.00	4
			GNDD141	101.50	6.50	14.3	43.6	3.4	16.3	0.15	1.6	2
			inc	101.50	2.50	36.8	111	8.6	41.9	0.30	4.2	1
			GNDD142	55.8	0.7	0.7	13.3	4.0	2.7	0.05	0.03	
			and	81.5	27.5	2.4	11.1	0.9	2.9	0.03	0.06	2
			inc	92.0	11.5	5.4	19.9	2.0	6.5	0.08	0.13	
			inc	107.0	2.0	0.9	5.3	0.2	1.0	0.00	0.03	
			and	125.0	11.0	0.3	3.2	0.1	0.39	0.00	0.01	2
			inc	132.9	1.1	1.6	4.6	0.1	1.7	0.01	0.08	
			and	152.0	40.0	5.1	11.7	1.9	6.1	0.05	0.12	2
			inc	153.1	1.0	23.4	40.1	13.5	29.8	0.34	0.00	1
			inc	160.0	10.7	10.7	28.4	4.9	13.2	0.13	0.15	
			inc	166.2	4.5	23.9	41.3	11.0	29.2	0.29	0.27	1
			inc	177.2	12.8	5.2	9.3	0.7	5.6	0.02	0.24	
			inc	187.1	1.0	44.0	53.8	6.5	47.5	0.15	2.1	1
			and	237.0	0.5	1.1	2.7	0.1	1.2	0.01	0.17	
				81.5	110.5	2.5	7.4	0.9	3.0	0.03	0.06	3
			GNDD143	NSI								
			GNDD145	NSI								
			GNDD148	16.00	7.00	0.14	1.7	0.43	0.35	0.01	0.18	2
			and	59.00	2.00	0.00	1.0	2.7	1.2	0.01	0.01	
			GNDD149	8.00	4.00	0.63	1.5	0.28	0.77	0.01	0.07	
lenger Exploration Limite 123 591 382	ed Issued Capital 658.2m shares	Australian Registered Office Level 1	Directors Mr Kris Knauer, M	D and CEO	Contact T: +61 8 6	5380 9235						

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

E: admin@challengerex.com

ASX: CEL

86.6m options 120m perf shares

16m perf rights www.challengerex.com

1205 Hay Street

Criteria	JORC Code explanation		Commentary									
			GNDD151	379.75	0.50	0.71	18.6	8.9	4.8	0.17	0.17	
			GNDD155	59.00	209.00	1.0	1.4	0.09	1.1	0.00	0.02	2
			inc	59.00	34.00	3.8	4.6	0.20	3.9	0.02	0.03	
			inc	81.00	4.00	13.4	10.5	0.06	13.5	0.05	0.02	
			inc	102.00	6.00	1.2	1.1	0.10	1.2	0.00	0.03	
				59.00	49.00	2.8	3.6	0.16	3.0	0.01	0.02	4
			inc	151.55	0.45	7.7	2.9	4.5	9.6	0.00	0.10	
			inc	182.00	1.00	8.8	17.1	2.2	10.0	0.07	0.89	
			inc	224.00	2.00	2.0	0.29	0.01	2.0	0.00	0.00	
			inc	244.00	11.00	1.1	0.56	0.04	1.1	0.00	0.00	
			inc	266.00	0.55	1.8	1.2	0.02	1.8	0.00	0.00	
			and	338.00	9.00	0.41	0.33	0.05	0.43	0.00	0.00	2
			GNDD156	5.00	7.00	0.68	3.0	0.70	1.0	0.02	0.15	
			GNDD157	20.00	66.00	0.52	1.1	0.08	0.57	0.00	0.07	2
			inc	54.00	10.00	2.2	1.8	0.14	2.3	0.00	0.24	
			and	132.90	10.00	0.18	6.6	0.52	0.48	0.01	0.08	2
			inc	132.90	0.50	0.88	13.1	1.4	1.6	0.03	0.67	
			inc	142.30	0.60	1.0	29.1	6.6	4.2	0.11	0.33	
			and	237.20	130.80	2.3	1.6	0.37	2.5	0.00	0.01	2
			inc	237.20	0.80	1.7	59.1	5.6	4.9	0.18	1.2	
			inc	255.80	1.20	0.63	5.3	9.4	4.8	0.01	0.01	
			inc	289.00	12.00	20.4	4.8	1.0	20.9	0.00	0.00	
			inc	290.50	4.06	55.7	12.9	2.1	56.8	0.01	0.01	1
			inc	321.00	2.00	1.3	0.6	0.01	1.3	0.00	0.00	
			inc	331.00	6.00	2.5	1.9	0.61	2.8	0.01	0.01	
			inc	343.00	9.00	1.7	0.6	0.10	1.7	0.00	0.00	
			and	407.50	0.50	2.2	1.2	0.37	2.4	0.00	0.00	
			GNDD159	NSI								
			Holes for meta	allurgical test	•	aterial:						
			GMDD039	18.00	8.00	0.15	1.9	0.60	0.43	0.01	0.07	2
			GMDD039	67.60	1.00	24.5	58	3.9	26.9	0.27	1.8	1
			GMDD040	116.72	8.68	5.5	12	2.2	6.7	0.06	0.00	
			inc	122.50	2.90	11.8	24	4.2	14.0	0.14	0.00	1
			GMDD041	31.00	16.0	2.6	4.9	0.27	2.8	0.01	0.25	2
			inc	41.70	2.0	20.0	29	1.2	20.8	0.06	1.7	
			GMDD041	63.50	5.1	7.9	83	7.9	12.3	0.47	0.21	
			GMDD043	18.00	10.00	0.09	1.7	0.48	0.32	0.01	0.10	2
lenger Exploration Limi 123 591 382 CEL	ited Issued Capital 658.2m shares 86.6m options	Australian Registered Office Level 1 1205 Hay Street	Directors Mr Kris Knauer, M Mr Scott Funston,		Contact T: +61 8 6 E: admin	5380 9235						

