

16 June 2021

Sandfire Reports Updated Underground Ore Reserve and Mineral Resource for DeGrussa Operations

Highlights

Updated Underground Ore Reserve for the DeGrussa and Monty Copper-Gold Mines at 31 December 2020:

- 2.6Mt grading 4.7% Cu and 1.4g/t Au for 120kt of contained copper and 117koz of contained gold (including UG ore on surface stockpiles and reported as at 31 December 2020).
- Updated DeGrussa underground Ore Reserve is net of underground mining depletion, a revision of modifying factors, and the updated DeGrussa Mineral Resource.
- Updated Monty underground Ore Reserve is net of underground mining depletion, a revision of modifying factors, and the updated Monty Mineral Resource.

Updated Underground Mineral Resource for the DeGrussa and Monty Copper-Gold Mines:

- 2.8Mt grading 5.8% Cu and 1.9g/t Au for 164kt of contained copper and 170koz of contained gold (including UG ore on surface stockpiles and reported as at 31 December 2020).
- Updated DeGrussa and Monty Mineral Resources is based on mining depletion, sterilisation and resource definition drilling.

Sandfire Resources Ltd (**Sandfire** or **the Company**) is pleased to announce an updated Ore Reserve and Mineral Resource for the DeGrussa Operations, incorporating the DeGrussa Copper Gold Mine (**DeGrussa Mine**) and Monty Copper-Gold Mine (**Monty Mine**) in Western Australia.

The update includes the DeGrussa, Conductor 1, Conductor 4 and Conductor 5 deposits at the DeGrussa Copper Gold Mine and is reported as at 31 December 2020.

Grade control drilling was completed at Monty during the 2020 calendar year (**CY**). This has provided the basis for an updated interpretation of the orebody and the Mineral Resource estimate. After accounting for mining depletion and sterilisation, the net impact is a year-on-year decrease of 0.1Mt and 18kt of contained copper and 14koz of contained gold.

The Monty Ore Reserve has been updated based on the updated Mineral Resource. After accounting for annual mining depletion and minor adjustments to mining modifying factors, the net impact is a year-on-year decrease of 0.4Mt and 28kt of contained copper and 22koz of contained gold.

The DeGrussa Mineral Resource and Ore Reserve has largely been reduced by annual mining depletion.

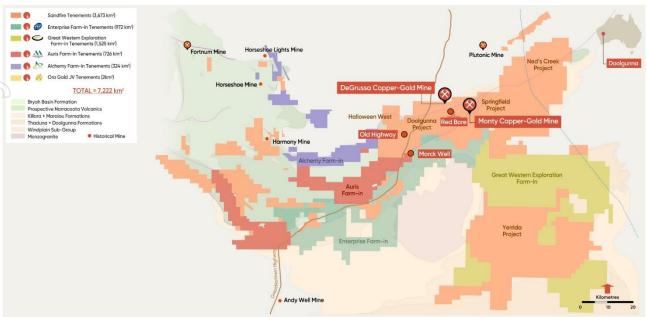


Figure 1 – DeGrussa and Monty Copper-Gold Mine Location.

Table 1 and Table 2 summarise the combined DeGrussa and Monty Underground Ore Reserve and Mineral Resource (refer to Appendix 1, 2 and 3 for details).

Table 1 – DeGrussa and Monty Orderground Ore Reserve and Mineral Resource								
DeGrussa and Monty	Tonnes (Mt)	Copper (%)	Gold (g/t)	Contained Copper (kt)	Contained Gold (koz)			
Ore Reserve**	2.6	4.7	1.4	120	117			

5.8

1.9

164

Table 1 – DeGrussa and Monty Underground Ore Reserve and Mineral Resource

2.8

Table 2 – DeGrussa and Monty Underground Ore Reserve and Mineral Resource by Orebody

DeGrussa and Monty	Tonnes (Mt)	Stockpiles (Mt)	DG (Mt)	C1 (Mt)	C4 (Mt)	C5 (Mt)	Monty (Mt)
Ore Reserve**	2.6	<0.1	<0.1	0.7	0.6	0.6	0.6
Mineral Resource*	2.8	<0.1	0.1	0.8	0.6	0.6	0.7

Notes:

Mineral Resource*

Estimates have been rounded to the nearest 1,000t, 0.1% Cu grade and 1,000t Cu metal; and 0.1g/t Au grade and 1,000oz Au metal. Differences may occur due to rounding.

* Mineral Resource for DeGrussa and Monty are based on a 1.0% Cu cut-off.

** Ore Reserve includes mining dilution and mining recovery.

The DeGrussa processing plant has a capacity of 1.6Mtpa. The mining operations strategy adopted for the DeGrussa Mine and Monty Mine targets the blending of material from both mines and scheduling to have both life-of-mine plans completed as close to the same time as practicable.

The updated underground Ore Reserve continues to support this strategy, with DeGrussa producing approximately 1.2Mtpa and Monty producing approximately 0.4Mtpa.

Underground Ore Reserve Update

The DeGrussa underground Ore Reserve has been updated based on the December 2020 Mineral Resource model, annual mining depletion and minor adjustment to modifying factors. This has resulted in an Ore Reserve reduction of approximately 1.2Mt and 49kt of contained copper.

170

The Monty underground Ore Reserve has been updated based on the December 2020 Mineral Resource model, annual mining depletion and minor adjustment to modifying factors. This has resulted in an Ore Reserve reduction of approximately 0.4Mt and 29kt of contained copper.

The Ore Reserve for DeGrussa and Monty are summarised and combined in Table 3.

Underground Ore Reserve	Tonnes (Mt)	Copper (%)	Gold (g/t)	Contained Copper (kt)	Contained Gold (koz)
DeGrussa (includes stockpiles)	1.9	3.8	1.4	72	84
Monty (includes stockpiles)	0.7	7.2	1.6	48	34
Total	2.6	4.7	1.4	120	117

Notes:

Estimates have been rounded to the nearest: 1,000t, 0.1% Cu grade and 1,000t Cu metal; and 0.1g/t Au grade and 1,000oz Au metal. Differences may occur due to rounding.

Mineral Resource Update

The DeGrussa Mineral Resource has been updated as at 31 December 2020 based on annual mining depletions, sterilisation and resource definition drilling.

The Monty Mineral Resource has been updated as at 31 December 2020 based on annual mining depletions, sterilisation and grade control drilling. The Monty Lower Zone grade control drilling was completed during CY2020 and showed the deposit to be more structurally complex, resulting in changes to the geometry and volumes of the massive sulphide. While it is structurally more complex, the underlying Resource base and contained copper does not vary materially from the Monty Maiden Mineral Resource Estimate. The Monty Upper Zone grade control drilling was completed in the second half of CY2020.

Exploration programs continue at Doolgunna with extensive programs of air-core (AC), reverse circulation (RC) and diamond drilling continuing to test the prospective stratigraphy for new discoveries. Routine testing of geochemical and geophysical anomalism is also ongoing.

Table 4 – Mineral Resource as at 31 December 2020

Underground Mineral Resource	Tonnes (Mt)	Copper (%)	Gold (g/t)	Contained Copper	Contained Gold (koz)
DeGrussa (includes stockpiles)	2.1	4.7	1.8	98	122
Monty (includes stockpiles)	0.7	9.3	2.1	66	48
Total	2.8	5.8	1.9	164	170

Notes:

Estimates have been rounded to the nearest: 1,000t, 0.1% Cu grade and 1,000t Cu metal; and 0.1g/t Au grade and 1,000oz Au metal. Differences may occur due to rounding.

Management Comment

Sandfire's Managing Director, Mr Karl Simich, said the updated DeGrussa and Monty Ore Reserve underpins mine life through to the third quarter of CY2022, by which time construction of the Company's new Motheo-T3 Copper Mine in Botswana is expected to be nearing completion.

"Based on current mining and processing rates, the current Ore Reserves at DeGrussa and Monty will allow high-grade, low-cost copper production to continue at full pace right through to the September Quarter of 2022," he said.

