1 June 2021

More massive nickel-copper sulphide and mineralised intrusion at Mawson

- RKDD053 intersects 31.2m sulphide zone including;
 - > 16.1m of massive and semi-massive nickel-copper sulphide, and
 - > 7.77m matrix nickel-copper sulphide
- RKDD046/049/051 intersect wide sulphide zones extending prospective intrusion

200m north and west of previous drilling

• Downhole EM ongoing, identifying multiple targets

Legend Mining Limited (Legend) is pleased to report the results of the next nine diamond drillholes (RKDD045-RKDD053) at the flagship Mawson nickel-copper-cobalt prospect within the Rockford project, Fraser Range, Western Australia (see Figure 4).

Comprehensive details are contained in the body of this report.

Legend Managing Director Mr Mark Wilson said: "We are very pleased to announce a new zone of massive/semi massive nickel copper sulphide around holes 43 and 53. With ongoing downhole EM and further drilling we expect this zone will evolve over time.

_egen

"Equally pleasing is that our strategy of systematic step out drilling continues to expand the 3D footprint of the mineralised intrusive and open up further prospective horizons for future planned drilling."

Photo 1: Massive Ni-Cu Sulphide from RKDD053 from 138.5m

Page1

TECHNICAL DISCUSSION

Below is a technical summary of the diamond drilling completed at the Mawson Ni-Cu-Co prospect since the ASX Announcement *28 April 2021*. A total of nine further diamond drillholes have been completed (RKDD045 – RKDD053), with two rigs continuing double-shift diamond drilling (see Figure 1).

RKDD053 was designed to test an offhole conductor from RKDD043, whilst holes RKDD045 – RKDD052 continued the systematic step-out diamond drilling across Mawson, adding critical data to existing datasets. This step-out drilling continues to define mineralised intrusion and importantly, the architecture of the Mawson intrusion. The 3D model driving predictive exploration at Mawson continues to evolve with additional data and continues to be very accurate. This bodes well for continued selection of targets to test for the preferred host lithologies and structurally favourable positions to host massive Ni-Cu mineralisation across the Mawson intrusion.

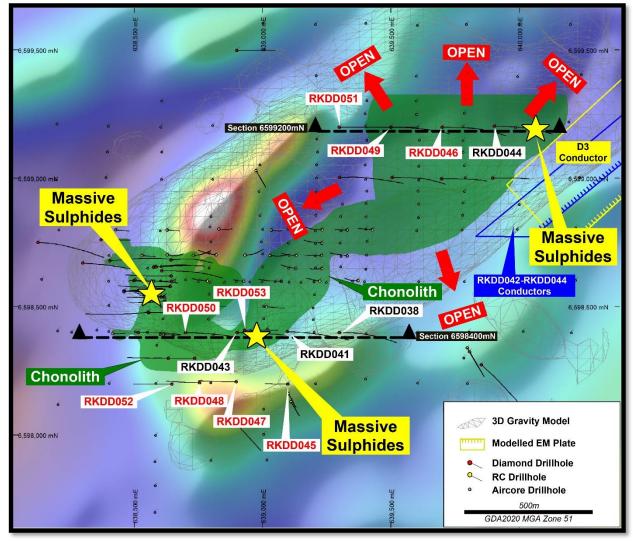


Figure 1: Diamond Drillhole Locations and defined Chonolith model projected to surface over Aeromagnetics.

Section 6,598,400mN

Diamond drillholes RKDD041/050/053 have been completed on section 6,598,400mN (see Figure 1 and Figure 2). Drilling was designed to follow the mineralised intrusion to the west and east of RKDD043, while RKDD053 was designed to test the offhole conductor above RKDD043, interpreted to be extensions of the massive and semi-massive Ni-Cu sulphide mineralisation encountered in-hole (see Figure 1, Figure 2, and Table 1).

RKDD053 intersected a zone of dominantly massive, semi-massive, and matrix sulphide, with lesser heavy disseminated and disseminated sulphide between 132.07m and 163.28m (see Appendix 1, Photo1, and Photo 2) before finishing at 260.4m in meta-BIF.

DHTEM is scheduled on RKDD053 to search for further extensions to the mineralisation.