120m perf shares

Criteria	JORC Code explanation	Commentary						
		GMDD043 70.50 0.30 25.9 81 9.4 31.0 0.33 3.1 1						
		(1) cut off 10 g/t Au equivalent						
		(2) cut off 0.2 g/t Au equivalent						
		(3) combined zones with 0.2 g/t Au cut off (grades include internal dilution from between zones) (4) combined zones with 1.0 g/t Au cut off (grades include internal dilution from between zones)						
		(4) combined zones with 1.0 g/t Au cut-off (grades include internal dilation from between zones) NSI: no significant intersection						
Data aggregation methods	 In reporting Exploration Results weighting averagin techniques maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengt of high-grade results and longer lengths of low-graderesults the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Weighted average significant intercepts are reported to a gold grade equivalent (AuEq). Results are reported to cut-off grade of a 1.0 g/t Au equivalent and 10 g/t Au equivalent allowing for up to 2m of internal dilution between samples above the cut-off grade and 0.2 g/t Au equivalent allowing up to 6m of internal dilution between samples above the cut-off grade. The following metals and metal prices have been used to report gold grade equivalent: Au US\$ 1780 / oz Ag US\$24 /oz and Zn US\$ 2800 /t. Metallurgical recoveries for Au, Ag and Zn have been estimated from metallurgical test work completed by 						
Relationship between	- These relationships are particularly important in the reporting of Exploration Results.	e The mineralisation is moderately or steeply dipping and strikes NNE and ENE. For some drill holes, there is insufficient information in most cases to confidently establish the true width of the mineralized intersections at						
mineralisation	- If the geometry of the mineralisation with respect t	this stage of the exploration program.						
widths and intercept length	the drill hole angle is known its nature should be reported. If it is not known and only the down hole lengths ar	Apparent widths may be thicker in the case where bedding-parallel mineralisation may intersect ENE-striking cross faults and veins.						
reporte	reported there should be a clear statement to this effect (eg 'down hole length true width not known')	Cross section diagrams have been provided with release of significant intersections to allow estimation of true						
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 							

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available data have been reported.
<i>Other substantive exploration data</i>	 Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report. 229 specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates. Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing. A ground magnetic survey and drone magnetic survey have been completed. The results of these data are being processed and interpreted with the geological information provided from surface and in the drilling and will be used to guide future exploration.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive. 	 CEL Plans to undertake the following over the next 12 months Additional data precision validation and drilling as required; Detailed interpretation of known mineralized zones; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation. Investigate further drilling requirements to upgrade both the unclassified mineralisation and mineralisation in the existing historical resources to meet JORC 2012 requirements; Initial drill program comprising verification (twin holes) and targeting extensions of the historically defined mineralisation; Further metallurgical test work on lower grade mineralisation in the intrusions and oxidised mineralisation.