"This will put us in the best possible position to capitalise on the current strong copper price and maximise cash generation from what has without question been one of the best copper orebodies discovered anywhere in the world in recent times.

"Importantly, this will provide us with an exceptional runway to pivot to our next growth chapter as we complete construction and prepare to commence operations at the new Motheo Project in Botswana in early 2023 – completing our transformation into a diversified international copper producer.

"In parallel with the development activities at Motheo, we are also undertaking studies to assess the potential for a gold transition strategy at DeGrussa based on the development of the Old Highway Gold prospect, leveraging the existing processing facilities on site.

"We are also maintaining a significant exploration push across our extensive tenement holdings surrounding the DeGrussa and Monty Mines, with extensive programs of AC, RC and diamond drilling underway along the prospective stratigraphic horizons to assess the potential for new discoveries," Mr Simich added.

"This ongoing exploration campaign includes the ultra-deep diamond hole which has recently been completed on the Red Bore tenement, targeting the interpreted offset position down-plunge of Conductor 5. We are eagerly awaiting the results of down-hole EM surveys on this important hole."

ENDS

For further information contact: Sandfire Resources Ltd Ben Crowley – Head of Investor Relations Office: +61 8 6430 3800

Read Corporate Nicholas Read Mobile: +61 419 929 046

This announcement is authorised for release by Sandfire's Managing Director and CEO, Karl Simich.

Competent Person's Statement – Mineral Resources

The information in this report that relates to Mineral Resources is based on information compiled by Mr Callum Browne who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Browne is a former employee of Sandfire and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Browne consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Competent Person's Statement – Ore Reserves

The information in this report that relates to Ore Reserves is based on information compiled by Mr Neil Hastings who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Hastings is a permanent employee of Sandfire and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Hastings consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

Certain statements made during or in connection with this announcement contain or comprise certain forward-looking statements regarding Sandfire's Mineral Resources and Reserves, exploration and project development operations, production rates, life of mine, projected cash flow, capital expenditure, operating costs and other economic performance and financial condition as well as general market outlook. Although Sandfire believes that the expectations reflected in such forward-looking statements are reasonable, such expectations are only predictions and are subject to inherent risks and uncertainties which could cause actual values, results, performance or achievements to differ materially from those expressed, implied or projected in any forward-looking statements and no assurance can be given that such expectations will prove to have been correct.

There is continuing uncertainty as to the full impact of COVID-19 on Sandfire's business, the Australian economy, share markets and the economies in which Sandfire conducts business. Given the high degree of uncertainty surrounding the extent and duration of the COVID-19 pandemic, it is not currently possible to assess the full impact of COVID-19 on Sandfire's business or the price of Sandfire securities.

Accordingly, results could differ materially from those set out in the forward-looking statements as a result of, among other factors, changes in economic and market conditions, delays or changes in project development, success of business and operating initiatives, changes in the regulatory environment and other government actions, fluctuations in metals prices and exchange rates and business and operational risk management.

Except for statutory liability which cannot be excluded, each of Sandfire, its officers, employees and advisors expressly disclaim any responsibility for the accuracy or completeness of the material contained in these forward-looking statements and excludes all liability whatsoever (including in negligence) for any loss or damage which may be suffered by any person as a consequence of any information in forward-looking statements or any error or omission. Sandfire undertakes no obligation to update publicly or release any revisions to these forward-looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events other than required by the Corporations Act and ASX Listing Rules. Accordingly, you should not place undue reliance on any forward-looking statement.

Exploration and Resource Targets

Any discussion in relation to the potential quantity and grade of Exploration Targets is only conceptual in nature. While Sandfire is confident that it will report additional JORC compliant resources for the DeGrussa Project, there has been insufficient exploration to define mineral resources in addition to the current JORC compliant Mineral Resource inventory and it is uncertain if further exploration will result in the determination of additional JORC compliant Mineral Resources.

APPENDIX 1: DeGrussa and Monty Underground Ore Reserve and Mineral Resource Tables as at 31 December 2020

DeGrussa Mine - Underground			Ore R	eserve**					Mineral F	Resource	*	
Deposit	Reserve Category	Tonnes (Mt)	Copper (%)	Gold (g/t)	Contained Copper (kt)	Contained Gold (koz)	Resource Category	Tonnes (Mt)	Copper (%)	Gold (g/t)	Contained Copper (kt)	Contained Gold (koz)
	Proved	<0.1	4.8	1.5	1	1	Measured	0.1	5.0	2.1	3	4
DeCrusse	Probable	-	-	-	-	-	Indicated	<0.1	1.6	0.7	<1	<1
DeGrussa							Inferred	-	-	-	-	-
	Total	<0.1	4.8	1.5	1	1	Total	0.1	4.2	1.8	3	4
	Proved	0.6	3.8	1.3	22	23	Measured	0.7	5.3	1.9	35	41
Or a hard and	Probable	0.1	3.6	1.1	4	4	Indicated	0.2	1.8	0.5	3	3
Conductor 1							Inferred	<0.1	4.9	1.5	0	0
	Total	0.7	3.8	1.3	25	27	Total	0.8	4.6	1.6	38	43
	Proved	0.4	4.4	1.2	17	16	Measured	0.4	6.0	1.9	25	26
O an durator A	Probable	0.2	3.2	1.1	6	6	Indicated	0.1	1.9	0.7	3	3
Conductor 4							Inferred	<0.1	2.7	1.8	1	2
	Total	0.6	4.0	1.2	23	22	Total	0.6	4.9	1.6	29	31
	Proved	0.4	4.0	1.9	17	26	Measured	0.5	5.2	2.4	26	39
Conductor F	Probable	0.2	2.5	1.2	4	7	Indicated	0.1	1.8	0.8	2	3
Conductor 5							Inferred	<0.1	5.1	2.1	1	1
	Total	0.6	3.6	1.7	22	33	Total	0.6	4.6	2.2	28	43
Stockpiles	Proved	<0.1	4.0	1.4	<1	<1	Proved	<0.1	4.0	1.4	<1	<1
	Proved	1.4	4.0	1.5	58	67	Measured	1.6	5.4	2.1	89	110
Total	Probable	0.5	3.0	1.1	14	17	Indicated	0.4	1.8	0.7	7	9
							Inferred	<0.1	3.3	1.9	1	3
	Total	1.9	3.8	1.4	72	84	Total	2.1	4.7	1.8	98	122

Notes:

Estimates have been rounded to the nearest: 1,000t, 0.1% Cu grade and 1,000t Cu metal; and 0.1g/t Au grade and 1,000oz Au metal. Differences may occur due to rounding.

* Mineral Resource is based on a 1.0% Cu cut-off and allows for mining depletion and sterilisation as at 31 December 2020.

 ** Ore Reserve include mining dilution and mining recovery.

Changes in the DeGrussa Mineral Resource estimate

• Mineral Resource updated for mining depletion, sterilisation and changes to the geological model. The Mineral Resource has decreased in tonnes (25%), contained copper (32%) and contained gold (31%), primarily due to mining depletion.

Changes in the DeGrussa Ore Reserve estimate

- Annual mining depletion of 1.2Mt and 49kt of contained copper and 69koz of contained gold.
- Minor adjustments to cut-off grade due to updated FX and commodity price forecasts.
- Minor adjustments to mining dilution and recovery based on recent operating experience.

