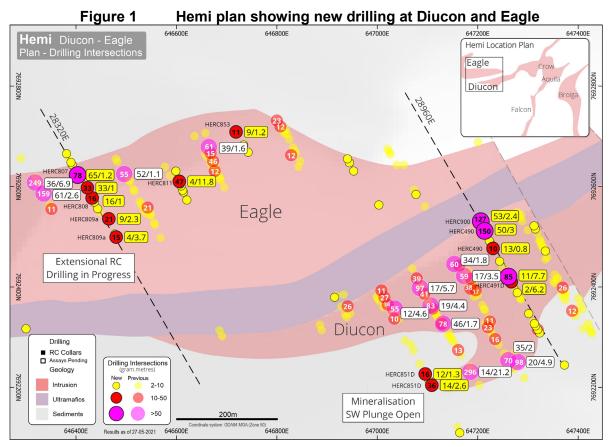


ASX: DEG

ASX ANNOUNCEMENT 01 June 2021

Encouraging results continue at Diucon-Eagle


Diucon – Mineralisation in the southern lode of Diucon has been extended to the west under sediments. Diucon is currently 900m in strike and remains open to the west and at depth. Significant new drilling results at Diucon include:

- 14m @ 2.6g/t Au from 258 metres and 12m @ 1.3g/t Au from 294 metres in extensional drill hole HERC851D
- > 50m @ 3.0g/t Au from 155 metres in HERC490
- **53m @ 2.4 g.t Au** from 43 metres in HERC900
- > 11m @ 7.7 g/t Au from 142 metres in HERC491D

Eagle – Consistent mineralisation has been intersected within a broad mineralised zone over the current strike of 600m. Definition drilling at Eagle achieved excellent results including:

- > 65m @ 1.2g/t Au from 42 metres in HERC807
- > 16m @ 1.0g/t Au from 120 metres and 33m @ 1.0 g/t Au from 155 metres in HERC808
- > 4m @ 11.8g/t Au from 176 metres in HERC811
- > 4m @ 3.7g/t Au from 84 metres and 9m @ 2.3g/t Au from 141 metres in HERC809a

Diucon and Eagle continue to demonstrate the potential to rapidly and cost effectively add to the gold endowment at Hemi. Extensional drilling to the north and west to Antwerp is in progress.

Level 3, Suite 24-26, 22 Railway Road, Subiaco WA 6008

PO Box 2023 Subiaco WA 6904 E admin@degreymining.com.au P +61 8 6117 9328 F +61 8 6117 9330 degreymining.com.au ABN: 65 094 206 292 FRA Code: WKN 633879

De Grey Managing Director, Glenn Jardine, commented:

"These latest results confirm the presence of a large mineralised system at Diucon and Eagle. Both zones remain open to the west toward Antwerp with Eagle open to the north.

Extensional RC drilling to the west is currently being conducted on 160m spaced sections and 80m spaced collars on section. Mineralisation remains open at depth in both zones. Diamond drilling is targeting potential extensions beneath mineralisation previously intersected in RC drilling. RC drilling is also being conducted in places at 80m line spacing to confirm continuity of mineralisation within the existing footprint."

Diucon and Eagle are located immediately to the west of Crow and present a potential geological link between the Crow intrusion to Antwerp. The gold mineralisation at Diucon and Eagle shows similar alteration and sulphide development as seen at the adjacent deposits of Aquila, Brolga, Crow and Falcon.

Both zones remain open and provide substantial potential to rapidly and cost effectively increase the gold endowment of Hemi with continued drilling.

Strike extensions are currently being tested with RC drilling at both zones at 160m line spacing and 80m hole spacing (Figure 1). Definition drilling has recently been conducted on an 80m line spacing and has returned outstanding results. These results include the identification of high grade near surface mineralisation extending further to the south of previously intersected mineralisation at Diucon.

Significant new gold results in drilling are provided in Table 1.

Diucon Drilling

Mineralisation at Diucon currently extends for approximately 900m along strike and remains open to the west and at depth. A combination of extensional definition drilling on 160m line spacing and definition drilling on 80m line spacing was recently conducted (Figure 1).