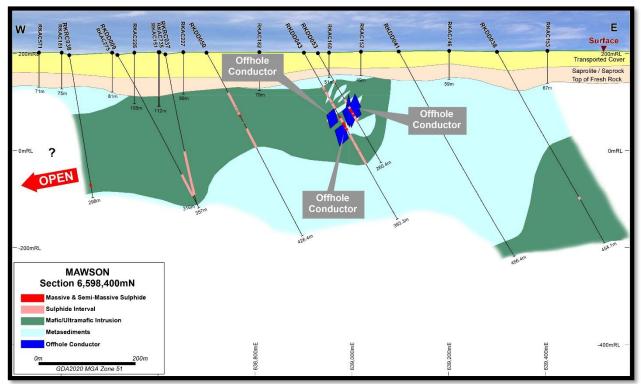


Figure 2: Drill Section 6,598,400mN looking north showing diamond drillholes RKDD038, RKDD041, RKDD043, RKDD050, and RKDD053 (Note – conductors strike N-S).

Table 1: Modelled DHTEM Conductor Parameters					
Conductor	Conductance	Dimensions	Plate Orientation	Depth Downhole	Plate Dip
RKDD043 (offhole)	2,250-3,250S	50m x 50m	N-S	160m	Subvertical
RKDD042 and RKDD044 (offhole)	13,000-19,000S	1000m x 500m	NE-SW	~170m below bottom of holes	75 ⁰ -80 ⁰

Photo 2: Massive and Semi-massive Ni-Cu Sulphide from RKDD053 from 135m

RKDD050 drilled 200m west of RKDD043 intersected mineralised intrusion including narrow zones of semi-massive veins and net-texture sulphide within broader zones of disseminated mineralisation from 94.1m to 221.6m downhole.

RKDD041 drilled 200m east of RKDD043 was initially drilled to 300m before being re-entered and extended to 486.4m. The drillhole intersected a thickened package of metasediments and meta-BIF's, interpreted to be a structural control resulting in a change in direction of the mineralised intrusion from NE-SW to NNW-SSE. The current interpretation is RKDD043/053 is a junction point whereby the western chonolith and eastern chonolith join. The change in orientation of the intrusion potentially explains the massive sulphide mineralisation encountered in RKDD043 and RKDD053, whereby a natural structural trap is created as a result of a change in orientation due to the structural control.

DHTEM is scheduled to be completed on RKDD050 and RKDD041.

Section 6,598,200mN

Diamond drillholes RKDD045/047/048/052 have been completed on section 6,598,200mN (see Figure 1). Drilling targeted the interpreted southern extension of the eastern chonolith. All holes hit extensive packages of metasediments and meta-BIF's, marking the southern closure of the Mawson intrusion.

Section 6,599,200mN

Diamond drillholes RKDD046/049/051 have been completed on section 6,599,200mN, west of RKDD044. Drilling targeted the interpreted northern extension of the eastern chonolith (see Figure 1 and Figure 3).

As reported to ASX on 28 April 2021, RKDD044 intersected a heavily mineralised gabbronorite to 476.75m, including a zone of net-textured, semi-massive, and massive Ni-Cu sulphide from 453.2m to 458.1m. Drillholes RKDD046, RKDD049 and RKDD051 encountered extensive mineralised mafic and ultramafic intrusion. Mineralisation intersected included disseminated, blebby, heavy disseminated, matrix, and semi-massive magmatic Ni-Cu sulphide. RKDD049 intersected a 46m zone of sulphide mineralisation from 402.8m to 448.8m downhole including semi-massive and matrix sulphide between 440m to 441.9m and 447.9m to 448.8m (see Photo 3).

The mineralised intrusion remains open to the west, east and north. Further expansion drilling is planned to follow the mineralised intrusion in the open directions.

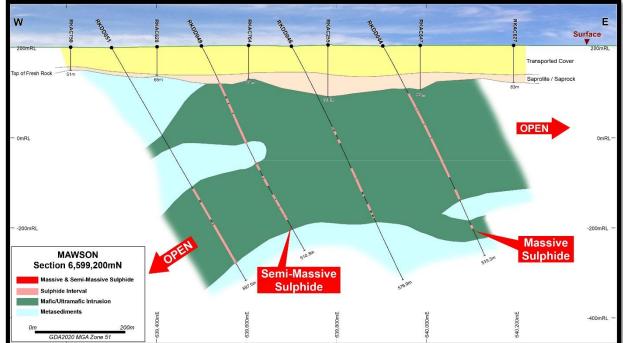


Figure 3: 6,599,200mN Section looking north showing diamond drillholes RKDD044, RKDD046, RKDD049, and RKDD051.