Monty Mine - Underground			Ore l	Reserve**					Minera	Resource*		
Deposit	Reserve Category	Tonnes (Mt)	Copper (%)	Gold (g/t)	Contained Copper (kt)	Contained Gold (koz)	Resource Category	Tonnes (Mt)	Copper (%)	Gold (g/t)	Contained Copper (kt)	Contained Gold (koz)
	Proved	0.6	7.7	1.6	44	30	Measured	0.5	11.6	2.6	55	39
March	Probable	0.1	4.7	1.0	4	2	Indicated	0.1	4.2	1.0	6	4
Monty							Inferred	0.1	6.3	1.5	4	3
	Total	0.6	7.3	1.6	47	32	Total	0.7	9.5	2.1	65	47
Stockpiles	Proved	<0.1	4.7	1.4	1	1	Measured	<0.1	4.7	1.4	1	1
	Proved	0.6	7.5	1.6	45	31	Measured	0.5	11.2	2.5	56	40
Total	Probable	0.1	4.7	1.0	4	2	Indicated	0.1	4.2	1.0	6	4
							Inferred	0.1	6.3	1.5	4	3
	Total	0.7	7.2	1.6	48	34	Total	0.7	9.3	2.1	66	48

Notes:

Estimates have been rounded to the nearest: 1,000t, 0.1% Cu grade and 1,000t Cu metal; and 0.1g/t Au grade and 1,000oz Au metal. Differences may occur due to rounding.

* Mineral Resource is based on a 1.0% Cu cut-off and allows for mining depletion and sterilisation as at 31 December 2020.

** Ore Reserve include mining dilution and mining recovery.

Changes in the Monty Mineral Resource estimate

• Mineral Resource updated for mining depletion, sterilisation and changes to the geological model. The Mineral Resource has decreased in tonnes (12%), contained copper (22%) and contained gold (23%), primarily due to mining depletion.

Changes in the Monty Ore Reserve estimate

- Annual mining depletion of 0.4Mt and 29kt of contained copper and 21koz of contained gold.
- Adjustments to cut-off grade due to updated FX and commodity price forecasts, completion of most of the operational level development and optimisation of operational methodologies which has resulted in cost reductions. Full cost cut-off grade (Dec19 = 3.7% Cu, Dec20 = 2.0% Cu), Stope incremental cut-off grade (Dec19 = 2.6% Cu, Dec20 = 1.3% Cu), Development cut-off grade (Dec19 = 1.0% Cu, Dec20 = 0.8% Cu).
- Minor adjustments to mining dilution and recovery based on operating experience.

APPENDIX 2: DeGrussa – Underground Ore Reserve and Mineral Resource as at 31 December 2020

JORC 2012 MINERAL RESOURCE AND ORE RESERVES PARAMETERS - DeGrussa

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary				
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	significant geological feature warrants a change from this standard unit.				
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling is guided by Sandfire DeGrussa protocols and Quality Control (QC) procedures as per industry standard.				
	Aspects of the determination of mineralisation that are Material to the Public Report.	The determination of mineralisation is based on observed amount of sulphides and lithological differences.				
	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Diamond drill core sample is first crushed through a Jaques jaw crusher to -10mm, then Boyd crushed to -4mm and pulverised via LM2 to nominal 90% passing -75µm. A 0.4g assay charge is combined and fused into a glass bead with 10.0g flux for XRF analysis. A 40g charge is used for Fire Assay.				
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Surface drillholes primarily used NQ2 (50.6mm) core size although a small portion used HQ (63.5mm) core size (standard tubes). All underground drillholes used NQ2 (50.6mm) core size (standard tubes). All surface drill collars are surveyed using RTK GPS with downhole surveying by gyroscopic methods.				
		All underground drill collars are surveyed using Trimble S6 electronic theodolite. Downhole survey is completed by gyroscopic downhole survey.				
		Drill holes are inclined at varying angles for optimal ore zone intersection.				
		All core where possible is oriented using a Reflex ACT II RD orientation tool with stated accuracy of +/-1% in the range 0 to 88°.				
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Diamond core recovery is logged and captured into the database with weighted average core recoveries greater than 98%.				
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Core is meter marked and orientated to check against the driller's blocks, ensuring that all core loss is taken into account.				
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.					

Criteria	JORC Code Explanation	Commentary				
Logging Sub-sampling techniques and sample preparation	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Geological logging is completed for all holes and is representative across the ore body. The lithology, sulphide, alteration, and structural characteristics of core are logged directly to a digital format following standard procedures and using Sandfire DeGrussa geological codes. The reliability and consistency of data is monitored though regular peer review.				
		Data is imported onto the central database after validation in LogChief™.				
D	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Logging is both qualitative and quantitative depending on the field being logged. All cores are photographed.				
	The total length and percentage of the relevant intersections logged.	All drill holes are fully logged.				
	If core, whether cut or sawn and whether quarter, half or all core taken.	Core orientation is completed where possible and all are marked prior to sampling. Longitudinally cut half core samples are produced using Almonte Core Saw. Samples are weighed and recorded.				
		Some quarter core samples have been used and statistical test work has shown them to be representative.				
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	No non-core used in Mineral Resource Estimate.				
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation at the onsite laboratory involves weighing and drying the original sample at 80° for up to 24 hours. All samples are crushed through Jaques crusher to nominal -10mm followed by a second stage crushing through Boyd crusher to nominal -4mm. The sample is split to less than 2kg through a linear splitter and excess retained for metallurgical work. Sample splits are weighed at a frequency of 1:20 and entered into the job results file. Pulverising is completed using LM2 mill to 90% passing 75%µm. Pulp fines test is completed at a minimum of 1:20. A 1.5kg of rock quartz is pulverised at rate of 1:20 samples. Two lots of packets are retained for the onsite laboratory services whilst the pulverised residue is shipped externally to Bureau Veritas laboratory in Perth for further analysis.				
		Sample preparation at the Bureau Veritas laboratory in Perth involves weighing and drying the original sample at 80° for up to 24 hours. Samples are first crushed through a Jaques crusher to nominal -10mm. Second stage crushing is through Boyd crusher to a nominal -4mm. The sample is then split to less than 2kg through linear splitter and excess retained. Sample splits are weighed at a frequency of 1:20 and entered into the job. Pulverising is completed using LM5 mill to 90% passing 75%µm. Grind size checks are completed at a minimum of 1 per batch. 1.5kg of rock quartz is pulverised at every 1:10 sample.				
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	SFR DeGrussa has protocols that cover auditing of sample preparation at the laboratories and the collection and assessment of data to ensure accurate steps in producing representative samples for the analytical process.				
		Weekly onsite laboratory audits are completed to ensure the laboratory conforms to standards.				
	Measures taken to ensure that the sampling is representative of the in situ material	Duplicate analysis has been completed and identified no issues with sampling representatively.				
	collected, including for instance results for field duplicate/second-half sampling.	Test work on half-core versus quarter-core has been completed with results confirming that sampling at either core size is representative of the in-situ material.				
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample size is considered appropriate for the Massive Sulphide mineralisation style.				

Criteria	JORC Code Explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	At the onsite laboratory, a 0.4g assay charge is combined and fused into a glass bead with 10.0g flux for XRF analysis. XRF method is used to analyse for a suite of elements (including Cu, Fe, SiO2, Al, Ca, K, MgO, P, S, Ti, Mn, Co, Ni, Zn, As, and Pb).
		Samples submitted to Bureau Veritas laboratory in Perth are assayed using Mixed 4 Acid Digest (MAD) 0.3g charge and MAD Hotbox 0.15g charge methods with ICPOES or ICPMS finish. The samples are digested and refluxed with a mixture of acids including Hydrofluoric, Nitric, Hydrochloric and Perchloric acids and conducted for multi elements including Cu, Pb, Zn, Ag, As, Fe, S, Sb, Bi, Mo, Re, Mn, Co, Cd, Cr, Ni, Se, Te, Ti, Zr, V, Sn, W and Ba. The MAD Hotbox method is an extended digest method that approaches a total digest for many elements however some refractory minerals are not completely attacked. The elements S, Cu, Zn, Co, Fe, Ca, Mg, Mn, Ni, Cr, Ti, K, Na, V are determined by ICPOES, and Ag, Pb, As, Sb, Bi, Cd, Se, Te, Mo, Re, Zr, Ba, Sn, W are determined by ICPOES. Lower sample weights are employed where samples have very high S contents.
		These analytical methods are considered appropriate for the mineralisation style.
	For geophysical tools, spectrometers, handheld XRF instruments etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to analyse the drilling products.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of	Sandfire DeGrussa Quality Control (QC) protocol is considered industry standard with standard reference material (SRM) submitted on regular basis with routine samples.
	bias) and precision have been established.	SRMs and blanks are inserted at a minimum of 5% frequency rate. A minimum of 2% of assays are routinely re-submitted as Check Assays and Check Samples through blind submittals to external and the onsite primary laboratories respectively. Additionally, Umpire Checks are completed on quarterly basis.
		QC data returned is automatically checked against set pass/fail limits within the SQL database and are either passed or failed on import. On import a first pass automatic QC report is generated and sent to QAQC Geologists for a recommended action. Results of all QC samples for every laboratory batch received are analysed to determine assay accuracy and repeatability.
		Analysis of pulp residue and coarse reject material shows acceptable repeatability and no significant bias.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections have been verified by alternative company personnel.
	The use of twinned holes.	There are no twinned holes drilled for the DeGrussa Mineral Resource.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data are captured on field tough book laptops using Logchief™ Software. The software has validation routines and data is then imported into a secure central database.
	Discuss any adjustment to assay data.	The primary data is always kept and is never replaced by adjusted or interpreted data.