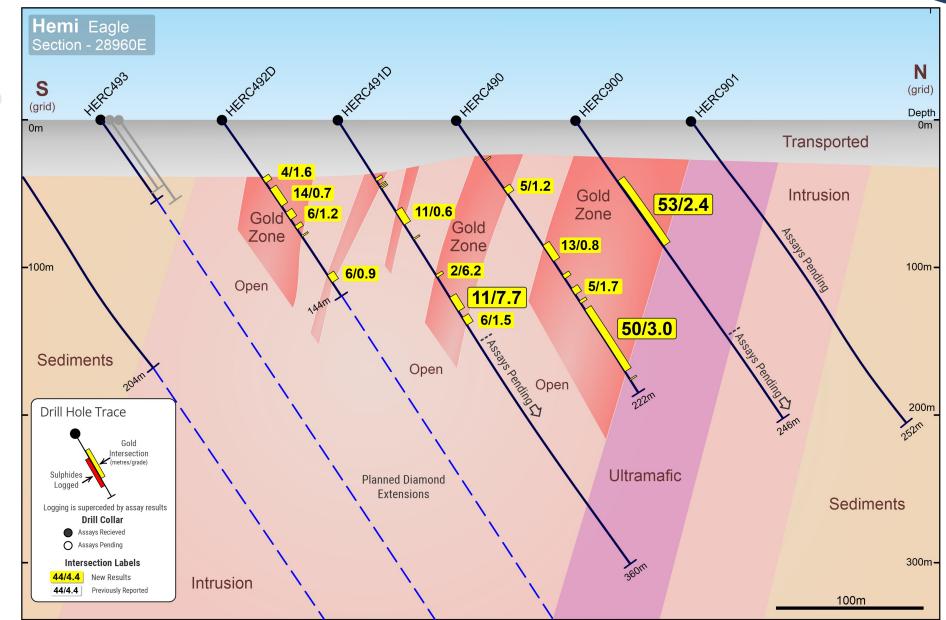
Mineralisation plunging to the west was intersected beneath sediments in HERC851D on section 28720E including **14m @ 2.6g/t Au** from 258 metres and **12m @ 1.3g/t Au** from 294 metres. Mineralisation extends to the bottom of this RC pre-collar at 306m. A diamond tail has recently been completed to 600m depth, showing visual indications of mineralisation extending below the pre-collar. Assay results are awaited.

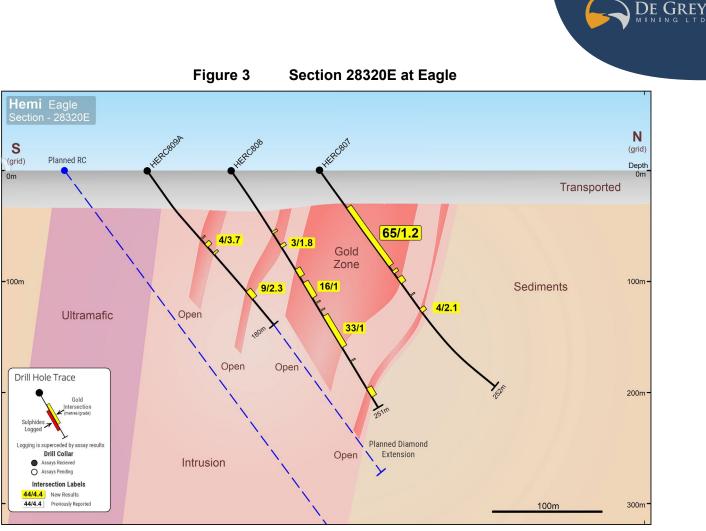
Strong mineralisation was also intersected on section 28960E (Figure 2). Significant results include:

- 50m @ 3.0g/t Au from 155 metres in HERC490 (including 5m @ 12g/t Au from 163 metres and 7m @ 6.0g/t Au from 197 metres)
- > 53m @ 2.4 g.t Au from 43 metres in HERC900 (including 5m @ 14.2g/t Au from 67 metres)
- 11m @ 7.7 g/t Au from 142 metres (including 3m @ 27g/t Au from 147 metres) and 6m @ 1.5g/t Au from 158 metres in HERC491D.

The RC precollar of HERC491D also ended in mineralisation and a diamond tail has been completed to 360m depth, with assay results awaited. Up to four subparallel lodes have now been defined at Diucon.