Photo 3: Matrix to Semi-massive Ni-Cu sulphide from RKDD049 from 441m.

DHTEM completed on RKDD042 and RKDD044 identified a large offhole conductor of significant size and thickness adjacent to the interpreted MLTEM stratigraphic conductor D3 (see Figure 1 and Table 1). Drillholes have been designed and will be completed east of RKDD044 to better constrain this conductor before drill testing.

Ongoing drilling across Mawson will focus on continued definition of these intrusive bodies and targeting of structural trap sites for massive Ni-Cu sulphide accumulation.

Assays

Assay results from drillholes RKDD035-RKDD042 have now been received, returning intervals of low-grade Ni-Cu values in the range 0.05-0.2% Ni associated with disseminated sulphide in mafic/ultramafic intrusive, as expected. Results from drillholes RKDD043 and RKDD044, which intersected significant Ni-Cu sulphide intervals (*ASX announcement 28 April 2021*) are expected within the next 2-3 weeks.

Mawson Future Programmes

 Diamond drilling continuing with two diamond rigs at Mawson systematically testing across priority areas.

legen

- Ongoing DHTEM on all completed diamond drillholes to assist follow up drilling.
- Integration of DD, RC, aircore geochemical and geophysical datasets to evolve 3D emplacement model of Mawson, with new constrained gravity and magnetic inversions ongoing.

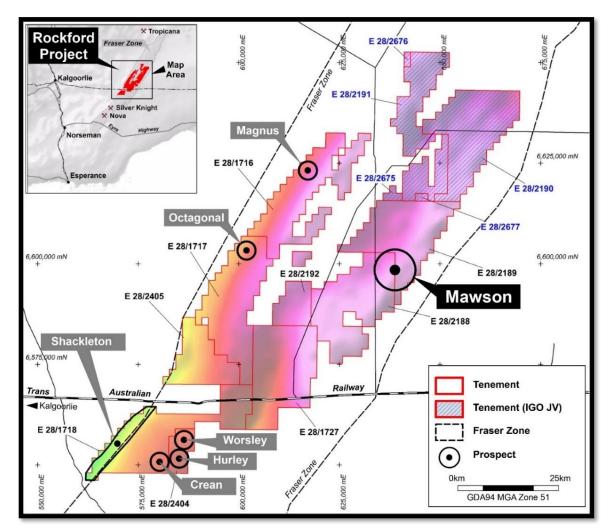


Figure 4: Rockford Project – Mawson Location

Authorised by Mark Wilson, Managing Director.

Appendix 1 – RKDD053 Summary Drill Log of Ni-Cu Mineralisation

egeno

Hole	Interval	Sulphide Mode	Sulphide Type	Sulphide % (Visual Estimate)
RKDD053	66.29 - 69.9m	Disseminated Sulphide	Pyrrhotite-chalcopyrite- pentlandite	1-5%
RKDD053	74.55 - 75.51m	Matrix Sulphide	Pyrrhotite-chalcopyrite- pentlandite	20-40%
RKDD053	79.73 - 80.33m	Heavy Disseminated Sulphide	Pyrrhotite-chalcopyrite- pentlandite	5-20%
RKDD053	100.8 - 102.82m	Disseminated Sulphide	Pyrrhotite-chalcopyrite- pentlandite	1-5%
RKDD053	109.51 - 117.38m	Disseminated Sulphide	Pyrrhotite-chalcopyrite- pentlandite	1-5%
RKDD053	127.56 - 132.07m	Disseminated Sulphide	Pyrrhotite-chalcopyrite- pentlandite	1-5%
RKDD053	132.07 - 136.06m	Semi-massive Sulphide	Pyrrhotite-chalcopyrite- pentlandite	>40% to <80%
RKDD053	136.06 - 139.28m	Massive Sulphide	Pyrrhotite-chalcopyrite- pentlandite	>80%
RKDD053	139.28 - 142.95m	Semi-massive Sulphide	Pyrrhotite-chalcopyrite- pentlandite	>40% to <80%
RKDD053	142.95 - 144.7m	Matrix Sulphide	Pyrrhotite-chalcopyrite- pentlandite	20-40%
RKDD053	144.7 - 146.22m	Massive Sulphide	Pyrrhotite-chalcopyrite- pentlandite	>80%
RKDD053	146.22 - 149.89m	Semi-massive Sulphide	Pyrrhotite-chalcopyrite- pentlandite	>40% to <80%
RKDD053	149.89 - 156.73m	Disseminated Sulphide	Pyrrhotite-chalcopyrite- pentlandite	1-5%
RKDD053	156.73 - 161.79m	Matrix Sulphide	Pyrrhotite-chalcopyrite- pentlandite	20-40%
RKDD053	161.79 - 163.28m	Heavy Disseminated Sulphide	Pyrrhotite-chalcopyrite- pentlandite	5-20%