Criteria	JORC Code Explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource	Sandfire DeGrussa Survey team undertakes survey works under the guidelines of best industry practice.
	estimation.	All surface drill collars are accurately surveyed using RTK GPS system within +/-50mm of accuracy (X, Y, Z) with no coordinate transformation applied to the picked-up data.
Ð		There is a GPS base station onsite that has been located by a static GPS survey from two government standard survey marks (SSM) recommended by Landgate. Downhole survey is completed by gyroscopic downhole methods at regular intervals.
		Underground drilling collar surveys are carried out using Trimble S6 electronic theodolite and wall station survey control. Re-traverse is carried out every 100 vertical meters within main decline. Downhole surveys are completed by gyroscopic downhole methods at regular intervals.
	Specification of the grid system used.	MGA94 Zone 50 grid coordinate system is used.
	Quality and adequacy of topographic control.	A 1m ground resolution DTM with an accuracy of 0.1m was collected by Digital Mapping Australia using LiDAR and a vertical medium format digital camera (Hasselblad). The LiDAR DTM and aerial imagery were used to produce a 0.1m resolution orthophoto that has been used for subsequent planning purposes.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	No Exploration Results are included in this release.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Data spacing of surface drilling is approximately 30m x 40m and underground grade control drilling is approximately 10m x 15m. The distribution is sufficient to establish the degree of geological and grade continuity appropriate for the JORC 2012 classifications applied.
	Whether sample compositing has been applied.	No sample compositing is applied during the sampling process.
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The majority of the drill holes are orientated to achieve intersection angles as close to perpendicular to the mineralisation as practicable.
geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No significant sampling bias occurs in the data due to the orientation of drilling with regards to mineralised bodies.
Sample security	The measures taken to ensure sample security.	Chain of custody of samples is being managed by Sandfire.
		Appropriate security measures are taken to dispatch samples to the laboratory. Samples are transported to the external laboratory by Toll IPEC or Nexus transport companies in sealed bulka bags.
		The laboratory receipt received samples against the sample dispatch documents and issues a reconciliation report for every sample batch.
		Laboratory dumps the excess material (residue) after 30 days unless instructed otherwise.
-		Laboratory returns all pulp samples within 60 days.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The sampling techniques and data collection processes are of industry standard and have been subjected to multiple internal and external reviews. Cube Consulting Pty completed a review during 13 th - 17 th October 2016 and found procedures to be consistent with industry standard and appropriate with minor recommendations for enhancement as part of continuous improvement.

Section 2: Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary				
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	^g Mining Lease 52/1046 is wholly held by Sandfire and has a registered caveat over the teneme made by DeGrussa Solar Project Pty Ltd in respect of the DeGrussa Solar Array infrastructure Mining Lease 52/1046 is currently subject to the Yungunga-Nya Native Title Claim (WC99/04 and the Gingirana Native Title Determination (WCD17/011). Sandfire currently has Land Access Agreements in place with the Gingirana Native Title Determination Group and the Yugunga-Nya Native Title Claim Group which overlay the DeGrussa Copper deposit and has allowed minir				
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	and exploration activities to be carried out on their traditional land. All tenements are current and in good standing.				
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No Exploration Results are included in this release.				
Geology	Deposit type, geological setting and style of mineralisation.	The DeGrussa Mine lies within the Proterozoic-aged Bryah rift basin that is enclosed betwee the Archaean Marymia Inlier to the north and the Proterozoic Yerrida basin to the south. The principal exploration targets in the Doolgunna Project area are Volcanogenic Hoste Massive Sulphide (VHMS) deposits located within the Proterozoic Bryah Basin of Weste Australia. The style of mineralisation referred to in the main body of this announcement is considered				
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	be from VHMS mineralisation. No Exploration Results are included in this release.				
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No Exploration Results are included in this release.				

Criteria	JORC Code Explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No Exploration Results are included in this release.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No Exploration Results are included in this release.
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	No Exploration Results are included in this release.
mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported.	No Exploration Results are included in this release.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	No Exploration Results are included in this release.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	No Exploration Results are included in this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	No Exploration Results are included in this release.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No Exploration Results are included in this release.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	No Exploration Results are included in this release.

Section 3: Estimation and Reporting of Mineral Resources

Criteria	JORC Code Explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Sandfire uses SQL as the central data storage system via Datashed™ software front end. User access to the database is regulated by specific user permissions. Only the Database Management team can overwrite data.
D		Existing protocols maximise data functionality and quality whilst minimising the likelihood of error introduction at primary data collection points and subsequent database upload, storage and retrieval points.
		Data templates with lookup tables and fixed formatting are used for collecting primary data on field Toughbook laptops. The software has validation routines and data is subsequently imported into a secure central database.
		An IT contracting company is responsible for the daily Server backups of both the source file data on the file server and the SQL Server databases. The selected SQL databases are backed up each day to allow for a full recovery.
	Data validation procedures used.	The SQL server database is configured for optimal validation through constraints, library tables, triggers and stored procedures. Data that fails these rules on import is rejected or quarantined until it is corrected.
		Database is centrally managed by a Database Manager who is responsible for all aspects of data entry, validation, development, quality control and specialist queries.
		There is a standard suite of vigorous validation checks for all data.
Site Visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The Competent Person for this Mineral Resource update is a former employee of Sandfire and undertakes regular site visits.
	If no site visits have been undertaken indicate why this is the case.	Sites visits are undertaken.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	Interpretation is based on geological knowledge acquired through data acquisition from the open pit and underground workings, including detailed geological core and chip logging, assay data, underground development face mapping of orebody contacts and in-pit mapping. This information increases the confidence in the interpretation of the deposit.
	Nature of the data used and of any assumptions made.	All available geological logging data from diamond core are used for the interpretations. Interpreted fault planes have been used to constrain the wireframes where applicable. All development drives are mapped and surveyed, and interpretation adjusted as per ore contacts mapped.
		Wireframes are constructed using cross sectional interpretations based on abundance of sulphide minerals (incl. chalcopyrite, pyrite, pyrrhotite, sphalerite and magnetite), lithology, chlorite alteration of host rock and elevate Cu grades (>0.3%).
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	The geological interpretation of mineralised boundaries is considered robust and alternative interpretations do not have the potential to impact significantly on the Mineral Resources.
		Ongoing site and corporate peer reviews, and external reviews, ensure that the geological interpretation is robust.