www.challengerex.com

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs.
		Assay data is received in digital format. Backup copies are kept and the data is copied into the drill hole database.
		The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. 	The interpretation is considered appropriate given the stage of the project and the nature of activities that have been conducted. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial
	 The effect if any of alternative interpretations on Mineral Resource estimation. 	underground sampling activities.
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource
		blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for the application of these tonnage reduction factors was not outlined in the resource report. It is noted that at the time of this report La Mancha was in a legal dispute concerning the project with its joint
		venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project was likely no longer a core asset for La Mancha at that time. Additionally under the original acquisition agreement La Mancha had to issue additional acquisition shares based on resource targets.
		The effect of removing the assumptions relating to application of the arbitrary tonnage reduction factors applied increases the overall resource tonnage by in excess of 50%. Removing these correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary			
		tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.			
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.			
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it. The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.			
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	For the historic resource no reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.			
Estimation and modelling techniques	- The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamor drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections.			
	 The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage 	Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate.			
	 characterisation). In the case of block model interpolation the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. 	It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a saleable zinc concentrate.			
	 Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variable of economic significance was not required.			
	 Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.			
Challenger Exploration Limited ACN 123 591 382 ASX: CEL	658.2m shares Level 1 Mr Kris Knauer,	n, Finance Director E: admin@challengerex.com			

www.challengerex.com

16m perf rights

Criteria	JORC Code explanation	Commentary
		No assumptions were made regarding correlation between variables.
		The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plan maps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins and skarn were taken and sampling was plotted and the blocks outlined considering this.
		Grade cutting was not used in the calculation of the resource and no discussion was given as to why it was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied No data is available on the process of validation.
Moisture	- Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content.	No data is available.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.
<i>Mining factors or assumptions</i>	- Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made.	 The Mineral Resource Estimate considered the assumptions outlined below which are considered appropriate; Metal prices: Au US\$550 Oz Ag US\$10 Oz Metallurgical Recovery; Au – 80% Ag – 70% Zn - nil Operating cost: US\$55t based on underground cut and fill mining and flotation and cyanidation combined The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
<i>Metallurgical factors or assumptions</i>	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 Historical metallurgical test-work assumptions were 80% recovery for Au, Ag and Zn. The most recent historic test work was conducted in 1999 by Lakefield Research (cyanidation) and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals and so can be considered primary, partial oxide or fracture oxide samples. The test work was conducted using a 150 micron grind which would appear to coarse base on petrography conducted by CEL which shows that the gold particles average 30-40 microns. Rougher flotation tests were performed with a 20 minute and 30 minute flotation time. Generally, the longer residence time improved recovery. Recoveries to concentrate for gold range from 59.6% - 80.6% and for silver from 63.1% - 87.2%.

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		 Knelson concentrate tests with flotation of tailings were also completed. Applying a joint process Knelson concentrator and flotation of the tailings of the concentrator it is found that the global recovery is approximately 80% for gold. While the testwork was focused predominantly on gold recovery some rougher flotation testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades in excess of 50% Zn in concentrate expected with additional flotation stages. The report concluded that it was possible to produce a commercial Au-Ag concentrate ar a Zn concentrate. Extraction of gold and silver by cyanidation was tested on 3/8 and ½ inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanide consumption. No tests have been done on material at a finer grind size. More recently, CEL has completed initial metallurgical test work on a 147 kg composite sample of drill core from GMDD039, GMDD040, GMDD041, GNDD043, GNDD03 and GNDD018. The sample is of skarn mineralisation in limestone that has a weighted average grade of 10.4 g/t A 31.7 g/t Ag, 3.2 % Zn, 0.15 % Cu and 0.46 % Pb. Separate tests on 2 kg sub-samples were done with differing grinding times, Knelson and Mosley table gravity separation techniques and flotation techniques to provide a series of gravity and flotation process when re-combined produced a Single product with a median grade of 47 g/t Au, 120 g/t Ag and 13% Zn with recovered weight of 24-33% of the sample weight. Tailings fragment analysis indicates a grind of (p₆₀) 72-106 µm. Generally, a coarser grind resulted in a higher % weight recovered to the concentrate with a corresponding lower grade without significantly impacting recovery. QEMSCAN analysis of the sample indicat
Environmental	Assumptions made regarding possible waste and process residue	pyrrhotite, chalcocite, bornite and galena. It is considered that there are no significant environmental factors which would prevent the eventu
Environmental - factors or	disposal options. It is always necessary as part of the process of	extraction of gold from the project. Environmental surveys and assessments will form a part of future
assumptions	determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and	pre-feasibility.