Cautionary Statement: The sulphide percentage is a visual estimate of total sulphide.

053 151.1m 132.07m 135.7m 136.06m . •35 139.28m ... 140.1m REDD 053 140.1m **計21** 42.95m 144.70m #22 144.6m 146.22m

Appendix 2 – RKDD053 Sulphide Interval 131.1 – 162.75m

Hole	MGA20-East	MGA20-North	RL	Azimuth	Dip	Total Depth (m)
RKDD035	638735	6598300	203	270	-60	382.6
RKDD036	638634	6598300	202	270	-60	362.9
RKDD037	639301	6599005	204	90	-60	513.2
RKDD038	639300	6598400	204	90	-60	454.1
RKDD039	639500	6599000	205	90	-60	445.4
RKDD040	639700	6599000	204	90	-60	372.1
RKDD041	639100	6598400	205	90	-60	486.4
RKDD042	639900	6599000	204	90	-60	333.1
RKDD043	638900	6598400	202	90	-60	393.3
RKDD044	639900	6599200	205	90	-60	519.3
RKDD045	639100	6598200	205	270	-60	189.1
RKDD046	639700	6599194	204	90	-60	576.9
RKDD047	638898	6598208	205	270	-60	297.3
RKDD048	638755	6598205	202	270	-60	141.3
RKDD049	639498	6599194	205	90	-60	510.3
RKDD050	638700	6598399	202	90	-60	426.25
RKDD051	639300	6599200	201	90	-60	597.5
RKDD052	638647	6598200	202	270	-60	351.4
RKDD053	638930	6598409	201	90	-60	260.4

Appendix 3 – Mawson Diamond Drillhole Details

_egen

Co-ordinates GDA2020 Zone 51

Appendix 4 - Legend Field Logging Guidelines

Legend Field Logging Guidelines

Sulphide Mode	Percentage Range
Disseminated & blebby	1-5%
Heavy Disseminated	5-20%
Matrix	20-40%
Net-Textured	20-40%
Semi-Massive	>40% to <80%
Massive	>80%

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Oliver Kiddie, a Member of the Australasian Institute of Mining and Metallurgy and a full-time employee of Legend Mining Limited. Mr Kiddie has sufficient experience that is relevant to the styles of mineralisation and types of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Kiddie consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Legend's Exploration Results is a compilation of previously released to ASX by Legend Mining (14 April 2021 and 28 April 2021) Mr Oliver Kiddie consents to the inclusion of these Results in this report. Mr Kiddie has advised that this consent remains in place for subsequent releases by Legend of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent. Legend confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters in the market announcements continue to apply and have not materially changed. Legend confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Forward Looking Statements

This announcement contains "forward-looking statements" within the meaning of securities laws of applicable jurisdictions. Forward-looking statements can generally be identified by the use of forward-looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "believe", "continue", "objectives", "outlook", "guidance" or other similar words, and include statements regarding certain plans, strategies and objectives of management and expected financial performance. Forward-looking statements are provided as a general guide only and should not be relied upon as an indication or guarantee of future performance. These forward-looking statements are based upon a number of estimates, assumptions and expectations that, while considered to be reasonable by Legend Mining Limited, are inherently subject to significant uncertainties and contingencies, involve known and unknown risks, uncertainties and other factors, many of which are outside the control of Legend Mining Limited and any of its officers, employees, agents or associates.

Actual results, performance or achievements may vary materially from any projections and forward-looking statements and the assumptions on which those statements are based. Exploration potential is conceptual in nature, to date there has been insufficient exploration to define a Mineral Resource and it is uncertain if further exploration will result in the determination of a Mineral Resource. Readers are cautioned not to place undue reliance on forward-looking statements and Legend Mining Limited assumes no obligation to update such information made in this announcement, to reflect the circumstances or events after the date of this announcement.

Visit www.legendmining.com.au for further information and announcements.

For more information contact:

Mr Mark Wilson Managing Director Ph: +61 8 9212 0600 Mr Oliver Kiddie Executive Director Ph: +61 8 9212 0600

Appendix 5:

eger

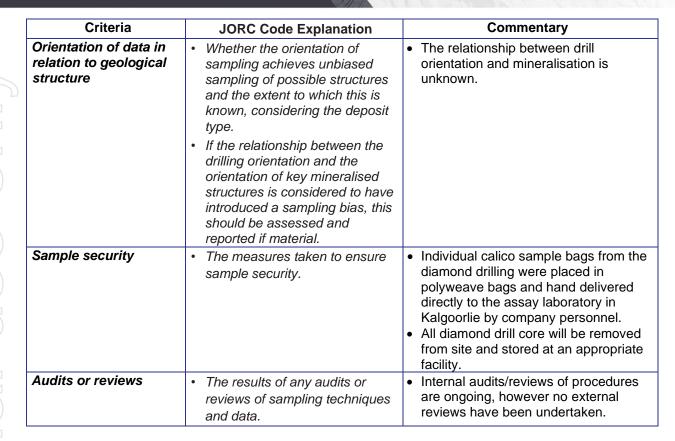
Legend Mining Ltd – Diamond Drilling Programme Mawson Prospect - Rockford Project JORC Code Edition 2012: Table 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling was used to produce quarter and half NQ core samples (between 0.2m-1.2m) which were submitted to Intertek Genalysis Laboratory Services Perth for geochemical analysis. Sample intervals were based on geology and style of sulphide occurrence. QAQC standard samples were included. Samples were analysed for: > Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, TI, Tm, U, V, W, Y, Yb, Zn, Zr by methods 4A/MS48R and 4AH/OE (four acid digest with ICP-MS finish). Au, Pt, Pd by method FA50/MS (fire assay with an ICP-MS finish).
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 Diamond drillholes RKDD045-053 were pre-collared using the mud rotary technique. No samples were recovered from the mud rotary pre-collar. The remainder of the holes were diamond drilled with HQ then NQ coring to end of hole. Terra Drilling completed the drilling.
Drill sample recovery	Method of recording and assessing core and chip sample	 Drill core sample recoveries for the HQ-NQ core were measured and recorded in drill log sheets. Drill core orientation was recorded

C	riteria	JORC Code Explanation	Commentary
		 recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 when possible at the end of each drill run (line on bottom of core). No relationship has been determined between sample recoveries and grade and there is insufficient data to determine if there is a sample bias.
Logging		 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. 	based on drill core retained in core
Sub-samp		The total length and percentage of the relevant intersections logged.	
	es and sample	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise 	 core samples based on geology and sulphide occurrence were submitted for geochemical analysis. The size of the sample from the diamond drilling method is considered appropriate for the
		 representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
-	f assay data atory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used 	