Criteria	JORC Code Explanation	Commentary
	The use of geology in guiding and controlling Mineral Resource estimation.	The interpreted mineralisation boundaries are used as hard boundaries during the Mineral Resource estimation.
	The factors affecting continuity both of grade and geology.	The nature of VMS mineralisation style and regional setting have an influence on mineralisation grade and geology. The Shiraz and Merlot faults post-date and off-set mineralisation.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower	All known DeGrussa deposit mineralisation extends from 733500mE to 734785mE, 7172965mN to 7173590mN and 650m below surface.
	limits of the Mineral Resource.	The DeGrussa sulphide lode generally strikes towards NE with a strike length of approximately 230m, very steeply dipping towards the south with a plunge generally trending SW and having a vertical extent of about 180m.
		The Conductor 1 orebody lies north of DeGrussa and generally strikes ENE dipping approximately 65° to the SE with a high-grade plunge trending SW. It has a strike length of about 540m with a vertical extent of 420m.
		Conductor 4 orebody lies to the east of DeGrussa and Conductor1 and are stratigraphically deeper. They have an overall strike length of 470m and vertical extent of 260m. The upper sulphide lode strikes towards ENE with an approximate dip of 47° to the SE and high-grade plunge trending SE. The lower sulphide lode strikes E, dipping approximately 45° to the S with a SW high grade plunge.
		Conductor 5 orebody is east of Conductor 4 and has a strike length up to 380m and a vertical extent of 470m. The sulphide lode strikes ESE with an approximate dip of 45° to the SSW and high-grade plunge trending SE.

ASX: SFR

Criteria	JORC Code Explanation	Commentary								
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points.	 Three-dimensional mineralisation wireframes are completed within Surpac[™] and Leapfress. software and these are then imported into StudioRM[™]. 								
	If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Geostatistical ordinary kriging (OK) is used to estimate the Mineral Resource. A that a stationarity assumption is reasonable for the style of deposit and linear and Au grades.								
		The Mineral Resource database is uniquely flagged with mineralisation domain code: by wireframe boundaries and then composited into density weighted 1m lengths an used for estimating the Mineral Resource.								
				ed to isolated high- istograms and statis				ation where	ere applical	
		Variography was completed using Geovariances Isatis software. Variograms f display moderate D1/D2 anisotropy and moderate to strong D1/D3 anisotro reflected in search parameters. Variograms were modelled with three structures two spherical structures for all domains.					anisotropy,	py, which wa		
		that domai	ins were es	ers are tabulated for stimated in a single p alisation on the extre	ss. Larger sea	rches are				
		C1		Rotation	Max Search	D1/D2	D1/D3	Optimum	Minimu	
		C1 Element	Domain	Rotation Azimuth Dip Pi		D1/D2 ratio	D1/D3 ratio	Optimum Samples	Minimu Sample	
		Element CU	11 & 12	Azimuth Dip Pi Dynamic Anisotropy	ch Distance 155	ratio 1.6	ratio 5.2	Samples 20	Sample 8	
		Element CU AU	11 & 12 11 & 12	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy	ch Distance 155 100	ratio 1.6 2.0	ratio 5.2 2.5	Samples 20 20	Sample 8 8	
		Element CU AU AG	11 & 12 11 & 12 11 & 12	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy	ch Distance 155 100 120	ratio 1.6 2.0 1.7	ratio 5.2 2.5 4.8	Samples 20 20 20	Sample 8 8 8	
		Element CU AU AG AS	11 & 12 11 & 12 11 & 12 11 & 12 11 & 12	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy	ch Distance 155 100 120 80	ratio 1.6 2.0 1.7 2.7	ratio 5.2 2.5 4.8 6.7	Samples 20 20 20 20 20	Sample 8 8 8 8	
		Element CU AU AG AS BI	11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy	ch Distance 155 100 120 80 80	ratio 1.6 2.0 1.7 2.7 2.0	ratio 5.2 2.5 4.8 6.7 5.3	Samples 20 20 20 20 20 20 20	Sample 8 8 8 8 8 8	
		Element CU AU AG AS BI FE	11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130	ratio 1.6 2.0 1.7 2.7 2.0 1.5	ratio 5.2 2.5 4.8 6.7 5.3 4.3	Samples 20 20 20 20 20 20 20 20 20	Sample 8 8 8 8 8 8 8 8 8	
		Element CU AU AG AS BI FE PB	11 & 12 11 & 12	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1	ratio 5.2 2.5 4.8 6.7 5.3 4.3 3.4	Samples 20 20 20 20 20 20 20 20 20	Sample 8 8 8 8 8 8	
		Element CU AU AG AS BI FE	11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130	ratio 1.6 2.0 1.7 2.7 2.0 1.5	ratio 5.2 2.5 4.8 6.7 5.3 4.3	Samples 20 20 20 20 20 20 20 20 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8	
		Element CU AU AG AS BI FE PB S	11 & 12 11 & 12	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75 140	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1 2.0	ratio 5.2 2.5 4.8 6.7 5.3 4.3 3.4 4.7	Samples 20 20 20 20 20 20 20 20 20 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		Element CU AU AG AS BI FE PB S ZN	11 & 12 11 & 12	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75 140 90 140 125	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1 2.0 2.3 1.8 1.3	ratio 5.2 2.5 4.8 6.7 5.3 4.3 3.4 4.7 3.6	Samples 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		Element CU AU AG AS BI FE PB S ZN MGO DENSITY CU	11 & 12 11 & 12 10 - 104	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75 140 90 140 125 140	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1 2.0 2.3 1.8 1.3 2.3	ratio 5.2 2.5 4.8 6.7 5.3 4.3 3.4 4.7 3.6 7.0 5.0 7.0	Samples 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		Element CU AU AG AS BI FE PB S ZN MGO DENSITY CU AU	11 & 12 11 & 12 101 - 104	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75 140 90 140 125 140 125 140 125 140 120	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1 2.0 1.5 2.1 2.0 2.3 1.8 1.3 2.3 1.7	ratio 5.2 2.5 4.8 6.7 5.3 4.3 3.4 4.7 3.6 7.0 5.0 7.0 8.0	Samples 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		Element CU AU AG AS BI FE PB S ZN MGO DENSITY CU AU AG	11 & 12 11 & 12 10 & 104 101 - 104	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75 140 90 140 125 140 2025 220	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1 2.0 2.3 1.8 1.3 2.3 1.7	ratio 5.2 2.5 4.8 6.7 5.3 4.3 3.4 4.7 3.6 7.0 5.0 7.0 5.0 7.0 5.0 7.0	Samples 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		Element CU AU AG BI FE PB S ZN MGO DENSITY CU AU AG AS	11 & 12 11 & 12 101 - 104 101 - 104 101 - 104	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75 140 90 140 125 140 122 140 125 140 122 140 120 120 120 110	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.7 1.7 1.7 2.4	ratio 5.2 2.5 4.8 6.7 5.3 4.3 3.4 4.7 3.6 7.0 5.0 7.0 5.0 7.0 8.0 7.0 11.0	Samples 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 4 4 4 4	
		Element CU AU AG AS BI FE PB S ZN MGO DENSITY CU AU AG AS BI	11 & 12 11 & 12 101 - 104 101 - 104 101 - 104	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75 140 90 140 125 140 125 140 125 140 120 140 300 340	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1 2.0 2.3 1.8 1.3 2.3 1.7 2.3 1.7 2.3	ratio 5.2 2.5 4.8 6.7 5.3 3.4 4.3 3.4 4.7 3.6 7.0 5.0 7.0 5.0 7.0 8.0 11.0 11.3	Samples 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		Element CU AU AG BI FE PB S ZN MGO DENSITY CU AU AG BI FE	11 & 12 11 & 12 101 - 104 101 - 104 101 - 104 101 - 104	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75 140 90 140 225 140 220 110 340	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.3 1.8 1.3 2.3 1.7 2.4 3.4 1.6	ratio 5.2 2.5 4.8 6.7 5.3 4.3 3.4 4.7 3.6 7.0 5.0 7.0 8.0 11.0 11.3 5.5	Samples 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		Element CU AU AG AS BI FE PB S ZN MGO DENSITY CU AU AG AS BI FE PB	11 & 12 11 & 12 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75 140 90 140 220 140 125 140 125 140 120 220 110 340 110	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.3 1.8 1.3 2.3 1.7 1.7 2.4 3.4 1.6 1.8	ratio 5.2 2.5 4.8 6.7 5.3 4.3 3.4 4.7 3.6 7.0 5.0 7.0 8.0 11.0 11.3 5.5	Samples 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 4 4 4 4 4 4	
		Element CU AU AG BI FE PB S ZN MGO DENSITY CU AU AG BI FE	11 & 12 11 & 12 101 - 104 101 - 104 101 - 104 101 - 104	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75 140 90 140 225 140 220 110 340	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.3 1.8 1.3 2.3 1.7 2.4 3.4 1.6	ratio 5.2 2.5 4.8 6.7 5.3 4.3 3.4 4.7 3.6 7.0 5.0 7.0 8.0 11.0 11.3 5.5	Samples 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 4 4 4 4 4 4 4 4	
		Element CU AU AG AS BI FE PB S ZN MGO DENSITY CU AU AG AS BI FE PB S	11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 11 & 12 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75 140 90 140 220 110 340 120 120 120 120 120 120 110 340 110 125 100	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.0 2.3 1.8 1.3 2.3 1.7 2.3 1.7 2.4 3.4 1.6 1.8 1.7	ratio 5.2 2.5 4.8 6.7 5.3 4.3 3.4 4.3 3.4 4.7 5.0 7.0 5.0 7.0 5.0 7.0 8.0 7.0 11.0 11.0 11.3 5.5.0 2.5	Samples 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		Element CU AU AG AS BI FE PB S ZN MGO DENSITY CU AU AG AS BI FE PB S ZN	11 & 12 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104 101 - 104	Azimuth Dip Pi Dynamic Anisotropy Dynamic Anisotropy	Distance 155 100 120 80 130 75 140 90 140 125 140 122 140 125 140 120 220 110 340 125 100 110	ratio 1.6 2.0 1.7 2.7 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.5 2.1 2.0 1.7 1.3 2.3 1.7 1.7 2.4 3.4 1.6 1.8 1.7 1.8 1.7	ratio 5.2 2.5 4.8 6.7 5.3 3.4 4.3 3.4 4.7 3.6 7.0 5.0 7.0 5.0 7.0 5.0 7.0 8.0 11.0 11.0 11.3 5.5 5.5	Samples 20	Sample 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	