Eagle Drilling


Mineralisation at Eagle currently extends for approximately 600m along strike and remains open to the west, north and at depth. Definition drilling results in the west of Eagle on section 28240E (Figure 3) include:


- 65m @ 1.2g/t Au from 42 metres in HERC807 (including 5m @ 4.3g/t Au from 42 metres and 4m @ 5.1g/t Au from 96 metres)
- > 16m @ 1.0g/t Au from 120 metres and 33m @ 1.0 g/t Au from 155 metres in HERC808
- > 4m @ 3.7g/t Au from 84 metres and 9m @ 2.3g/t Au from 141 metres in HERC809a

Other significant results (Figure 1) include **4m @ 11.8g/t Au** from 176 metres (including **2m @ 21.6g/t Au** from 176 metres) in HERC811 and **9m @ 1.2g/t Au** from 201 metres in HERC853.

This announcement has been authorised for release by the De Grey Board.

For further information, please contact:

Glenn Jardine Managing Director +61 8 6117 9328 admin@degreymining.com.au

Andy Beckwith Technical Director +61 8 6117 9328 admin@degreymining.com.au Michael Vaughan (Media enquiries) Fivemark Partners +61 422 602 720 michael.vaughan@fivemark.com.au

Competent Person's Statement

The information in this report that relates to exploration results is based on, and fairly represents information and supporting documentation prepared by Mr. Phil Tornatora, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy. Mr. Tornatora is an employee of De Grey Mining Limited. Mr. Tornatora has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr. Tornatora consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Previously released ASX Material References that relates to Hemi Prospect includes:

Resources:

• 2020 Mallina Gold Project Resource update, 2 April 2020

Exploration results at Hemi announced during calendar year 2021:

- Consistent extensive gold endowment at Falcon, 13 January 2021
- Diucon and Eagle: Two new intrusion hosted gold discoveries at Hemi, 29 January 2021
- Further metallurgical testwork confirms high gold recoveries, 16 February 2021
- Major depth extensions and new footwall lodes emerge at Falcon, 23 February 2021
- Crow Aquila gold system continue to expand, 4 March 2021
- Rapid growth at Diucon and Eagle, 9 March 2021
- Extensional results show Brolga plunge potential, 16 March 2021
- Depth and strike extensions at Falcon, 8 April 2021
- Impressive resource definition drilling at Brolga, 13 April 2021
- Strong extension to Diucon and Eagle, 15 April 2021
- Strong mineralisation intersected at Crow and Aquila, 23 April 2021
- Large mineralised system confirmed at Diucon Eagle, 4 May 2021
- High gold recoveries achieved at Aquila, 10 May 2021
- Significant extensional and impressive resource definition results at Falcon, 27 May 2021

Table 1: Significant new results (>2 gram x m Au) - Intercepts - 0.5g/t Au lower cut, 4m maximum internal waste, >2gm