Criteria



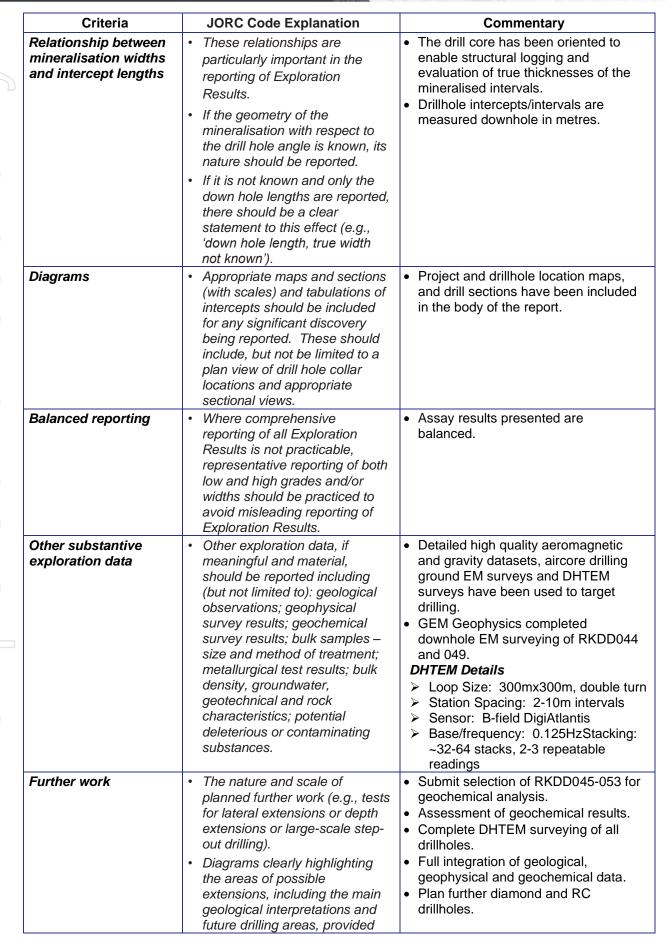
Varification of	 and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr by methods 4A/MS48R and 4AH/OE (four acid digest with ICP-MS finish). Au, Pt, Pd by method FA50/MS (fire assay with an ICP-MS finish). These assay methods are considered appropriate. QAQC standard samples were included. In addition, reliance is placed on laboratory procedures and internal laboratory batch standards and blanks. All samples were analysed by Intertek Genalysis Laboratory Services Perth.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections were verified by senior exploration personnel. Primary data was collected in the field using a set of standard logging templates and entered into a laptop computer. The data was forwarded to Legend's database manager for validation and loading into the company's drilling database. No adjustments of assay results have been undertaken.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The drillhole collars were surveyed with a handheld GPS unit with an accuracy of ±5m which is considered sufficiently accurate for the purpose of the drillhole. All co-ordinates are expressed in GDA2020 datum, Zone 51. Regional topographic control has an accuracy of ±2m based on detailed DTM data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing 	 No regular drill hole spacing has been set with individual holes design to intersect specific targets. Diamond drillholes RKDD045-053 were designed to test extensions of interpreted mineralised intrusive packages.

JORC Code Explanation

Commentary

has been applied.

Section 2: Reporting of Exploration Results


Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Rockford Project comprises nine granted exploration licences, covering 2,430km², (Legend manager). Rockford JV tenements: E28/2188, 2189, 2192 (70% Legend, 30% Rockford Minerals Pty Ltd) E28/1716, 1717, 1718, 1727 (70% Legend, 30% Ponton Minerals Pty Ltd). Legend 100%: E28/2404, 2405. The Project is located 280km east of Kalgoorlie mostly on vacant crown land with the eastern portion on Kanandah Pastoral Station. Tenements E28/1716, 1717, 2192, 2405 are covered by the Upurli Nguratja Native Title Claim. Tenements E28/2188, and E28/2189 are covered 20% and 85% respectively by the Untiri Pulka Native Title Claim. Tenements E28/2404 are covered 90%, 20% and 100% respectively by the Ngadju Native Title Claim. The tenements are in good standing and there are no known impediments.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Not applicable, not referred to.

Page16

ASX:LEG

Criteria	JORC Code Explanation	Commentary
Geology	 Deposit type, geological setting and style of mineralisation. 	 The primary target is Nova style nickel-copper mineralisation hosted in mafic/ultramafic intrusives within the Fraser Zone of the larger Albany- Fraser Orogen. Secondary targets include VMS style zinc-copper-lead-silver mineralisation and structurally controlled Tropicana style gold.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drillhole details are provided in Appendix 1. Drill core photos of sulphide intervals in RKDD053 are provided in Appendix 2.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Individual sample assays and weighted averages are presented.

P a g e 18

	Criteria	JORC Code Explanation	Commentary
		this information is not commercially sensitive.	
		commercially considered	
\sum			