Criteria	JORC Code Explanation	Commen	tary								
		C1E		Ro	otation		Max Search	D1/D2	D1/D3	Optimum	Minimun
		Element	Domain	Azimuth		Pitch	Distance	ratio	ratio	Samples	Samples
		CU	21 - 23	Dynamic			160	2.3	8.0	20	6
		AU	21 - 23	Dynamic			120	2.0	5.5	20	6
		AG	21 - 23	Dynamic			140	1.6	4.7	20	6
		AS	21 - 23	Dynamic			130	1.6	6.5	20	8
		BI	21 - 23	Dynamic			180	2.0	9.0	20	6
		FE PB	21 - 23	Dynamic			135 110	1.8 2.2	5.4 5.5	20	6
		IS IS	21 - 23 21 - 23	Dynamic Dynamic			135	1.6	6.8	20	6
		ZN	21-23	Dynamic			127.5	1.0	4.3	20	6
		MGO	21 - 23	Dynamic			130	1.6	6.5	20	6
		DENSITY	21 - 23	Dynamic			130	2.2	6.5	20	6
		CU	201 - 204	Dynamic			500	2.0	4.0	20	4
		AU	201 - 204	Dynamic			500	2.0	4.0	20	4
		AG	201 - 204	Dynamic			600	2.0	4.0	20	4
		AS	201 - 204	Dynamic			600	2.0	4.0	20	4
[BI	201 - 204	Dynamic			600	2.0	4.0	20	4
1		FE	201 - 204	Dynamic			500	2.0	4.0	20	4
		PB	201 - 204 201 - 204	Dynamic			500 500	2.0 2.0	4.0	20	4
		ZN	201 - 204	Dynamic Dynamic			500	2.0	4.0	20	4
		MGO	201 - 204				500	2.0	4.0	20	4
		DENSITY	201 - 204				500	2.0	4.0	20	4
		DG		Po	otation		Max Search	D1/D2	D1/D3	Optimum	Minimu
		Element	Domain	Azimuth	Dip	Pitch	Distance	ratio	ratio	Samples	Sample
		CU	31	50	90	70	65	2.6	3.3	20	6
		CU	32	230	85	-110	65	2.6	3.3	20	6
		AU	32	240	85	90	65	2.6	3.3	20	8
		AG	32	235	85	90	108	2.6	3.3	20	6
		AS	32	230	85	55	65	2.6	3.3	20	6
		BI	32	60	85	-75	150	2.5	3.3	20 20	6
		PB	32 32	245 245	85 85	20 70	72 65	2.6 2.6	3.3 3.3	20	6
		S	32	245	85	20	72	2.6	3.3	20	6
		ZN	32	255	85	70	65	2.6	3.3	20	8
		MGO	32	240	85	-170	72	2.6	3.3	20	6
		DENSITY	32	240	85	20	72	2.6	3.3	20	6
		cu	301 & 302	230	85	-15	100	2.5	3.3	20	6
		AU AG	301 & 302	230	85	30	100	2.5	3.3	20	8
		AG	301 & 302 301 & 302	240 230	85 85	90 75	165 100	2.5 2.5	3.3 3.3	20 20	6
		BI	301 & 302	240	85	-40	150	2.5	3.3	20	6
1		FE	301 & 302	240	85	-40	100	2.5	3.3	20	6
		PB	301 & 302	230	85	65	100	2.5	3.3	20	6
1		S	301 & 302	230	85	170	100	2.5	3.3	20	6
		ZN	301 & 302	240	85	140	100	2.5	3.3	20	8
			301 & 302	240	85	-145	100	2.5	1 2 2	20	6
		MG0 DENSITY	301 & 302	240	85	150	100	2.5	3.3 3.3	20 20	6

l
AG
BI
BI 41 FE 41
PB 41
S 41
ZN
MGO
DENSITY
CU
AU
AG
AS
BI
FE 4 PB 4
PB 42
S 42
ZN 42 MGO 42
MGO
DENSITY
CU 43
AU 43
AG 43 AS 43
AS 43 BI 43
FE 43
PB
S
S 43 ZN 43
MGO 4 DENSITY 4
DENSITY CU 40
CU
AU 401-
AG 40
AS 401
BI 401-40
FE 401-40
PB 401 - 405
S 401
ZN 401-
MGO 401-4
DENSITY 401 - 405

Criteria	JORC Code Explanation	Comment	ary						
		C5		Rotation	Max Search	D1/D2	D1/D3	Optimum	Minimum
			Domain					Samples	Samples
		Element	Domain	Azimuth Dip Pitch	Distance	ratio	ratio		
		CU AU	51 51	Dynamic Anisotropy Dynamic Anisotropy	125 180	2.5 3.0	6.3 8.0	20 20	8
		AG	51	Dynamic Anisotropy Dynamic Anisotropy	351	3.3	8.7	20	6
		AS	51	Dynamic Anisotropy	130	1.9	5.2	16	8
		BI	51	Dynamic Anisotropy	225	1.8	5.0	20	8
		FE	51	Dynamic Anisotropy	150	2.5	6.0	20	6
		PB	51	Dynamic Anisotropy	195	1.9	3.3	20	8
		S	51	Dynamic Anisotropy	140	2.3	5.6	20	6
		ZN	51	Dynamic Anisotropy	180	2.7	5.3	20	8
		MGO	51	Dynamic Anisotropy	125	1.8	3.3	20	8
		DENSITY	51	Dynamic Anisotropy	120	2.2	4.8	20	6
		CU	52	Dynamic Anisotropy	125	2.5	6.3	20	8
		AU	52	Dynamic Anisotropy	180	3.0	8.0	20	8
		AG	52	Dynamic Anisotropy	351	3.3	8.7	20	6
		AS	52	Dynamic Anisotropy	130	1.9	5.2	16	8
		BI	52	Dynamic Anisotropy	225	1.8	5.0	20	8
		FE	52	Dynamic Anisotropy	150	2.5	6.0	20	6
		PB	52	Dynamic Anisotropy	195	1.9	3.3	20	8
		S	52	Dynamic Anisotropy	140	2.3	5.6	20	6
		ZN	52	Dynamic Anisotropy	120	2.7	5.3	20	8
		MGO	52	Dynamic Anisotropy	125	1.8	3.3	20	8
		DENSITY	52	Dynamic Anisotropy	120 375	2.2	4.8	20 20	6
		CU AU	53 53	Dynamic Anisotropy	432	2.5 3.0	6.3	20	4
		AG	53	Dynamic Anisotropy	432 562	3.3	8.0 8.7	20	6 4
		AG	53	Dynamic Anisotropy	390	3.3 1.9	5.2	20	4
		BI	53	Dynamic Anisotropy Dynamic Anisotropy	375	1.9	5.2	20	4
		FE	53	Dynamic Anisotropy	450	2.5	6.0	20	4
		PB	53	Dynamic Anisotropy	325	1.9	3.3	20	4
		S	53	Dynamic Anisotropy	420	2.3	5.6	20	4
		ZN	53	Dynamic Anisotropy	240	2.7	5.3	20	4
		MGO	53	Dynamic Anisotropy	250	1.8	3.3	20	4
		DENSITY	53	Dynamic Anisotropy	360	2.2	4.8	20	4
		CU	501 - 504	Dynamic Anisotropy	180	1.8	4.5	16	6
		AU	501 - 504	Dynamic Anisotropy	160	2.3	5.3	16	4
		AG	501 - 504	Dynamic Anisotropy	510	1.7	5.7	20	4
		AS	501 - 504	Dynamic Anisotropy	210	2.6	7.0	16	6
		BI	501 - 504	Dynamic Anisotropy	585	2.2	8.7	20	4
		FE	501 - 504	Dynamic Anisotropy	170	3.4	8.5	20	6
		PB	501 - 504	Dynamic Anisotropy	200	1.8	6.7	16	6
		S	501 - 504	Dynamic Anisotropy	180	3.0	9.0	20	6
		ZN	501 - 504	Dynamic Anisotropy	160	2.3	5.3	16	6
		MGO	501 - 504	Dynamic Anisotropy	270	2.3	4.5	20	4
		DENSITY	501 - 504	Dynamic Anisotropy	200	2.9	5.0	20	6
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	The currer out open p	nt Mineral	ave been checked agair Resource takes into acc and CMS data for under	ount mine p	roductio	n using v	wireframe o t the end of	f the mined December
		2017.							

Criteria

JORC Code Explanation	Commentary				
The assumptions made regarding recovery of by-products.	No assumptions are made regarding recovery of by-products during the Mineral Resourcestimation. <i>ic</i> Estimates includes deleterious or penalty elements Pb, Bi, Zn, As and MgO.				
Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).					
In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Pe Data spacing was the primary consideration taken into account when selecting an ap estimation block size. The drill hole spacing is approximately 10m x 15m for all domains				
	The model geometry is	tabulated below.			
		degded	c17d Block Model		
		Northing	Easting	Elevation	
	Minimum Coordinates	7,172,850	733,250	1,700	
	Maximum Coordinates	7,173,750	735,250	2,800	
	Parent Block Size	5m	5m	5m	
	Minimum Sub-cell	1m	0.5m	0.5m	
Any assumptions about correlation between variables.	deposit. From the meas	sured density data the	here exists a strong co	r of drillholes throughout to prelation between density,	
Any assumptions about correlation between variables.	deposit. From the meas and S. Before compos expectation of density v were not assayed, a de 2.8g/cm3 for halo miner only used where there is	sured density data the sured regression are where Fe and S are efault density of 3.8 ralisation. Measured s no density data.	here exists a strong con halysis was undertaked known for all drill hole g/cm3 was applied wit density values are pre	prrelation between density, n to estimate the conditio s by orebody. Where Fe o hin the massive sulphide a	
Any assumptions about correlation between variables.	deposit. From the meas and S. Before compose expectation of density were were not assayed, a de 2.8g/cm3 for halo miner only used where there is The regression formulas	sured density data the sured regression are where Fe and S are efault density of 3.8 ralisation. Measured s no density data.	here exists a strong con halysis was undertaken known for all drill hole g/cm3 was applied wit density values are pre w.	prrelation between density, n to estimate the conditio is by orebody. Where Fe o hin the massive sulphide a eserved with predicted dens	
Any assumptions about correlation between variables.	deposit. From the meas and S. Before compos expectation of density v were not assayed, a de 2.8g/cm3 for halo miner only used where there is	sured density data the sured density data the vhere Fe and S are efault density of 3.8 ralisation. Measured s no density data. s are tabulated below	here exists a strong co nalysis was undertake known for all drill hole g/cm3 was applied wit density values are pre w. Regression Equa	prrelation between density, n to estimate the conditions by orebody. Where Fe of hin the massive sulphide a eserved with predicted densition	
Any assumptions about correlation between variables.	deposit. From the meas and S. Before compos expectation of density w were not assayed, a de 2.8g/cm3 for halo miner only used where there is The regression formulas	sured density data the sured density data the vhere Fe and S are efault density of 3.8 ralisation. Measured s no density data. s are tabulated below PDENSITY = 2.5077	here exists a strong con halysis was undertaken known for all drill hole g/cm3 was applied wit density values are pre w.	tion to s7*S_PCT)	
Any assumptions about correlation between variables.	deposit. From the meas and S. Before compos expectation of density v were not assayed, a de 2.8g/cm3 for halo miner only used where there is The regression formulas Lode C1/C1E	sured density data the sured density data the version are version are version and version of 3.8 ralisation. Measured is no density data. Is are tabulated below PDENSITY = 2.5077 PDENSITY = 2.4304	here exists a strong co halysis was undertake known for all drill hole g/cm3 was applied wit density values are pre w. Regression Equa + (0.0202*FE_PCT) + (0.02	tion ar*S_PCT) 26*S_PCT) brief to be	
Any assumptions about correlation between variables.	deposit. From the meas and S. Before compos expectation of density v were not assayed, a de 2.8g/cm3 for halo miner only used where there is The regression formulas Lode C1/C1E DG	sured density data the iting, regression are vhere Fe and S are efault density of 3.8 ralisation. Measured is no density data. is are tabulated below PDENSITY = 2.5077 PDENSITY = 2.4304 PDENSITY = 2.5176	here exists a strong co halysis was undertaked known for all drill hole g/cm3 was applied wit d density values are pre- W. Regression Equa + (0.0230*FE_PCT) + (0.02	tion 37*S_PCT) 24*S_PCT) 24*S_PCT) 20th of the set	
Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates.	deposit. From the meas and S. Before compos expectation of density v were not assayed, a de 2.8g/cm3 for halo miner only used where there is The regression formulas Lode C1/C1E DG C4 C5 The geological interpre- boundaries. The block r with the geological dom	sured density data the iting, regression are where Fe and S are efault density of 3.8 ralisation. Measured is no density data. is are tabulated below PDENSITY = 2.5077 PDENSITY = 2.4304 PDENSITY = 2.4304 PDENSITY = 2.4781 PDENSITY = 2.4781 PDENSITY = 2.4781	here exists a strong co halysis was undertaked known for all drill hole g/cm3 was applied wit I density values are pre- W. Regression Equa + (0.0202*FE_PCT) + (0.02 + (0.0230*FE_PCT) + (0.02 + (0.0230*FE_PCT) + (0.02 + (0.0230*FE_PCT) + (0.02 correlate with the ma nique mineralisation do reframes. Geological in	tion 37*S_PCT) 24*S_PCT) 24*S_PCT) 20th the massive sulphide a served with predicted density tion 20th the massive sulphide a served with predicted density tion 20th the massive sulphide a tion 20th the massive sulphide a the massive	