HoleID	Zone	Depth From (m)	Depth To (m)	Downhole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
HERC478	Diucon	101.0	102.0	1.0	2.2	646942	7692330	67	-56	330	270	RC
HERC485	Diucon	50.0	51.0	1.0	2.2	647479	7692362	67	-59	329	180	RC
HERC486	Diucon	142.0	146.0	4.0	0.7	647519	7692293	68	-56	323	162	RC
HERC489	Diucon	83.0	84.0	1.0	2.5	647356	7692431	68	-57	331	102	RC
HERC489	Diucon	171.0	172.0	1.0	2.5	647356	7692431	68	-57	331	192	RC
HERC489	Diucon	181.0	187.0	6.0	0.8	647356	7692431	68	-57	331	192	RC
HERC490	Diucon	56.0	61.0	5.0	1.2	647259	7692421	67	-56	332	222	RC
HERC490	Diucon	103.0	116.0	13.0	0.8	647259	7692421	67	-56	332	222	RC
HERC490	Diucon	127.0	130.0	3.0	1.6	647259	7692421	67	-56	332	222	RC
HERC490	Diucon	138.0	143.0	5.0	1.7	647259	7692421	67	-56	332	222	RC
HERC490	Diucon	155.0	205.0	50.0	3.0	647259	7692421	67	-56	332	222	RC
incl	Diucon	163.0	168.0	5.0	12.0	647259	7692421	67	-56	332	222	RC
incl	Diucon	197.0	204.0	7.0	6.0	647259	7692421	67	-56	332	222	RC
HERC491D	Diucon	73.0	84.0	11.0	0.6	647299	7692352	68	-57	329	360	RC
HERC491D	Diucon	124.0	126.0	2.0	6.2	647299	7692352	68	-57	329	360	RC
HERC491D	Diucon	142.0	153.0	11.0	7.7	647299	7692352	68	-57	329	360	RC
ind	Diucon	147.0	150.0	3.0	27.0	647299	7692352	68	-57	329	360	RC
HERC491D	Diucon	158.0	164.0	6.0	1.5	647299	7692352	68	-57	329	360	RC
HERC492D	Diucon	48.0	52.0	4.0	1.6	647338	7692284	68	-55	329	144	RC
HERC492D	Diucon	57.0	71.0	14.0	0.7	647338	7692284	68	-55	329	144	RC
HERC492D	Diucon	76.0	82.0	6.0	1.2	647338	7692284	68	-55	329	144	RC
HERC492D	Diucon	87.0	90.0	3.0	1.2	647338	7692284	68	-55	329	144	RC
HERC492D	Diucon	127.0	133.0	6.0	0.9	647338	7692284	68	-55	329	144	RC
HERC494	Diucon	194.0	199.0	5.0	0.5	647420	7692144	68	-55	329	204	RC
HERC850	Diucon	202.0	204.0	2.0	2.0	647241	7692134	68	-55	329	258	RC
HERC851D	Diucon	109.0	111.0	2.0	1.4	647200	7692051	70	-54	327	600	RC
HERC851D	Diucon	258.0	272.0	14.0	2.6	647200	7692051	70	-54	327	600	RC
Incl	Diucon	265.0	268.0	3.0	5.4	647200	7692051	70	-54	327	600	RC
HERC851D	Diucon	278.0	283.0	5.0	0.7	647200	7692051	70	-54	327	600	RC
HERC851D	Diucon	294.0	306.0	12.0	1.3	647200	7692051	70	-54	327	600	RC
HERC900	Diucon	43.0	96.0	53.0	2.4	647219	7692491	67	-56	332	246	RC
Incl	Diucon	55.0	56.0	1.0	9.1	647219	7692491	67	-56	332	246	RC
Incl	Diucon	67.0	72.0	5.0	14.2	647219	7692491	67	-56	332	246	RC
HERC481	Eagle	228.0	230.0	2.0	1.3	645957	7692916	66	-56	327	252	RC
HERC483	Eagle	97.0	105.0	8.0	0.8	646157	7692571	66	-56	332	233	RC
HERC488	Eagle	205.0	210.0	5.0	1.8	647129	7692485	67	-57	330	252	RC
HERC496	Eagle	22.0	25.0	3.0	0.8	646959	7692619	67	-56	332	180	RC
HERC496	Eagle	49.0	60.0	11.0	0.8	646959	7692619	67	-56	332	180	RC
HERC496	Eagle	66.0	72.0	6.0	0.6	646959	7692619	67	-56	332	180	RC
HERC498	Eagle	157.0	165.0	8.0	0.6	647040	7692481	67	-56	334	216	RC
HERC804	Eagle	53.0	54.0	1.0	6.0	646318	7692291	67	-56	327	156	RC
HERC805	Eagle	49.0	50.0	1.0	2.1	646267	7692540	67	-56	331	168	RC