86.6m options 120m perf shares 16m perf rights

658.2m shares

Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	- Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples.	Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock. No data of how densities were determined is available.
	 The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the 	The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project.
	 deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	CEL is collecting specific gravity measurements from drill core recovered in 2019 and 2020 drilling programs, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates. For RC drilling, the weights of material recovered from the drill hole is able to be used as a measure of the bulk density.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality 	The Mineral Resource Estimate has both Indicated and Inferred Mineral Resource classifications under the National Instrument 43-101 code and is considered foreign. These classifications are considered appropriate given the confidence that can be gained from the existing data and results from drilling.
	 quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in continuity of geology and metal values quality quantity and distribution of the data. Appropriate account has been taken of all relevant factors with the exception of studies into the appropriateness of the application of a top cut.
		The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated) estimate for the Hualilan Project is measured resource of 164294 tonnes averaging 12.6 grams per tonne gold and 52.1 g/t silver and 2.5% zinc plus an indicated resource of 51022 tonnes averaging 12.4 grams per tonne gold and 36.2 g/t silver and 2.6% zinc plus an inferred resource of 213952 tonnes grading 11.7 grams per tonne gold and 46.6 g/t silver and 2.3% zinc. (Source La Mancha resources Toronto Stock Exchange Release April 7 2007 - Interim Financials) – See Table 1.

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation		Commentary				
			mineralisatio (non-JORC Cc tonnage to th	imate did not include the east-wes n in the Magnata Vein being drilled ode compliant) estimate attributed ne Magnata Vein. The 2006 estimat ated category 50% for inferred cat	on a 25 x 50-met approximately ha e also included ar	re spacing. The If of its measur bitrary tonnage	e 2003 NI43-1 red and indica e reduction fa
			The 2006 esti not been rep	imate also included a significant to orted.	nnage of Potential	Category Reso	ources which
			measured res of 145001 to grading 13.4 resources Tou	2003 NI43-101 (non-JORC Code co source of 299578 tonnes averaging nnes averaging 14.6 grams per ton grams per tonne gold representing ronto Stock Exchange Release May	14.2 grams per to ne gold plus an inf some 647809 our	nne gold plus a erred resource nces gold. (Sou	an indicated r of 976539 to rce La Manch
				ee Table 1. heral Resource classification and re eposit and the current level of risk			•
				3 NI43-101 (non-JORC Code comp	•		7.0/
			CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%
			Measured	299578	14.2		
			Indicated Inferred	145001 976539	14.6 13.4		
			Historic 200	06 NI43-101 (non-JORC Code comp	liant)		
			CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%
			Measured	164294	12.5	52.1	2.5
			Indicated	51022	12.4	36.2	2.6
			Inferred	213952	11.7	46.6	2.3
Challenger Exploration ACN 123 591 382 ASX: CEL	Limited Issued Capital 658.2m shares 86.6m options 120m perf shares	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman	Contact T: +61 8 6380 9235 E: admin@challengerex.com			

www.challengerex.com

Criteria	JC	DRC Code explanation	Commentary
Audits or reviews	-	The results of any audits or reviews of Mineral Resource estimates.	The historic resource estimate has not been audited.
			The earlier (1996 and 2000) Mineral Resource Estimates were audited and re-stated in a 2003
			resource report. This independent report was done to NI-43-101 standard and the results of this
			report were released to the TSX. This report concluded that "Detailed resource calculations made h
			three different groups are seen to be realistic.
Discussion of	-	Where appropriate a statement of the relative accuracy and confidence	There is sufficient confidence in the data quality drilling methods and analytical results that they ca
relative accuracy/		level in the Mineral Resource estimate using an approach or procedure	be relied upon. The available geology and assay data correlate well. The approach or procedure are
confidence		deemed appropriate by the Competent Person. For example the	deemed appropriate given the confidence limits. The main two factors which could affect relative
<i>connucliec</i>		application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if	accuracy is grade continuity and top cut.
		such an approach is not deemed appropriate a qualitative discussion of	Grade continuity is variable in nature in this style of deposit and has not been demonstrated to dat
		the factors that could affect the relative accuracy and confidence of the	and closer spaced drilling is required to improve the understanding of the grade continuity in both
		estimate.	strike and dip directions. It is noted that the results from the twinning of three holes by La Mancha
	-	The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be	are encouraging in terms of grade repeatability.
		relevant to technical and economic evaluation. Documentation should	The deposit contains very high grades and there is a potential need for the use of a top cut. It is
		include assumptions made and the procedures used.	noted that an arbitrary grade reduction factor of 10% has already been applied to the resource as
	-	These statements of relative accuracy and confidence of the estimate should be compared with production data where available.	reported.
		· · · · · · · · · · · · · · · · · · ·	No production data is available for comparison

Challenger Exploration Limited Issued Capital ACN 123 591 382 ASX: CEL

www.challengerex.com

658.2m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman