



ASX Announcement 27 May 2021

# Grade control results confirm Bald Hill Mineral Resource

# Highlights

- Grade-control drilling comprising 257 holes for 5,002m has been completed at Bald Hill, the largest deposit at the Yangibana Rare Earths Project and containing approximately 39% of the Yangibana Project's total Mineral Resources.
- Correlation of tonnes, grades and total rare earth oxides (TREO) between the Yangibana Project Mineral Resource Upgrade (announced 5 May 2021) and the trial grade control model has been completed.
- The strong reconciliation confirms and exceeds the results for the same area from the Bald Hill Mineral Resource estimate by delivering:
  - o 6% more TREO; and
  - 9% more resource tonnes
- Drilling results provide Hastings with significantly increased confidence in the target area earmarked for first Yangibana Project mine production and allow for more accurate delineation of ore and waste boundaries, with Bald Hill drill intercepts including;
  - o 7m @ 2.73% TREO from 5m, GC0434
  - o 4m @ 3.15% TREO from 10m, GC0291
  - o 5m @ 2.65% TREO from 12m, GC0268
  - o 5m @ 2.39% TREO from 8m, GC0312.
- The Yangibana Project's Mineral Resource estimate stands at 27.42Mt @ 0.97% TREO for 266kt of rare earth oxides (ASX Announcement 5 May 2021)<sup>1</sup>.

Australia's next rare earths producer, Hastings Technology Metals Ltd (**ASX: HAS**) (**Hastings** or the **Company**), is pleased to announce results from the Bald Hill grade-control drilling campaign, completed as part of the 2020 Drilling Program at its Yangibana Rare Earths Project (**Yangibana**) in Western Australia's Gascoyne region.

The grade control drilling campaign (Figure 2) was designed to test-drill a shallow area of mineralisation at the Bald Hill deposit, with all holes drilled to a targeted level below the natural surface. A close-spaced reverse circulation (RC) drill pattern of 5mE x 7mN was completed, with 257 holes for 5,002m being drilled.

<sup>1</sup>Hastings is not aware of any new information or data that materially affects the information in this market announcement. In the case of estimates of 'mineral resources' or 'ore reserves', all material assumptions and technical parameters underpinning the estimates in this market announcement continue to apply and have not materially changed.



This campaign targeted a zone within the first 20m (eight mining benches) from surface, containing enough material to define short-term mine planning at the start of production for a two-month period.

Table 1 shows the comparison between the Bald Hill Mineral Resource estimate and the grade-control model within the area of the grade-control drilling. The comparison suggests a slight increase in both tonnes and contained metal with only a minor loss of grade for both TREO and  $Nd_2O_3 + Pr_6O_{11}$ . The Mineral Resource estimate for Bald Hill used for this comparison was previously announced to the ASX by the Company on 5 May 2021 (see ASX announcement *Yangibana Project updated Measured and Indicated Mineral Resources tonnes up by 54%, TREO oxides up 32%*).

|                  |         |       | Surce estimation at Bala                                         |        |
|------------------|---------|-------|------------------------------------------------------------------|--------|
| Category         | Tonnes  | %TREO | %Nd <sub>2</sub> O <sub>3</sub> +Pr <sub>6</sub> O <sub>11</sub> | TREO t |
| Grade Control    | 140,688 | 1.04  | 0.43                                                             | 1,457  |
| Mineral Resource | 129,505 | 1.06  | 0.44                                                             | 1,377  |
| Difference       | 8.6%    | -2.6% | -2.4%                                                            | 5.8%   |

 Reporting of Bald Hill Mineral Resource and Grade control drilling is at a cut-off grade of 0.24% total rare earth oxides (TREO) similar to that used to report the Mineral Resource estimate.

A grade tonnage comparison between the grade-control model and the Mineral Resource estimate is shown in Figure 1 and indicates a strong correlation between both estimates. It should be noted that because the grade-control drilling was sampled in its entirety, there is more definition in the low-grade tail than what appeared in the Mineral Resource estimate due to the selective nature of the exploration sampling.

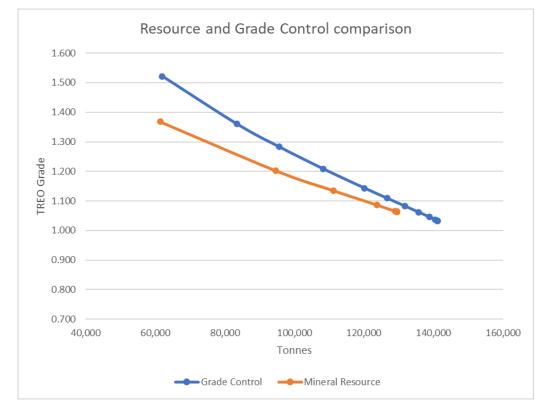



Figure 1. Grade tonnage comparison, grade-control model and Mineral Resource estimate.



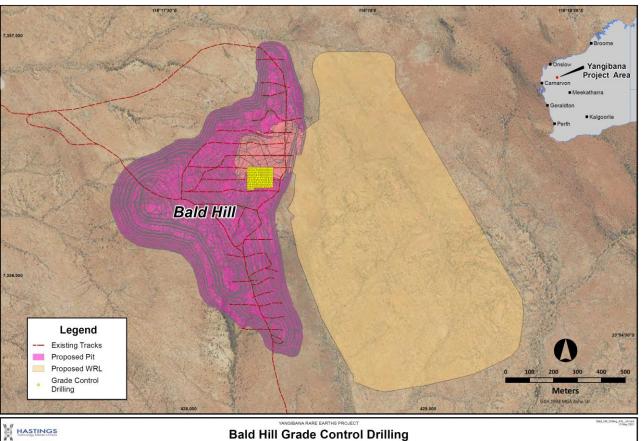



Figure 2. Location of the grade-control drilling area within the Bald Hill open pit.

# Commenting on the results of the grade-control drilling at Bald Hill, Hastings Technology Metals' Chief Operating Officer Andrew Reid said:

"The reconciliation provides confidence that close-spaced, grade-control drilling reflects our Mineral Resource estimates, which further mitigates the start-up risk for our Yangibana Rare Earths Project.

"These initial results indicate the potential for more tonnage and more contained rare earth oxides within the Bald Hill starter pit, which potentially reduces the strip ratio at the beginning of the mine life, as well as providing substantially more data to optimise mine planning.

"The strong continuity of mineralisation defined by the grade-control drilling at the start of the mine life provides a high level of confidence during mine start-up."



Table 2 details the significant intercepts from the grade-control drilling. Two drill holes contained single metre intercepts – GC0428: 1m @ 0.28% TREO; GC0462: 1m @ 2.22% TREO – while the other drill holes returned values of at least 2m in length at greater than 0.34% TREO.

| Hole-ID | Depth From<br>(m) | Depth To<br>(m) | Intercept<br>(m) | TREO % | Nd <sub>2</sub> O <sub>3</sub> +<br>Pr <sub>6</sub> O <sub>11</sub> % | (Nd <sub>2</sub> O <sub>3</sub> + Pr <sub>6</sub> O <sub>11</sub> ) %<br>of TREO |
|---------|-------------------|-----------------|------------------|--------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|
| GC0291  | 10                | 14              | 4                | 3.15   | 1.19                                                                  | 41                                                                               |
| GC0434  | 5                 | 12              | 7                | 2.73   | 1.06                                                                  | 41                                                                               |
| GC0252  | 13                | 17              | 4                | 2.69   | 1.03                                                                  | 39                                                                               |
| GC0311  | 8                 | 12              | 4                | 2.68   | 1.09                                                                  | 44                                                                               |
| GC0268  | 12                | 17              | 5                | 2.65   | 1.10                                                                  | 42                                                                               |
| GC0269  | 12                | 17              | 5                | 2.40   | 1.03                                                                  | 44                                                                               |
| GC0312  | 8                 | 13              | 5                | 2.39   | 0.85                                                                  | 41                                                                               |
| GC0267  | 12                | 16              | 4                | 2.29   | 0.97                                                                  | 42                                                                               |
| GC0317  | 15                | 18              | 3                | 2.26   | 0.93                                                                  | 41                                                                               |
| GC0246  | 12                | 16              | 4                | 2.25   | 1.02                                                                  | 47                                                                               |
| GC0245  | 12                | 16              | 4                | 2.22   | 1.04                                                                  | 50                                                                               |
| GC0331  | 8                 | 13              | 5                | 2.07   | 0.80                                                                  | 38                                                                               |
| GC0318  | 13                | 19              | 6                | 2.01   | 0.80                                                                  | 41                                                                               |
| GC0225  | 10                | 16              | 6                | 2.00   | 0.78                                                                  | 42                                                                               |
| GC0309  | 9                 | 12              | 3                | 1.96   | 0.82                                                                  | 39                                                                               |
| GC0249  | 13                | 18              | 5                | 1.88   | 0.78                                                                  | 41                                                                               |
| GC0456  | 9                 | 12              | 3                | 1.80   | 0.71                                                                  | 40                                                                               |
| GC0424  | 18                | 24              | 6                | 1.78   | 0.73                                                                  | 41                                                                               |
| GC0319  | 10                | 20              | 10               | 1.77   | 0.74                                                                  | 44                                                                               |
| GC0247  | 12                | 18              | 6                | 1.73   | 0.77                                                                  | 40                                                                               |
| GC0292  | 9                 | 14              | 5                | 1.72   | 0.75                                                                  | 46                                                                               |
| GC0190  | 1                 | 9               | 8                | 1.72   | 0.70                                                                  | 40                                                                               |
| GC0270  | 12                | 17              | 5                | 1.71   | 0.73                                                                  | 42                                                                               |
| GC0310  | 9                 | 13              | 4                | 1.67   | 0.67                                                                  | 40                                                                               |
| GC0243  | 8                 | 17              | 9                | 1.66   | 0.71                                                                  | 42                                                                               |
| GC0332  | 7                 | 13              | 6                | 1.66   | 0.68                                                                  | 41                                                                               |
| GC0212  | 0                 | 10              | 10               | 1.60   | 0.62                                                                  | 38                                                                               |
| GC0313  | 8                 | 15              | 7                | 1.59   | 0.70                                                                  | 43                                                                               |
| GC0290  | 9                 | 14              | 5                | 1.59   | 0.71                                                                  | 46                                                                               |
| GC0251  | 6                 | 7               | 1                | 1.58   | 0.41                                                                  | 26                                                                               |
| GC0262  | 6                 | 16              | 10               | 1.57   | 0.65                                                                  | 42                                                                               |
| GC0316  | 14                | 19              | 5                | 1.56   | 0.68                                                                  | 44                                                                               |
| GC0314  | 9                 | 14              | 5                | 1.56   | 0.66                                                                  | 42                                                                               |
| GC0213  | 3                 | 12              | 9                | 1.55   | 0.61                                                                  | 40                                                                               |
| GC0250  | 13                | 18              | 5                | 1.54   | 0.66                                                                  | 42                                                                               |
| GC0226  | 11                | 17              | 6                | 1.53   | 0.66                                                                  | 45                                                                               |
| GC0289  | 10                | 13              | 3                | 1.52   | 0.67                                                                  | 44                                                                               |
| GC0220  | 7                 | 14              | 7                | 1.51   | 0.60                                                                  | 40                                                                               |

Table 2. Significant Intersections: results from grade control drilling.



|   | GC0263 | 9  | 17 | 8  | 1.50 | 0.61 | 43 |
|---|--------|----|----|----|------|------|----|
|   | GC0288 | 10 | 12 | 2  | 1.50 | 0.64 | 46 |
|   | GC0445 | 15 | 21 | 6  | 1.48 | 0.63 | 45 |
| 6 | GC0248 | 13 | 18 | 5  | 1.47 | 0.66 | 45 |
|   | GC0229 | 14 | 17 | 3  | 1.47 | 0.59 | 40 |
|   | GC0277 | 7  | 14 | 7  | 1.45 | 0.58 | 40 |
|   | GC0251 | 13 | 18 | 5  | 1.45 | 0.61 | 42 |
|   | GC0324 | 13 | 17 | 4  | 1.40 | 0.57 | 42 |
|   | GC0224 | 12 | 17 | 5  | 1.39 | 0.61 | 44 |
|   | GC0345 | 12 | 17 | 5  | 1.36 | 0.53 | 39 |
|   | GC0271 | 11 | 17 | 6  | 1.34 | 0.54 | 40 |
|   | GC0244 | 11 | 18 | 7  | 1.34 | 0.60 | 43 |
|   | GC0296 | 11 | 19 | 8  | 1.33 | 0.56 | 45 |
|   | GC0381 | 20 | 23 | 3  | 1.31 | 0.58 | 43 |
|   | GC0227 | 12 | 17 | 5  | 1.30 | 0.57 | 43 |
|   | GC0221 | 5  | 12 | 7  | 1.29 | 0.52 | 41 |
|   | GC0435 | 9  | 12 | 3  | 1.29 | 0.50 | 38 |
|   | GC0272 | 11 | 17 | 6  | 1.28 | 0.52 | 42 |
|   | GC0373 | 5  | 15 | 10 | 1.28 | 0.50 | 37 |
|   | GC0286 | 11 | 14 | 3  | 1.28 | 0.63 | 49 |
|   | GC0384 | 16 | 20 | 4  | 1.28 | 0.35 | 36 |
|   | GC0421 | 20 | 24 | 4  | 1.27 | 0.53 | 44 |
|   | GC0238 | 8  | 15 | 7  | 1.25 | 0.50 | 42 |
|   | GC0388 | 10 | 15 | 5  | 1.25 | 0.49 | 39 |
|   | GC0462 | 12 | 14 | 2  | 1.23 | 0.49 | 39 |
|   | GC0241 | 6  | 13 | 7  | 1.22 | 0.51 | 42 |
|   | GC0275 | 7  | 14 | 7  | 1.22 | 0.47 | 39 |
|   | GC0443 | 18 | 24 | 6  | 1.22 | 0.49 | 41 |
|   | GC0385 | 15 | 19 | 4  | 1.21 | 0.48 | 41 |
|   | GC0232 | 6  | 10 | 4  | 1.21 | 0.51 | 43 |
|   | GC0459 | 9  | 12 | 3  | 1.20 | 0.49 | 40 |
|   |        |    |    |    |      |      |    |

## Table 3. Grade control drill hole location and status.

| Hole<br>ID | Drill<br>Type | Depth<br>(m) | Easting<br>(m) | Northing<br>(m) | RL<br>(m) | Survey<br>Type | Dip | Assay<br>Status |
|------------|---------------|--------------|----------------|-----------------|-----------|----------------|-----|-----------------|
| GC0190     | RC            | 11           | 428248         | 7356360         | 354       | GPS            | -90 | reported        |
| GC0191     | RC            | 12           | 428253         | 7356360         | 354       | GPS            | -90 | reported        |
| GC0192     | RC            | 14           | 428258         | 7356360         | 354       | GPS            | -90 | reported        |
| GC0193     | RC            | 15           | 428263         | 7356360         | 354       | GPS            | -90 | reported        |
| GC0194     | RC            | 15           | 428268         | 7356359         | 354       | GPS            | -90 | reported        |
| GC0211     | RC            | 15           | 428248         | 7356367         | 354       | GPS            | -90 | reported        |
| GC0212     | RC            | 15           | 428253         | 7356367         | 354       | GPS            | -90 | reported        |
| GC0213     | RC            | 15           | 428258         | 7356367         | 354       | GPS            | -90 | reported        |



|                  | GC0214 | RC | 15 | 428262 | 7356367 | 354 | GPS | -90 | reported |
|------------------|--------|----|----|--------|---------|-----|-----|-----|----------|
|                  | GC0215 | RC | 15 | 428268 | 7356368 | 355 | GPS | -90 | reported |
|                  | GC0216 | RC | 15 | 428272 | 7356368 | 354 | GPS | -90 | reported |
| 2                | GC0217 | RC | 15 | 428277 | 7356368 | 354 | GPS | -90 | reported |
| - 1              | GC0218 | RC | 15 | 428283 | 7356368 | 354 | GPS | -90 | reported |
|                  | GC0219 | RC | 15 | 428288 | 7356368 | 354 | GPS | -90 | reported |
|                  | GC0220 | RC | 17 | 428293 | 7356368 | 354 | GPS | -90 | reported |
| _                | GC0221 | RC | 20 | 428298 | 7356368 | 354 | GPS | -90 | reported |
| )                | GC0222 | RC | 20 | 428303 | 7356368 | 354 | GPS | -90 | reported |
|                  | GC0223 | RC | 20 | 428308 | 7356368 | 354 | GPS | -90 | reported |
|                  | GC0224 | RC | 20 | 428313 | 7356368 | 354 | GPS | -90 | reported |
| )                | GC0225 | RC | 19 | 428319 | 7356369 | 354 | GPS | -90 | reported |
|                  | GC0226 | RC | 20 | 428324 | 7356369 | 354 | GPS | -90 | reported |
| )                | GC0227 | RC | 20 | 428329 | 7356369 | 354 | GPS | -90 | reported |
|                  | GC0228 | RC | 20 | 428333 | 7356369 | 354 | GPS | -90 | reported |
| 5                | GC0229 | RC | 20 | 428338 | 7356369 | 354 | GPS | -90 | reported |
|                  | GC0230 | RC | 19 | 428343 | 7356369 | 354 | GPS | -90 | reported |
|                  | GC0231 | RC | 19 | 428348 | 7356370 | 354 | GPS | -90 | reported |
| 1                | GC0232 | RC | 19 | 428248 | 7356374 | 355 | GPS | -90 | reported |
| $\sum_{i=1}^{n}$ | GC0233 | RC | 17 | 428253 | 7356374 | 355 | GPS | -90 | reported |
|                  | GC0234 | RC | 16 | 428258 | 7356375 | 355 | GPS | -90 | reported |
|                  | GC0235 | RC | 16 | 428262 | 7356375 | 355 | GPS | -90 | reported |
|                  | GC0236 | RC | 15 | 428269 | 7356375 | 355 | GPS | -90 | reported |
|                  | GC0237 | RC | 15 | 428273 | 7356375 | 355 | GPS | -90 | reported |
|                  | GC0238 | RC | 15 | 428278 | 7356375 | 355 | GPS | -90 | reported |
|                  | GC0239 | RC | 15 | 428283 | 7356375 | 355 | GPS | -90 | reported |
|                  | GC0240 | RC | 15 | 428288 | 7356376 | 355 | GPS | -90 | reported |
|                  | GC0241 | RC | 17 | 428292 | 7356376 | 355 | GPS | -90 | reported |
|                  | GC0242 | RC | 20 | 428298 | 7356376 | 354 | GPS | -90 | reported |
| )                | GC0243 | RC | 20 | 428303 | 7356376 | 354 | GPS | -90 | reported |
|                  | GC0244 | RC | 20 | 428308 | 7356376 | 354 | GPS | -90 | reported |
|                  | GC0245 | RC | 20 | 428313 | 7356376 | 354 | GPS | -90 | reported |
|                  | GC0246 | RC | 20 | 428318 | 7356376 | 354 | GPS | -90 | reported |
|                  | GC0247 | RC | 20 | 428323 | 7356376 | 354 | GPS | -90 | reported |
|                  | GC0248 | RC | 20 | 428327 | 7356376 | 354 | GPS | -90 | reported |
| )                | GC0249 | RC | 20 | 428333 | 7356376 | 354 | GPS | -90 | reported |
|                  | GC0250 | RC | 20 | 428338 | 7356376 | 354 | GPS | -90 | reported |
|                  | GC0251 | RC | 20 | 428343 | 7356376 | 354 | GPS | -90 | reported |
|                  | GC0252 | RC | 20 | 428348 | 7356376 | 354 | GPS | -90 | reported |
|                  | GC0253 | RC | 24 | 428249 | 7356381 | 355 | GPS | -90 | reported |
|                  | GC0254 | RC | 24 | 428253 | 7356382 | 355 | GPS | -90 | reported |
|                  | GC0255 | RC | 23 | 428258 | 7356382 | 355 | GPS | -90 | reported |
|                  | GC0256 | RC | 23 | 428263 | 7356382 | 355 | GPS | -90 | reported |
| ļ                | GC0257 | RC | 22 | 428269 | 7356382 | 355 | GPS | -90 | reported |
|                  |        |    |    |        |         |     |     |     |          |



|        | GC0258 | RC | 20 | 428273 | 7356382 | 355 | GPS | -90 | reported |
|--------|--------|----|----|--------|---------|-----|-----|-----|----------|
|        | GC0259 | RC | 18 | 428278 | 7356382 | 355 | GPS | -90 | reported |
|        | GC0260 | RC | 16 | 428283 | 7356382 | 355 | GPS | -90 | reported |
| 7      | GC0261 | RC | 16 | 428288 | 7356382 | 355 | GPS | -90 | reported |
| 1      | GC0262 | RC | 18 | 428293 | 7356382 | 355 | GPS | -90 | reported |
| 1      | GC0263 | RC | 20 | 428298 | 7356382 | 355 | GPS | -90 | reported |
|        | GC0264 | RC | 20 | 428304 | 7356383 | 355 | GPS | -90 | reported |
|        | GC0265 | RC | 20 | 428309 | 7356383 | 355 | GPS | -90 | reported |
| )      | GC0266 | RC | 20 | 428313 | 7356383 | 355 | GPS | -90 | reported |
|        | GC0267 | RC | 20 | 428319 | 7356383 | 355 | GPS | -90 | reported |
|        | GC0268 | RC | 20 | 428324 | 7356383 | 355 | GPS | -90 | reported |
| )      | GC0269 | RC | 20 | 428328 | 7356383 | 355 | GPS | -90 | reported |
|        | GC0270 | RC | 20 | 428333 | 7356383 | 355 | GPS | -90 | reported |
| )      | GC0271 | RC | 20 | 428338 | 7356383 | 354 | GPS | -90 | reported |
|        | GC0272 | RC | 20 | 428343 | 7356383 | 355 | GPS | -90 | reported |
| )      | GC0273 | RC | 20 | 428347 | 7356383 | 355 | GPS | -90 | reported |
|        | GC0274 | RC | 24 | 428249 | 7356388 | 356 | GPS | -90 | reported |
|        | GC0275 | RC | 24 | 428253 | 7356388 | 355 | GPS | -90 | reported |
| 1<br>1 | GC0276 | RC | 24 | 428258 | 7356389 | 356 | GPS | -90 | reported |
|        | GC0277 | RC | 23 | 428263 | 7356389 | 356 | GPS | -90 | reported |
| 1      | GC0278 | RC | 22 | 428269 | 7356389 | 356 | GPS | -90 | reported |
|        | GC0279 | RC | 22 | 428274 | 7356389 | 356 | GPS | -90 | reported |
| 1      | GC0280 | RC | 21 | 428278 | 7356389 | 356 | GPS | -90 | reported |
| )      | GC0281 | RC | 21 | 428283 | 7356389 | 356 | GPS | -90 | reported |
| /      | GC0282 | RC | 21 | 428288 | 7356389 | 356 | GPS | -90 | reported |
| )      | GC0283 | RC | 21 | 428294 | 7356389 | 355 | GPS | -90 | reported |
|        | GC0284 | RC | 21 | 428298 | 7356389 | 355 | GPS | -90 | reported |
| 1      | GC0285 | RC | 20 | 428304 | 7356389 | 355 | GPS | -90 | reported |
|        | GC0286 | RC | 20 | 428309 | 7356390 | 355 | GPS | -90 | reported |
|        | GC0287 | RC | 20 | 428313 | 7356390 | 355 | GPS | -90 | reported |
|        | GC0288 | RC | 19 | 428318 | 7356390 | 355 | GPS | -90 | reported |
| /      | GC0289 | RC | 18 | 428324 | 7356390 | 355 | GPS | -90 | reported |
|        | GC0290 | RC | 17 | 428328 | 7356390 | 355 | GPS | -90 | reported |
| 1      | GC0291 | RC | 17 | 428334 | 7356390 | 355 | GPS | -90 | reported |
|        | GC0292 | RC | 16 | 428338 | 7356390 | 355 | GPS | -90 | reported |
| )      | GC0293 | RC | 16 | 428343 | 7356390 | 355 | GPS | -90 | reported |
|        | GC0294 | RC | 15 | 428348 | 7356391 | 355 | GPS | -90 | Reported |
|        | GC0295 | RC | 25 | 428248 | 7356397 | 356 | GPS | -90 | reported |
| 1      | GC0296 | RC | 24 | 428253 | 7356397 | 356 | GPS | -90 | reported |
|        | GC0297 | RC | 24 | 428258 | 7356397 | 356 | GPS | -90 | reported |
|        | GC0298 | RC | 23 | 428264 | 7356397 | 356 | GPS | -90 | reported |
|        | GC0299 | RC | 23 | 428269 | 7356397 | 356 | GPS | -90 | reported |
|        | GC0300 | RC | 22 | 428274 | 7356396 | 356 | GPS | -90 | reported |
|        | GC0301 | RC | 22 | 428279 | 7356397 | 356 | GPS | -90 | reported |



|        | GC0302 | RC | 21 | 428284 | 7356397 | 356 | GPS | -90 | reported |
|--------|--------|----|----|--------|---------|-----|-----|-----|----------|
|        | GC0303 | RC | 21 | 428289 | 7356397 | 356 | GPS | -90 | reported |
|        | GC0304 | RC | 21 | 428294 | 7356397 | 356 | GPS | -90 | reported |
| 7      | GC0305 | RC | 21 | 428299 | 7356397 | 356 | GPS | -90 | reported |
| 1      | GC0306 | RC | 20 | 428303 | 7356397 | 356 | GPS | -90 | reported |
| 1      | GC0307 | RC | 20 | 428309 | 7356397 | 356 | GPS | -90 | reported |
| 1      | GC0308 | RC | 19 | 428313 | 7356397 | 356 | GPS | -90 | reported |
|        | GC0309 | RC | 19 | 428319 | 7356397 | 355 | GPS | -90 | reported |
| )      | GC0310 | RC | 18 | 428324 | 7356397 | 355 | GPS | -90 | reported |
|        | GC0311 | RC | 18 | 428328 | 7356397 | 355 | GPS | -90 | reported |
|        | GC0312 | RC | 17 | 428333 | 7356397 | 355 | GPS | -90 | reported |
| )      | GC0313 | RC | 17 | 428339 | 7356397 | 355 | GPS | -90 | reported |
|        | GC0314 | RC | 16 | 428343 | 7356397 | 355 | GPS | -90 | reported |
| )      | GC0315 | RC | 16 | 428349 | 7356397 | 355 | GPS | -90 | reported |
| 1      | GC0316 | RC | 22 | 428248 | 7356403 | 356 | GPS | -90 | reported |
| )      | GC0317 | RC | 22 | 428254 | 7356404 | 356 | GPS | -90 | reported |
| ·      | GC0318 | RC | 22 | 428259 | 7356404 | 357 | GPS | -90 | reported |
|        | GC0319 | RC | 22 | 428264 | 7356403 | 357 | GPS | -90 | reported |
| 1<br>] | GC0320 | RC | 23 | 428269 | 7356404 | 357 | GPS | -90 | reported |
| )      | GC0321 | RC | 22 | 428274 | 7356404 | 356 | GPS | -90 | reported |
| 1      | GC0322 | RC | 22 | 428279 | 7356404 | 356 | GPS | -90 | reported |
|        | GC0323 | RC | 23 | 428284 | 7356404 | 356 | GPS | -90 | reported |
| 1      | GC0324 | RC | 22 | 428289 | 7356404 | 356 | GPS | -90 | reported |
| )      | GC0325 | RC | 22 | 428294 | 7356404 | 356 | GPS | -90 | reported |
| /      | GC0326 | RC | 21 | 428299 | 7356404 | 356 | GPS | -90 | reported |
| )      | GC0327 | RC | 21 | 428303 | 7356404 | 356 | GPS | -90 | reported |
| /      | GC0328 | RC | 20 | 428309 | 7356404 | 356 | GPS | -90 | reported |
| 1      | GC0329 | RC | 20 | 428314 | 7356404 | 356 | GPS | -90 | reported |
|        | GC0330 | RC | 19 | 428318 | 7356404 | 356 | GPS | -90 | reported |
| /      | GC0331 | RC | 18 | 428323 | 7356404 | 356 | GPS | -90 | reported |
|        | GC0332 | RC | 18 | 428329 | 7356404 | 356 | GPS | -90 | reported |
| /      | GC0333 | RC | 17 | 428334 | 7356404 | 355 | GPS | -90 | reported |
|        | GC0334 | RC | 17 | 428338 | 7356404 | 355 | GPS | -90 | reported |
| 1      | GC0335 | RC | 16 | 428343 | 7356404 | 355 | GPS | -90 | reported |
|        | GC0336 | RC | 16 | 428348 | 7356405 | 355 | GPS | -90 | reported |
| )      | GC0337 | RC | 22 | 428249 | 7356411 | 357 | GPS | -90 | reported |
|        | GC0338 | RC | 22 | 428254 | 7356411 | 357 | GPS | -90 | Reported |
|        | GC0339 | RC | 22 | 428259 | 7356411 | 357 | GPS | -90 | reported |
| ]      | GC0340 | RC | 22 | 428264 | 7356411 | 357 | GPS | -90 | reported |
|        | GC0341 | RC | 22 | 428269 | 7356411 | 357 | GPS | -90 | reported |
|        | GC0342 | RC | 22 | 428274 | 7356411 | 357 | GPS | -90 | reported |
|        | GC0343 | RC | 22 | 428279 | 7356411 | 357 | GPS | -90 | reported |
|        | GC0344 | RC | 22 | 428284 | 7356411 | 357 | GPS | -90 | reported |
|        | GC0345 | RC | 22 | 428289 | 7356411 | 356 | GPS | -90 | reported |



|   | GC0346 | RC | 22       | 428294 | 7356411 | 356 | GPS | -90 | reported |
|---|--------|----|----------|--------|---------|-----|-----|-----|----------|
|   | GC0347 | RC | 17       | 428299 | 7356411 | 356 | GPS | -90 | reported |
|   | GC0348 | RC | 17       | 428304 | 7356411 | 356 | GPS | -90 | reported |
| 1 | GC0349 | RC | 17       | 428309 | 7356411 | 356 | GPS | -90 | reported |
| 1 | GC0350 | RC | 17       | 428314 | 7356411 | 356 | GPS | -90 | reported |
| 1 | GC0351 | RC | 17       | 428319 | 7356411 | 356 | GPS | -90 | reported |
|   | GC0352 | RC | 17       | 428324 | 7356411 | 356 | GPS | -90 | reported |
|   | GC0353 | RC | 17       | 428329 | 7356411 | 356 | GPS | -90 | reported |
| ) | GC0354 | RC | 17       | 428333 | 7356411 | 356 | GPS | -90 | reported |
|   | GC0355 | RC | 17       | 428338 | 7356411 | 356 | GPS | -90 | reported |
|   | GC0356 | RC | 17       | 428343 | 7356412 | 356 | GPS | -90 | reported |
| ) | GC0357 | RC | 16       | 428348 | 7356411 | 356 | GPS | -90 | reported |
|   | GC0358 | RC | 23       | 428249 | 7356418 | 357 | GPS | -90 | reported |
| ) | GC0359 | RC | 23       | 428254 | 7356418 | 357 | GPS | -90 | reported |
| 1 | GC0360 | RC | 23       | 428259 | 7356418 | 357 | GPS | -90 | reported |
| ) | GC0361 | RC | 23       | 428264 | 7356418 | 357 | GPS | -90 | reported |
|   | GC0362 | RC | 23       | 428269 | 7356418 | 357 | GPS | -90 | reported |
|   | GC0363 | RC | 23       | 428274 | 7356418 | 357 | GPS | -90 | reported |
| 1 | GC0364 | RC | 23       | 428279 | 7356418 | 357 | GPS | -90 | reported |
|   | GC0365 | RC | 22       | 428284 | 7356418 | 357 | GPS | -90 | reported |
|   | GC0366 | RC | 22       | 428289 | 7356418 | 357 | GPS | -90 | reported |
|   | GC0367 | RC | 19       | 428294 | 7356418 | 357 | GPS | -90 | reported |
|   | GC0368 | RC | 17       | 428298 | 7356418 | 357 | GPS | -90 | reported |
| ) | GC0369 | RC | 17       | 428304 | 7356418 | 357 | GPS | -90 | reported |
|   | GC0370 | RC | 17       | 428309 | 7356418 | 357 | GPS | -90 | reported |
| ) | GC0371 | RC | 17       | 428314 | 7356418 | 357 | GPS | -90 | reported |
|   | GC0372 | RC | 17       | 428319 | 7356418 | 356 | GPS | -90 | reported |
| 1 | GC0373 | RC | 17       | 428324 | 7356418 | 356 | GPS | -90 | reported |
|   | GC0374 | RC | 17       | 428329 | 7356418 | 356 | GPS | -90 | reported |
|   | GC0375 | RC | 17       | 428333 | 7356418 | 356 | GPS | -90 | reported |
|   | GC0376 | RC | 17       | 428338 | 7356418 | 356 | GPS | -90 | Reported |
| / | GC0377 | RC | 16       | 428344 | 7356418 | 356 | GPS | -90 | reported |
|   | GC0378 | RC | 16       | 428349 | 7356418 | 356 | GPS | -90 | reported |
| 1 | GC0379 | RC | 23       | 428249 | 7356426 | 358 | GPS | -90 | reported |
|   | GC0380 | RC | 23       | 428254 | 7356425 | 358 | GPS | -90 | reported |
| ) | GC0381 | RC | 23       | 428259 | 7356425 | 358 | GPS | -90 | reported |
|   | GC0382 | RC | 23       | 428264 | 7356425 | 358 | GPS | -90 | reported |
|   | GC0383 | RC | 23       | 428269 | 7356425 | 358 | GPS | -90 | reported |
| 1 | GC0384 | RC | 23       | 428273 | 7356425 | 358 | GPS | -90 | reported |
|   | GC0385 | RC | 23       | 428279 | 7356425 | 358 | GPS | -90 | reported |
|   | GC0386 | RC | 23       | 428284 | 7356425 | 357 | GPS | -90 | reported |
|   | GC0387 | RC | 23       | 428289 | 7356425 | 357 | GPS | -90 | reported |
|   | GC0388 | RC | 18<br>19 | 428294 | 7356426 | 357 | GPS | -90 | reported |
|   | GC0389 | RC | 18       | 428299 | 7356425 | 357 | GPS | -90 | reported |



|   | GC0390 | RC | 17       | 428304 | 7356425            | 357        | GPS | -90        | reported |
|---|--------|----|----------|--------|--------------------|------------|-----|------------|----------|
|   | GC0391 | RC | 17       | 428309 | 7356425            | 357        | GPS | -90        | reported |
|   | GC0392 | RC | 17       | 428314 | 7356425            | 357        | GPS | -90        | reported |
| 7 | GC0393 | RC | 17       | 428319 | 7356425            | 357        | GPS | -90        | reported |
| 1 | GC0394 | RC | 17       | 428324 | 7356425            | 357        | GPS | -90        | reported |
| 1 | GC0395 | RC | 17       | 428329 | 7356425            | 357        | GPS | -90        | reported |
|   | GC0396 | RC | 17       | 428334 | 7356425            | 356        | GPS | -90        | reported |
|   | GC0397 | RC | 17       | 428339 | 7356425            | 356        | GPS | -90        | reported |
| ) | GC0398 | RC | 17       | 428344 | 7356425            | 356        | GPS | -90        | reported |
|   | GC0399 | RC | 17       | 428348 | 7356425            | 356        | GPS | -90        | reported |
|   | GC0400 | RC | 24       | 428249 | 7356433            | 358        | GPS | -90        | reported |
| ) | GC0401 | RC | 24       | 428255 | 7356432            | 358        | GPS | -90        | reported |
|   | GC0402 | RC | 24       | 428259 | 7356432            | 358        | GPS | -90        | reported |
| ) | GC0403 | RC | 24       | 428264 | 7356432            | 358        | GPS | -90        | reported |
| 1 | GC0404 | RC | 24       | 428269 | 7356432            | 358        | GPS | -90        | reported |
| ) | GC0405 | RC | 24       | 428274 | 7356432            | 358        | GPS | -90        | reported |
|   | GC0406 | RC | 24       | 428280 | 7356432            | 358        | GPS | -90        | reported |
|   | GC0407 | RC | 24       | 428284 | 7356432            | 358        | GPS | -90        | reported |
| 1 | GC0408 | RC | 18       | 428289 | 7356432            | 358        | GPS | -90        | reported |
| ) | GC0409 | RC | 18       | 428294 | 7356432            | 357        | GPS | -90        | reported |
| 1 | GC0410 | RC | 18       | 428299 | 7356432            | 357        | GPS | -90        | reported |
|   | GC0411 | RC | 18       | 428304 | 7356432            | 357        | GPS | -90        | reported |
| 1 | GC0412 | RC | 18       | 428309 | 7356432            | 357        | GPS | -90        | reported |
| ) | GC0413 | RC | 18       | 428314 | 7356432            | 357        | GPS | -90        | reported |
|   | GC0414 | RC | 18       | 428319 | 7356432            | 357        | GPS | -90        | reported |
| ) | GC0415 | RC | 18       | 428324 | 7356432            | 357        | GPS | -90        | reported |
|   | GC0416 | RC | 18       | 428329 | 7356432            | 357        | GPS | -90        | reported |
| 1 | GC0417 | RC | 18       | 428334 | 7356432            | 357        | GPS | -90        | reported |
|   | GC0418 | RC | 18       | 428339 | 7356432            | 357        | GPS | -90        | reported |
|   | GC0419 | RC | 18       | 428344 | 7356432            | 357        | GPS | -90        | reported |
|   | GC0420 | RC | 18       | 428349 | 7356433            | 357        | GPS | -90        | reported |
| _ | GC0421 | RC | 24       | 428249 | 7356439            | 359        | GPS | -90        | reported |
|   | GC0422 | RC | 24       | 428254 | 7356439            | 359        | GPS | -90        | reported |
| 1 | GC0423 | RC | 24       | 428259 | 7356439            | 358        | GPS | -90        | reported |
|   | GC0424 | RC | 24       | 428264 | 7356439            | 358        | GPS | -90        | reported |
| ) | GC0425 | RC | 24       | 428269 | 7356439            | 358        | GPS | -90        | Reported |
|   | GC0426 | RC | 24       | 428274 | 7356439            | 358        | GPS | -90        | reported |
| 1 | GC0427 | RC | 24       | 428279 | 7356439            | 358        | GPS | -90        | reported |
|   | GC0428 | RC | 18<br>19 | 428283 | 7356439            | 358<br>259 | GPS | -90        | reported |
|   | GC0429 | RC | 18<br>19 | 428289 | 7356439            | 358<br>259 | GPS | -90        | reported |
|   | GC0430 | RC | 18<br>19 | 428294 | 7356439            | 358<br>259 | GPS | -90        | reported |
|   | GC0431 | RC | 18<br>19 | 428298 | 7356439            | 358<br>257 | GPS | -90        | reported |
|   | GC0432 | RC | 18<br>19 | 428304 | 7356439<br>7356439 | 357<br>257 | GPS | -90<br>-90 | reported |
|   | GC0433 | RC | 18       | 428308 | 7356439            | 357        | GPS | -90        | reported |



|   | GC0434 | RC | 18       | 428314 | 7356439 | 357        | GPS | -90 | reported |
|---|--------|----|----------|--------|---------|------------|-----|-----|----------|
|   | GC0435 | RC | 18       | 428318 | 7356439 | 357        | GPS | -90 | reported |
|   | GC0436 | RC | 18       | 428324 | 7356439 | 357        | GPS | -90 | reported |
| 7 | GC0437 | RC | 18       | 428329 | 7356439 | 357        | GPS | -90 | reported |
| 1 | GC0438 | RC | 18       | 428334 | 7356438 | 357        | GPS | -90 | reported |
| 1 | GC0439 | RC | 18       | 428339 | 7356438 | 357        | GPS | -90 | reported |
|   | GC0440 | RC | 18       | 428344 | 7356438 | 357        | GPS | -90 | reported |
|   | GC0441 | RC | 18       | 428348 | 7356439 | 357        | GPS | -90 | reported |
| ) | GC0442 | RC | 24       | 428249 | 7356446 | 359        | GPS | -90 | reported |
|   | GC0443 | RC | 24       | 428254 | 7356446 | 359        | GPS | -90 | reported |
|   | GC0444 | RC | 24       | 428258 | 7356446 | 359        | GPS | -90 | reported |
| ) | GC0445 | RC | 24       | 428263 | 7356446 | 359        | GPS | -90 | reported |
|   | GC0446 | RC | 24       | 428268 | 7356446 | 359        | GPS | -90 | reported |
| ) | GC0447 | RC | 24       | 428273 | 7356446 | 359        | GPS | -90 | reported |
|   | GC0448 | RC | 18       | 428278 | 7356446 | 358        | GPS | -90 | reported |
| ) | GC0449 | RC | 18       | 428283 | 7356446 | 358        | GPS | -90 | reported |
|   | GC0450 | RC | 18       | 428289 | 7356446 | 358        | GPS | -90 | reported |
|   | GC0451 | RC | 18       | 428293 | 7356446 | 358        | GPS | -90 | reported |
| 1 | GC0452 | RC | 18       | 428299 | 7356446 | 358        | GPS | -90 | reported |
|   | GC0453 | RC | 18       | 428304 | 7356446 | 358        | GPS | -90 | reported |
| 1 | GC0454 | RC | 18       | 428309 | 7356446 | 358        | GPS | -90 | reported |
|   | GC0455 | RC | 18       | 428313 | 7356446 | 358        | GPS | -90 | reported |
|   | GC0456 | RC | 18       | 428319 | 7356445 | 358        | GPS | -90 | reported |
| ) | GC0457 | RC | 18       | 428324 | 7356445 | 358        | GPS | -90 | reported |
|   | GC0458 | RC | 18       | 428328 | 7356445 | 357        | GPS | -90 | reported |
| ) | GC0459 | RC | 18       | 428334 | 7356445 | 357        | GPS | -90 | reported |
| / | GC0460 | RC | 18       | 428338 | 7356445 | 357        | GPS | -90 | reported |
| 1 | GC0461 | RC | 18       | 428343 | 7356445 | 357        | GPS | -90 | reported |
|   | GC0462 | RC | 18       | 428349 | 7356445 | 357        | GPS | -90 | reported |
| / | GC0426 | RC | 24       | 428274 | 7356439 | 358        | GPS | -90 | reported |
|   | GC0427 | RC | 24       | 428279 | 7356439 | 358        | GPS | -90 | reported |
| / | GC0428 | RC | 18       | 428283 | 7356439 | 358        | GPS | -90 | reported |
|   | GC0429 | RC | 18       | 428289 | 7356439 | 358        | GPS | -90 | reported |
| 1 | GC0430 | RC | 18       | 428294 | 7356439 | 358        | GPS | -90 | reported |
|   | GC0431 | RC | 18       | 428298 | 7356439 | 358        | GPS | -90 | reported |
| ) | GC0432 | RC | 18       | 428304 | 7356439 | 357        | GPS | -90 | Reported |
|   | GC0433 | RC | 18       | 428308 | 7356439 | 357        | GPS | -90 | reported |
|   | GC0434 | RC | 18       | 428314 | 7356439 | 357        | GPS | -90 | reported |
| ] | GC0435 | RC | 18       | 428318 | 7356439 | 357        | GPS | -90 | reported |
|   | GC0436 | RC | 18       | 428324 | 7356439 | 357        | GPS | -90 | reported |
|   | GC0437 | RC | 18<br>19 | 428329 | 7356439 | 357        | GPS | -90 | reported |
|   | GC0438 | RC | 18<br>19 | 428334 | 7356438 | 357        | GPS | -90 | reported |
|   | GC0439 | RC | 18<br>19 | 428339 | 7356438 | 357<br>257 | GPS | -90 | reported |
|   | GC0440 | RC | 18       | 428344 | 7356438 | 357        | GPS | -90 | reported |
|   |        |    |          |        |         |            |     |     |          |



|   | GC0441 | RC | 18 | 428348 | 7356439 | 357 | GPS | -90 | reported |
|---|--------|----|----|--------|---------|-----|-----|-----|----------|
|   | GC0442 | RC | 24 | 428249 | 7356446 | 359 | GPS | -90 | reported |
|   | GC0443 | RC | 24 | 428254 | 7356446 | 359 | GPS | -90 | reported |
| 7 | GC0444 | RC | 24 | 428258 | 7356446 | 359 | GPS | -90 | reported |
| 1 | GC0445 | RC | 24 | 428263 | 7356446 | 359 | GPS | -90 | reported |
| 1 | GC0446 | RC | 24 | 428268 | 7356446 | 359 | GPS | -90 | reported |
| 1 | GC0447 | RC | 24 | 428273 | 7356446 | 359 | GPS | -90 | reported |
|   | GC0448 | RC | 18 | 428278 | 7356446 | 358 | GPS | -90 | reported |
| ) | GC0449 | RC | 18 | 428283 | 7356446 | 358 | GPS | -90 | reported |
|   | GC0450 | RC | 18 | 428289 | 7356446 | 358 | GPS | -90 | reported |
|   | GC0451 | RC | 18 | 428293 | 7356446 | 358 | GPS | -90 | reported |
| ) | GC0452 | RC | 18 | 428299 | 7356446 | 358 | GPS | -90 | reported |
|   | GC0453 | RC | 18 | 428304 | 7356446 | 358 | GPS | -90 | reported |
| ) | GC0454 | RC | 18 | 428309 | 7356446 | 358 | GPS | -90 | reported |
| 1 | GC0455 | RC | 18 | 428313 | 7356446 | 358 | GPS | -90 | reported |
| ) | GC0456 | RC | 18 | 428319 | 7356445 | 358 | GPS | -90 | reported |
|   | GC0457 | RC | 18 | 428324 | 7356445 | 358 | GPS | -90 | reported |
|   | GC0458 | RC | 18 | 428328 | 7356445 | 357 | GPS | -90 | reported |
| 1 | GC0459 | RC | 18 | 428334 | 7356445 | 357 | GPS | -90 | reported |
|   | GC0460 | RC | 18 | 428338 | 7356445 | 357 | GPS | -90 | reported |
| 1 | GC0461 | RC | 18 | 428343 | 7356445 | 357 | GPS | -90 | reported |
|   | GC0462 | RC | 18 | 428349 | 7356445 | 357 | GPS | -90 | reported |
|   |        |    |    |        |         |     |     |     |          |

## Drilling

Hastings completed an extensive drill campaign at Bald Hill during 2020 that comprised 257 holes for 5,002m of reverse circulation (RC).

Holes were drilled on a 5m x 7m grid pattern, with all holes drilled vertically with a maximum hole depth of 25m and an average depth of 20m.

Collar surveys were carried out and collected by RM Surveyors using DGPS utilising a locally established control point. Accuracies of the drillhole collar locations collected by RM Surveyors is better than 0.1m.

RC holes were drilled using a nominal 5¼ inch diameter face-sampling bit. Samples were collected through a builtin cyclone with a triple-tier riffle-splitting system providing a large sample of approximately 25kg and a sub-sample of 2-4kg from each metre drilled, of which selected samples were sent for analysis. Field duplicates, blanks and Reference Standards were inserted at a rate of approximately 1 in 20.

## Sampling

Samples were routinely sent to Genalysis in Perth for analysis using techniques considered appropriate for the style of mineralisation. Samples were analysed for the range of rare earths, rare metals (Nb, Ta, Zr), thorium and uranium and a range of common rock-forming elements (Al, Ca, Fe, Mg, Mn, P, S, Si, Sr). Duplicate samples were sent to SGS Laboratories for cross-checking.



Once assay data were returned, the elemental values were converted to oxides using standard factors.

## **Quality Control**

In total, the quality control regime executed has provided reasonable support for the accuracy and precision of the assay results underpinning the Mineral Resource estimate. The vast majority of results for standards remain within the normal control limits of 2 standard deviations.

Bulk density values used for the grade control estimate were derived from those used during the recently announced Mineral Resource estimate.

## Interpretation of Geology

The mineralisation at Yangibana comprises a series of narrow-vein, high-grade deposits with strike extents up to several kilometres. Individual mineralised zones are 1m to 15m wide and extend down-dip for at least 125m, with dips varying from sub-horizontal to sub-vertical.

Confidence in the geological interpretation is considered to be good. The interpretation is based on a drilling density of 5mE x 7mN. The interpretation also incorporates data gathered from surface mapping of exposures. The mapping has assisted in understanding the controls on mineralisation to improve the confidence in the geological interpretation. All available data from drilling and mapping is used in the geological interpretation. An iterative process has been adopted with respect to the geological interpretation to ensure that it reflects and captures the mineralisation.

The drilling data was sampled at 1m with all intervals sent for assay. As a consequence, the grade-control dataset represents a more continuous and less selectively sampled dataset relative to the underlying Mineral Resource dataset.

In a limited number of cases where the assay values did not meet the TREO cut-off grade criteria for wireframing, an assessment of the mineralisation was undertaken using elevated Fe values. This was done to enable a consistent mineralised envelope with the low TREO (and other element) values incorporated. In general, these areas are of limited extent. A minimum thickness value of 2m was applied to the mineralisation wireframe in order to more reasonably assess the mining potential of the drill pattern.

## **Cut-Off Grades**

Wireframing of the grade control pattern was conducted using a TREO cut-off grade in order to improve the geological and grade consistency of the modelled wireframe. In this instance, a TREO grade of approximately 0.20% was chosen for the wireframing value as this was considered to represent the transition between consistently mineralised and non-mineralised material.

This process created a level of conservatism whereby lower grades of  $Nd_2O_3$ + $Pr_6O_{11}$  were incorporated into the wireframe. Additional conservatism was added by only allowing the wireframes to be extrapolated down dip below the last drill hole, using the geological convention of 50% of the local drill hole spacing.

#### **Block Modelling Parameters for Grade Control Estimate**

Due to the complexity and generally narrow nature of the mineralisation, the Mineral Resource estimates were undertaken on 'flattened' block models following the allocation of block proportions from the updated mineralisation wireframes. This flattening process allowed for the use of Ordinary Kriging estimation techniques.



One-metre down-hole compositing based on the assay data and wireframes was used to regularise the assayed intervals. Summary statistics for each deposit were used to identify the presence of outliers. Due to the distribution of grades within the mineralisation and the relatively un-skewed data population no top cuts were deemed necessary.

For the grade-control estimate, variograms of TREO were used from the previous Mineral Resource estimate in order to more reasonably compare the two estimates. In all instances the directional trends evident in the variogram maps are evident to some extent in plan views of the sample data and they normally conform to the orientation of the mineralisation within the wireframes. As expected, variogram model ranges in the vertical direction are relatively short due to the predominantly thin nature of the mineralisation. The majority of variograms display reasonable structure, with anisotropies reflecting those observed in the variogram maps.

The grade-control model was created with the same block size of 2m x 2m x 1m as the underlying Mineral Resource estimate in order to validate the parameters of the Mineral Resource estimate. This size was chosen as a compromise between the average drill spacing, size of the mineralisation wireframes (in order to limit resulting low mineralised proportions), orientation of the mineralisation, grade distribution within the mineralisation and the models' ultimate use for grade-control assessment.

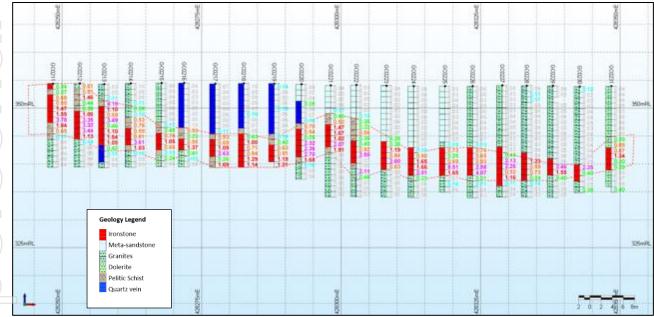



Figure 3. Grade control drilling section 7,356,368mN.





#### Figure 4. Grade control drilling section 7,356,382mN.

Figures 3 and 4 show the orientation of the mineralisation and grade distribution through the grade-control drilling area and indicate the consistency of the mineralisation.

This announcement has been approved by the Board for release to the ASX.

#### For further information, please contact:

Charles Lew

Executive Chairman +65 6220 9220 Matthew Allen Chief Financial Officer +61 8 6117 8634 Andrew Reid

Chief Operating Officer +61 8 6117 8621

#### For media and investor queries, please contact:

Peter Klinger Cannings Purple +61 411 251 540 pklinger@canningspurple.com.au Peter Kermode Cannings Purple +61 411 209 459 pkermode@canningspurple.com.au



## **About Hastings Technology Metals Limited**

Hastings Technology Metals Limited (ASX: HAS) is a well-led Perth rare earths company primed to become the world's next producer of neodymium and praseodymium concentrate (NdPr).

NdPr are vital components in the permanent magnets used every day in high-tech products ranging from electric vehicles to wind turbines, robotics and medical applications.

Hastings' flagship Yangibana project, in the Gascoyne region of Western Australia, contains one of the most highly valued NdPr deposits in the world. Fully permitted to long-life production and with project finance and offtake talks well advanced, Yangibana's construction is due to start in 2021 ahead of first output in 2023.

Hastings also owns and operates the Brockman project, Australia's largest heavy rare earths deposit, near Halls Creek in the Kimberley. Brockman hosts a JORC complaint minerals resource containing Total Rare Earths Oxides (TREO).

For further information on the Company and its projects visit www.hastingstechmetals.com

## **Competent Person Statements**

The information in this announcement that relates to Exploration Results in relation to the Yangibana Project is based on information compiled by Mr. Andrew Reid BSc (Hons) MSc FAUSIMM, a Competent Person, who is a Fellow of the Australian Institute of Mining and Metallurgy. Mr. Reid is a full-time employee of the company and has sufficient experience that is relevant to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. The Qualified Person has verified the data disclosed in this release, including sampling, analytical and test data underlying the information contained in this release. Mr. Reid consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to Mineral Resources is based on information compiled by David Princep. Mr Princep is an independent consultant to the Company and members of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Princep has sufficient experience relevant to the styles of mineralisation and types of deposits which are covered in this announcement and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("JORC Code").

#### **TERMINOLOGY USED IN THIS REPORT**

**Total Rare Earths Oxides, TREO,** is the sum of the oxides of the light rare earth elements lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm) and the heavy rare earth elements europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), and yttrium (Y).



# JORC Code, 2012 Edition – Bald Hill Grade Control 2021

## Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | <ul> <li>Nature and quality of sampling (eg cut<br/>channels, random chips, or specific specialised<br/>industry standard measurement tools<br/>appropriate to the minerals under<br/>investigation, such as down hole gamma<br/>sondes, or handheld XRF instruments, etc).</li> <li>These examples should not be taken as limiting<br/>the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure<br/>sample representivity and the appropriate<br/>calibration of any measurement tools or<br/>systems used.</li> <li>Aspects of the determination of mineralisation<br/>that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has<br/>been done this would be relatively simple (eg<br/>'reverse circulation drilling was used to obtain<br/>1 m samples from which 3 kg was pulverised to<br/>produce a 30 g charge for fire assay'). In other<br/>cases more explanation may be required, such<br/>as where there is coarse gold that has inherent<br/>sampling problems. Unusual commodities or<br/>mineralisation types (eg submarine nodules)<br/>may warrant disclosure of detailed</li> </ul> | <ul> <li>All drilling for the grade control programme at Bald<br/>Hill was Reverse Circulation (RC) using the same drill rig<br/>as the recently completed Mineral Resource update<br/>drilling.</li> <li>Samples from each metre were collected in a cyclone<br/>and split using a 3-level riffle splitter. Field duplicates,<br/>blanks and Reference Standards were inserted at a rate<br/>of approximately 1 in 20.</li> </ul>                                                                                                                                                                                                                  |
| Drilling<br>techniques   | information.<br>Drill type (eg core, reverse circulation, open-<br>hole hammer, rotary air blast, auger, Bangka,<br>sonic, etc) and details (eg core diameter, triple<br>or standard tube, depth of diamond tails, face-<br>sampling bit or other type, whether core is<br>oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • Reverse Circulation drilling utilised a nominal 5 1/4 inch diameter face-sampling hammer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Drill sample<br>recovery | Method of recording and assessing core and<br>chip sample recoveries and results assessed.<br>Measures taken to maximise sample recovery<br>and ensure representative nature of the<br>samples.<br>Whether a relationship exists between sample<br>recovery and grade and whether sample bias<br>may have occurred due to preferential<br>loss/gain of fine/coarse material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Recoveries are recorded by the geologist in the field<br/>at the time of drilling/logging. During the 2020<br/>programme all bags were weighed in the field.</li> <li>If poor sample recovery is encountered during<br/>drilling, the geologist and driller have endeavoured to<br/>rectify the problem to ensure maximum sample<br/>recovery. Visual assessment is made for moisture and<br/>contamination. A cyclone and splitter were used to<br/>ensure representative samples and were routinely<br/>cleaned.</li> <li>Sample recoveries to date have generally been<br/>reasonable, and moisture in samples minimal. Data</li> </ul> |



| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | from 2020 is available at present to determine if a relationship exists between recovery and grade exist, however this work has not been completed as yet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                             | <ul> <li>All drill chip samples are geologically logged at 1m intervals from surface to the bottom of each individual hole to a level that supports grade control studies.</li> <li>Logging is considered to be semi-quantitative given the nature of reverse circulation drill chips.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sub-sampling<br>techniques and<br>sample<br>preparation | If core, whether cut or sawn and whether<br>quarter, half or all core taken.<br>If non-core, whether riffled, tube sampled,<br>rotary split, etc and whether sampled wet or<br>dry.<br>For all sample types, the nature, quality and<br>appropriateness of the sample preparation<br>technique.<br>Quality control procedures adopted for all sub-<br>sampling stages to maximise representivity of<br>samples.<br>Measures taken to ensure that the sampling is<br>representative of the in situ material collected,<br>including for instance results for field<br>duplicate/second-half sampling.<br>Whether sample sizes are appropriate to the<br>grain size of the material being sampled. | <ul> <li>The RC drilling rig is equipped with an in-built cyclone and triple tier riffle splitting system, which provided one bulk sample of approximately 25kg, and a sub-sample of 2-4kg per metre drilled.</li> <li>All samples were split using the system described above to maximise and maintain consistent representivity. Most samples were dry. For wet samples the cleanliness of the cyclone and splitter was constantly monitored by the geologist and maintained to avoid contamination.</li> <li>Bulk samples were placed in green plastic bags, with the sub-samples collected placed in calico sample bags.</li> <li>Field duplicates were collected directly from the splitter as drilling proceeded through a secondary sample chute. These duplicates were designed for lab checks as well as lab umpire analysis if required.</li> <li>A sample size of 2-4kg was collected and considered appropriate and representative for the grain size and style of mineralisation.</li> </ul> |
| Quality of assay<br>data and<br>laboratory tests        | The nature, quality and appropriateness of the<br>assaying and laboratory procedures used and<br>whether the technique is considered partial or<br>total.<br>For geophysical tools, spectrometers, handheld<br>XRF instruments, etc, the parameters used in<br>determining the analysis including instrument<br>make and model, reading times, calibrations<br>factors applied and their derivation, etc.<br>Nature of quality control procedures adopted<br>(eg standards, blanks, duplicates, external<br>laboratory checks) and whether acceptable<br>levels of accuracy (ie lack of bias) and precision<br>have been established.                                                            | <ul> <li>Genalysis (Perth) was used for all analysis work<br/>carried out on the 1m drill chip samples. The<br/>laboratory techniques below are for all samples<br/>submitted to Genalysis and are considered appropriate<br/>for the style of mineralisation defined at the Yangibana<br/>REE Project: FP6/MS</li> <li>Blind field duplicates were collected at a rate of<br/>approximately 1 duplicate for every 20 samples that<br/>are to be submitted to Genalysis for laboratory<br/>analysis. Field duplicates were split directly from the<br/>splitter as drilling proceeded at the request of the<br/>supervising geologist.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |



| Criteria                                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification of<br>sampling and<br>assaying                      | The verification of significant intersections by<br>either independent or alternative company<br>personnel.<br>The use of twinned holes.<br>Documentation of primary data, data entry<br>procedures, data verification, data storage<br>(physical and electronic) protocols.<br>Discuss any adjustment to assay data.                                                                              | <ul> <li>At least two company personnel verify all significant intersections as well as the independent geological database provider.</li> <li>All geological logging and sampling information is completed firstly on to paper logs before being transferred to Microsoft Excel spreadsheets and subsequently a Microsoft Access database. Physical logs and sampling data are returned to the Hastings head office for scanning and storage. Electronic copies of all information are backed up daily.</li> <li>All 2020 field geological data capture was completed directly into excel or Ocris.</li> <li>No adjustments of assay data are considered necessary.</li> </ul> |
| Location of data<br>points                                       | Accuracy and quality of surveys used to locate<br>drill holes (collar and down-hole surveys),<br>trenches, mine workings and other locations<br>used in Mineral Resource estimation.<br>Specification of the grid system used.<br>Quality and adequacy of topographic control.                                                                                                                     | <ul> <li>Final drillhole collars completed the 2020 grade control drill campaign was collected by MHR Surveyors using DGPS utilising a locally established control point. Accuracies of the drillhole collar locations collected by MHR Surveyors is better than 0.1m.</li> <li>Elevation data was recorded by MHR Surveyors.</li> <li>Due to the short nature of the drill holes, averaging 20m, and the relatively flat nature of the mineralisation no down hole surveys were conducted during the grade control drilling programme.</li> <li>Grid system used is MGA 94 (Zone 50)</li> </ul>                                                                                |
| Data spacing<br>and distribution                                 | Data spacing for reporting of Exploration<br>Results.<br>Whether the data spacing and distribution is<br>sufficient to establish the degree of geological<br>and grade continuity appropriate for the<br>Mineral Resource and Ore Reserve estimation<br>procedure(s) and classifications applied.<br>Whether sample compositing has been applied.                                                  | <ul> <li>Substantial areas of the main Bald Hill deposit have been infill drilled at a staggered 50m x 50m pattern, giving an effective 35m x 35 spacing, with some areas infilled to 20m x 20m and 20m x 10m in the 2018 drilling programme.</li> <li>The Bald Hill grade control program covered an area of Measured category Mineral Resource with nominal 5mE x 7mN spacing drill programme. This area was chosen as it is likely to be the first area excavated at the expected start of mining.</li> <li>No sample compositing is used in this report, all results detailed are the product of 1m downhole sample intervals.</li> </ul>                                   |
| Orientation of<br>data in relation<br>to geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | • Most drill holes in the 2020 grade control programme were drilled vertically as the mineralisation in the grade control pattern area is predominantly horizontal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



| Criteria             | JORC Code explanation                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample security      | The measures taken to ensure sample security.                         | <ul> <li>The chain of custody is managed by the project geologist who places calico sample bags in polyweave sacks. Up to 10 calico sample bags are placed in each sack. Each sack is clearly labelled with:         <ul> <li>Hastings Technology Metals Ltd</li> <li>Address of laboratory</li> <li>Sample range</li> </ul> </li> <li>Samples were delivered by Hastings personnel to the Nexus Logistics base in order to be loaded on the next available truck for delivery to Genalysis</li> <li>The freight provider delivers the samples directly to the laboratory. Detailed records are kept of all samples that are dispatched, including details of chain of custody.</li> </ul> |
| Audits or<br>reviews | The results of any audits or reviews of sampling techniques and data. | • An audit of sampling for the Mineral Resource<br>estimate has been completed. Additional umpire<br>sampling was completed. A new source of standards is<br>being used to cross-check data from existing standards<br>and assayed samples that were acquired in the drilling<br>programs comprising the underlying Mineral Resource.                                                                                                                                                                                                                                                                                                                                                      |



## Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                      | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement<br>and land tenure<br>status | Type, reference name/number, location and<br>ownership including agreements or material<br>issues with third parties such as joint ventures,<br>partnerships, overriding royalties, native title<br>interests, historical sites, wilderness or national<br>park and environmental settings.<br>The security of the tenure held at the time of<br>reporting along with any known impediments<br>to obtaining a licence to operate in the area.                                                                                                                                                                                                                                                         | <ul> <li>Drilling has been undertaken on numerous<br/>tenements within the Yangibana Project.</li> <li>All Yangibana tenements are in good standing<br/>and no known impediments exist.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                         |
| Exploration done by other parties             | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • Ten of the Yangibana prospects were previously drilled to a limited extent by Hurlston Pty Limited in joint venture with Challenger Pty Limited in the late 1980s. Auer and Auer North were first drilled by Hastings in 2016.                                                                                                                                                                                                                                                                                                                                                                           |
| Geology                                       | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>The Yangibana ironstones within the Yangibana<br/>Project are part of an extensive REE-mineralised<br/>system associated with the Gifford Creek<br/>Carbonatite Complex. The lenses have a total strike<br/>length of at least 12km.</li> <li>These ironstone lenses have been explored<br/>previously for base metals, manganese, uranium,<br/>diamonds and rare earths.</li> <li>The ironstones are considered by GSWA to be<br/>coeval with the numerous carbonatite sills that<br/>occur within Hastings tenements, or at least part of<br/>the same magmatic/hydrothermal system.</li> </ul> |
| Drill hole<br>Information                     | A summary of all information material to the<br>understanding of the exploration results<br>including a tabulation of the following<br>information for all Material drill holes:<br>easting and northing of the drill hole collar<br>elevation or RL (Reduced Level – elevation<br>above sea level in metres) of the drill hole<br>collar<br>dip and azimuth of the hole<br>down hole length and interception depth<br>hole length.<br>If the exclusion of this information is justified<br>on the basis that the information is not<br>Material and this exclusion does not detract<br>from the understanding of the report, the<br>Competent Person should clearly explain why<br>this is the case. | • Presented in Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| Criteria                                                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data aggregation<br>methods                                                  | In reporting Exploration Results, weighting<br>averaging techniques, maximum and/or<br>minimum grade truncations (eg cutting of high<br>grades) and cut-off grades are usually Material<br>and should be stated.<br>Where aggregate intercepts incorporate short                                                                                                                                              | • For significant intervals samples were composited<br>at a cut-off grade of 0.24% TREO and incorporated<br>up to 2 metres of internal waste.                                                                                                                                                                                   |
|                                                                              | lengths of high-grade results and longer<br>lengths of low grade results, the procedure<br>used for such aggregation should be stated and<br>some typical examples of such aggregations<br>should be shown in detail.                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                 |
|                                                                              | The assumptions used for any reporting of metal equivalent values should be clearly stated.                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                 |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | These relationships are particularly important<br>in the reporting of Exploration Results.<br>If the geometry of the mineralisation with<br>respect to the drill hole angle is known, its<br>nature should be reported.                                                                                                                                                                                       | • In the area of the grade control drilling the mineralisation is essential flat lying so mineralised intercepts represent the true thickness of the mineralisation.                                                                                                                                                            |
|                                                                              | If it is not known and only the down hole<br>lengths are reported, there should be a clear<br>statement to this effect (eg 'down hole length,<br>true width not known').                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                 |
| Diagrams                                                                     | Appropriate maps and sections (with scales)<br>and tabulations of intercepts should be<br>included for any significant discovery being<br>reported These should include, but not be<br>limited to a plan view of drill hole collar<br>locations and appropriate sectional views.                                                                                                                              | • Maps and sections are shown in the body of this announcement .                                                                                                                                                                                                                                                                |
| Balanced reporting                                                           | Where comprehensive reporting of all<br>Exploration Results is not practicable,<br>representative reporting of both low and high<br>grades and/or widths should be practiced to<br>avoid misleading reporting of Exploration<br>Results.                                                                                                                                                                      | • As the drilling is considered grade control for<br>mining purposes only the highest/thickest intervals<br>are reported as significant intervals however all drill<br>holes intersected mineralisation and all are<br>considered consistent with the mineralisation<br>defined in the underlying Mineral Resource<br>estimate. |
| Other substantive<br>exploration data                                        | Other exploration data, if meaningful and<br>material, should be reported including (but not<br>limited to): geological observations;<br>geophysical survey results; geochemical survey<br>results; bulk samples – size and method of<br>treatment; metallurgical test results; bulk<br>density, groundwater, geotechnical and rock<br>characteristics; potential deleterious or<br>contaminating substances. | • Geological mapping has continued in the vicinity of the drilling as the programme proceeds.                                                                                                                                                                                                                                   |



| Criteria     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Further work | The nature and scale of planned further work<br>(eg tests for lateral extensions or depth<br>extensions or large-scale step-out drilling).<br>Diagrams clearly highlighting the areas of<br>possible extensions, including the main<br>geological interpretations and future drilling<br>areas, provided this information is not<br>commercially sensitive. | <ul> <li>Numerous targets exist for expansion of the current JORC Mineral Resources within the Yangibana Project, as extensions to defined deposits, new targets identified from the Company's various remote sensing surveys, and conceptual as yet untested targets at depth.</li> <li>Additional grade control drilling is expected to be undertaken prior to mining in the normal course of events.</li> </ul> |