HoleID	Zone	Depth From (m)	Depth To (m)	Downhole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
HERC807	Eagle	42.0	107.0	65.0	1.2	646425	7692586	67	-54	329	252	RC
Incl	Eagle	42.0	47.0	5.0	4.3	646425	7692586	67	-54	329	252	RC
Inçl	Eagle	96.0	100.0	4.0	5.1	646425	7692586	67	-54	329	252	RC
HERC807	Eagle	112.0	115.0	3.0	0.7	646425	7692586	67	-54	329	252	RC
HERC807	Eagle	120.0	126.0	6.0	0.5	646425	7692586	67	-54	329	252	RC
HERC807	Eagle	154.0	158.0	4.0	2.1	646425	7692586	67	-54	329	252	RC
HERC808	Eagle	80.0	83.0	3.0	1.8	646465	7692516	66	-55	332	251	RC
HERC808	Eagle	106.0	114.0	8.0	0.5	646465	7692516	66	-55	332	251	RC
HERC808	Eagle	120.0	136.0	16.0	1.0	646465	7692516	66	-55	332	251	RC
HERC808	Eagle	155.0	188.0	33.0	1.0	646465	7692516	66	-55	332	251	RC
HERC808	Eagle	231.0	240.0	9.0	0.5	646465	7692516	66	-55	332	251	RC
HERC809a	Eagle	84.0	88.0	4.0	3.7	646503	7692451	66	-55	334	180	RC
HERC809a	Eagle	95.0	97.0	2.0	1.9	646503	7692451	66	-55	334	180	RC
HERC809a	Eagle	141.0	150.0	9.0	2.3	646503	7692451	66	-55	334	180	RC
Incl	Eagle	149.0	150.0	1.0	8.5	646503	7692451	66	-55	334	180	RC
HERC811	Eagle	92.0	97.0	5.0	0.8	646644	7692528	67	-56	331	258	RC
HERC811	Eagle	126.0	132.0	6.0	0.6	646644	7692528	67	-56	331	258	RC
HERC811	Eagle	135.0	139.0	4.0	0.6	646644	7692528	67	-56	331	258	RC
HERC811	Eagle	154.0	159.0	5.0	1.2	646644	7692528	67	-56	331	258	RC
HERC811	Eagle	165.0	166.0	1.0	2.3	646644	7692528	67	-56	331	258	RC
HERC811	Eagle	176.0	180.0	4.0	11.8	646644	7692528	67	-56	331	258	RC
Incl	Eagle	176.0	178.0	2.0	21.6	646644	7692528	67	-56	331	258	RC
HERC811	Eagle	225.0	228.0	3.0	2.4	646644	7692528	67	-56	331	258	RC
HERC853	Eagle	125.0	126.0	1.0	2.2	646783	7692607	67	-54	325	270	RC
HERC853	Eagle	154.0	155.0	1.0	7.8	646783	7692607	67	-54	325	270	RC
HERC853	Eagle	201.0	210.0	9.0	1.2	646783	7692607	67	-54	325	270	RC

Table 2: Selected Intercepts - 0.3g/t Au lower cut, 10m maximum internal waste, >20gm

	HoleID	Zone	Depth From (m)	Depth To (m)	Downhole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
	HERC453	Diucon	196.0	232.0	36.0	0.6	647248	7692280	68	-55	333	309	RC
\leq	HERC453	Diucon	245.0	308.0	63.0	0.7	647248	7692280	68	-55	333	309	RC
	HERC458	Diucon	82.0	127.0	45.0	1.6	647289	7692207	68	-56	329	252	RC
\square	HERC458	Diucon	180.0	252.0	72.0	0.8	647289	7692207	68	-56	329	252	RC
	HERC460	Diucon	201.0	222.0	21.0	4.7	647331	7692138	68	-55	329	246	RC
7	HERC462	Eagle	40.0	92.0	52.0	1.1	646513	7692592	66	-57	339	204	RC
	HERC470	Eagle	38.0	79.0	41.0	6.1	646335	7692581	66	-55	329	180	RC

Table 3: Selected sulphide (>3%) intercepts

Table 3: Se	elected su	iphide (>3	%) interce	pts			
HoleID	Collar East (GDA94)	Collar North (GDA94)	Collar RL (GDA94)	Dip (degrees)	Azimuth (GDA94)	Hole Depth (m)	Sulphide Interval (m)
HERC480	646376	7692511	66.5	-56.55	328.601	228	116-165 (EoH)

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	an industry standard mannerCore samples were collected with a diamond rig drilling mainly NQ2 diameter core.
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 HQ3 (61mm), PQ (85mm). Reverse Circulation (RC) holes were drilled with a 5 1/2-inch bit and face sampling hammer. Aircore holes were drilled with an 83mm diameter blade bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery is measured for each drilling run by the driller and then checked by the Company geological team during the mark up and logging process. RC and aircore samples were visually assessed for recovery. Samples are considered representative with generally good recovery. Deeper RC and

Criteria	JORC Code explanation	Commentary
		aircore holes encountered water, with some intervals having less than optimal recovery and possible contamination.No sample bias is observed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 and core was photographed by Company geologists, with systematic sampling undertaken based on rock type and alteration observed RC and diamond sample results are appropriate for use in a resource estimation, except where sample recovery is poor. The aircore results provide a good indication of mineralisation but are not used in resource estimation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Core samples were collected with a diamond drill rig drilling NQ2, HQ3 or PQ diameter core. After logging and photographing, NQ2 drill core was cut in half, with one half sent to the laboratory for assay and the other half retained. HQ and PQ core was quartered, with one quarter sent for assay. Holes were sampled over mineralised intervals to geological boundaries on a nominal 1m basis. RC sampling was carried out by a cone splitter on the rig cyclone and drill cuttings were sampled on a 1m basis in bedrock and 4m composite basis in cover. Aircore samples were collected by spear from 1m sample piles and composited over 4m intervals. Samples for selected holes were collected on a 1m basis by spear from 1m sample piles. Industry prepared independent standards are inserted approximately 1 in 20 samples. Each sample was dried, split, crushed and pulverised. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling Core and RC samples are appropriate for use in a resource estimate. Aircore samples are generally of good quality and appropriate for delineation of geochemical trends but are not generally used in resource estimates.

	Criteria	JORC Code explanation	Commentary
	Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 independent laboratory in Perth, Australia. For diamond core and RC samples Au was analysed by a 50g charge Fire assay fusion technique with an AAS finish and multi- elements by ICPAES and ICPMS
2	Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Sample results have been merged by the company's database consultants. Results have been uploaded into the company database, checked and verified. No adjustments have been made to the assay data. Results are reported on a length weighted basis.
	Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Diamond and RC drill hole collar locations are located by DGPS to an accuracy of +/-10cm. Aircore hole collar locations are located by DGPS to an accuracy of +/-10cm., or by handheld GPS to an accuracy of 3m. Locations are given in GDA94 zone 50 projection Diagrams and location table are provided in the report Topographic control is by detailed airphoto and Differential GPS data.
	Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing varies from 80m x 40m to 320m x 80m. All holes have been geologically logged and provide a strong basis for geological control and continuity of mineralisation. It has not yet been determined if data spacing and distribution of RC and diamond drilling is sufficient to provide support for the results to be used in a resource estimate. Sample compositing has not been applied except in reporting of drill intercepts, as described in this Table
	Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	perpendicular to the strike of mineralisation where known and therefore the sampling is considered representative of the mineralised zone.

Criteria	JORC Code explanation	Commentary
		This is allowed for when geological interpretations are completed.
Sample security	 The measures taken to ensure sample security. 	 Samples were collected by company personnel and delivered direct to the laboratory via a transport contractor.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 No audits have been completed. Review of QAQC data has been carried out by database consultants and company geologists.

	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Drilling occurs on various tenements held by De Grey Mining Ltd or its 100% owned subsidiaries. The Hemi Prospect is approximately 60km SSW of Port Hedland.
Я С С	Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• The tenements have had various levels of previous surface geochemical sampling and wide spaced aircore and RAB drilling by De Grey Mining. Limited previous RC drilling was carried out at the Scooby Prospect. Airborne aeromagnetics/radiometrics has been flown previously.
	Geology	 Deposit type, geological setting and style of mineralisation. 	 The mineralisation style is not well understood to date but is thought to be hydrothermally emplaced gold mineralisation within structures and intrusions. Host rocks comprise igneous rocks intruding Mallina Basin metasediments. Style is similar to some other Western Australian gold deposits.
	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of 	 Results are reported to a minimum cutoff grade of 0.5g/t gold with an internal dilution of 4m maximum. Higher grade intervals included in the above intercepts are reported at a 3g/t Au lower cut

Criteria	JORC Code explanation	Commentary
	 high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 with an internal dilution of 2m maximum. Wider intervals are aggregated using a 0.3g/t Au lower cut with an internal dilution of 10m maximum. Selected results over 20 gram x metres are reported using this method. Intercepts are length weighted averaged. No maximum cuts have been made.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The drill holes are interpreted to be approximately perpendicular to the strike of mineralisation. Drilling is not always perpendicular to the dip of mineralisation and true widths are less than downhole widths. Estimates of true widths wil only be possible when all results are received and final geological interpretations have been completed.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	· · · · · · · · · · · · · · · · · · ·
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	and all significant results are provided in this report.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Drilling is currently widely spaced and further details will be reported in future releases when data is available.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Follow up aircore drilling will be undertaken to test for strike extensions to mineralisation. Programs of follow up RC and diamond drilling aimed at extending resources at depth and laterally are underway.