Criteria	JORC Code Explanation	Commentary
)	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 The process of validation includes standard model validation using visual and numerical methods. The block model estimates are checked against the input composite/drillhole data Swath plots of the estimated block grades and composite mean grades are generated by eastings, northings and elevations and reviewed to ensure acceptable correlation. Block Kriging Efficiency (KE) and Slope of Regression (ZZ) are used to quantitatively check the estimation quality. Reconciled production data verse Mineral Resource estimate is positive
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages are estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	Based upon data review a cut-off of 1.0% Cu for massive sulphides appear to be a natural grade boundary between ore and trace assay values.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The underground mining method is long-hole open stoping (both transverse and longitudinal) with minor areas of jumbo cut and fill or uphole benching in some of the narrower areas. The primary method of backfill is paste fill. The sequence aims for 100% extraction of the orebody. Detailed mine plans are in place and mining is occurring.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	The underground Ore Reserve estimate is based on an operating 1.6 Mtpa process plant producing a 24.5% copper-concentrate that contains gold and silver. Mill feed is sourced from DeGrussa and Monty with DeGrussa supplying approximately 1.2 Mtpa. DeGrussa copper recovery models based on Copper:Sulphur ratio were used in the determination of the underground Ore Reserve estimate. Average weighted LOM copper recovery is 91.9%. Gold recovery was fixed at 47%. Silver recovery was fixed at 49%.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	The DeGrussa project is constructed with a fully lined Tailings Storage Facility and all Sulphide material mined from the operation will be processed in the concentrator, eliminating any PAF or the waste dumps.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Bulk density was sampled on a limited (approximately 10%) but representative number of dril holes throughout the deposit. Sample mass was determined by weighing the core in air and sample volume was determined by the Archimedes principle. Within the massive sulphide the density varies approximately between 2.8 g/cm ³ to 4.9 g/cm ³ , with an average density reading o 3.8g/cm ³ .
		To test the methodology and accuracy of the density measurements, regular samples constitutin 20% of total measurements are submitted to an independent laboratory for measurements.

Criteria	JORC Code Explanation	Commentary				
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit.	The procedure used is suitable for non-porous or very low porosity samples, which can be of weighed in water before saturation occurs.				
Ð	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	f From the measured density data there exists a strong correlation between density, Fe and Before compositing, regression analysis was undertaken to estimate the conditional expectat of density where Fe and S are known for all drillholes by orebody. Where Fe or S were assayed, a default density of 3.8 g/cm ³ was applied within the massive sulphide and 2.8 g/cm ³ halo mineralisation. Measured density values are preserved with predicted density only us where there is no density data.				
		The regression formu	las are tabulated below.			
		Lode	Regression Equation			
		C1/C1E	PDENSITY = 2.5077 + (0.0202*FE_PCT) + (0.0237*S_PCT)			
		DG	PDENSITY = 2.4304 + (0.0230*FE_PCT) + (0.0226*S_PCT)			
		C4	PDENSITY = 2.5176 + (0.0198*FE_PCT) + (0.0224*S_PCT)			
		C5	PDENSITY = 2.4781 + (0.0230*FE_PCT) + (0.0215*S_PCT)			
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.					
	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).					
	Whether the result appropriately reflects the Competent Person's view of the deposit.					
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	standard and has b Resource Estimate v Sandfire's routine gov under the JORC Cou- stated in the Code. Cu risks associated with findings from the aud validation, documenta and that Sandfire hav	ogical modelling, estimation and reporting of Mineral Resources is industry een subject to an independent external review. The DeGrussa Mineral vas audited by Cube Consulting Pty in late 2017 to early 2018 as part of vernance practices. The audit assessed Sandfire's compliance with reporting de (2012) regime and considered the guidelines and reporting standards ube also considered the overall quality of the resource estimate and the main the data, process and implementation approach adopted by Sandfire. The it show that the data, interpretation, estimation parameters, implementation, ation and reporting are all fit for purpose with no material errors or omissions ve completed the work with a high degree of professionalism. The resource dustry standard suitable for both public reporting and internal mine design			

С	Criteria	JORC Code Explanation	Commentary
re	Discussion of elative accuracy/ onfidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	The Mineral Resources has been reported in accordance with the guidelines of the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves and reflects the relative accuracy of the Mineral Resources estimates. Resource has been reconciled against mined areas and results indicated appropriate accuracy.
		The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The DeGrussa Mineral Resource Estimate is a global estimate.
		These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	Reconciled production data verse Mineral Resource estimate is positive.

Section 4: Estimation and Reporting of Ore Reserves

Criteria	JORC Code Explanation	Commentary
Mineral Resource estimate for conversion to Ore	Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve.	The underground Ore Reserves estimate is based on the Mineral Resources estimate as at the 31 ^s December 2020. The estimation and reporting of Mineral Resources is outlined in Section 3 of this Table.
Reserves	Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves.	Mineral Resources are reported inclusive of Ore Reserves.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The Competent Person for this Ore Reserve statement is a full-time employee of Sandfire Resources (Sandfire), is based in Perth, and undertakes site visits.
	If no site visits have been undertaken indicate why this is the case.	Site visits are undertaken as described above.
Study status	The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves.	The DeGrussa mine has been in operation since 2011. Underground stope production commenced in October 2012. The Modifying Factors used in the conversion of Mineral Resources to Ore Reserves are based on current and historic operational experience.
Cut-off parameters	The basis of the cut-off grade(s) or quality parameters applied.	 Three copper only cut-off grades have been calculated and applied as economic cut-offs in the determination of the underground Ore Reserves. These are based on current and forecasted costs revenues, mill recoveries and modifying factors, forecast for the life of the mine. These cut-off values are: Full cost cut-off grade (2.1%) – is based on all operating costs associated with the production of copper metal; Stope incremental cut-off grade (1.8%) - considers material below the full cost cut-off that is accessible; and Development cut-off grade (0.9%) – considers material that has to be mined in the process of gaining access to fully costed economic material.
Mining factors or assumptions	The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design).	Underground Ore Reserves have been estimated by generating detailed mining shapes for all areas that contain Measured or Indicated Mineral Resources as well as access development. Interna stope dilution has been designed into the mining shapes and interrogated. External stope dilutior and mining recovery factors have been applied post geological block model interrogation to generate final mining diluted and recovered ore tonnage and grade.
	The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc.	Primary mining methods employed are sub-level open stoping (SLOS) and long-hole open stoping (LHOS) with fill. Cut and fill techniques are also employed in remnant areas. Primary fill material is paste with minor use of cemented rock fill and rock fill when appropriate. The selected mining methods are considered appropriate for the nature of the defined Minera Resources.
	The assumptions made regarding geotechnical parameters (e.g. pit slopes, stope sizes, etc.), grade control and pre-production drilling.	Stopes to be mined in the short term are assessed on an individual basis using all related loca mining, geological and geotechnical experience to date. This includes data gathered from back analysis of stopes mined to date in adjacent or similar areas.
		Stopes to be mined in the medium to long term employ geotechnical parameters derived from area mining experience and / or diamond drill core.

Criteria	JORC Code Explanation	Commentary
	The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate).	The Mineral Resource model created to estimate the Mineral Resources as at the 31 st December 2020 was used as the basis for stope and development design. No modifications were made to this model for mine design purposes.
	The mining dilution factors used.	Internal stope dilution from interrogation of detailed mining shapes against the geological block model ranges from 5% to 55% with a weighted average of 16%. External stope dilution is applied to stopes on an individual basis and is based on mining experience to date. This ranges from 5% to 45% with a weighted average of 9%. External dilution is considered at zero grade.
	The mining recovery factors used.	A mining recovery factor is applied to stopes on an individual basis. The factor is based on mining experience to date and ranges from 95% to 110% with a weighted average of 101%. The factor is applied to diluted stopes.
	Any minimum mining widths used.	A minimum mining width of 2.0 m is used based on the nature of the deposit and the equipment fleet employed.
	The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion.	The underground Ore Reserves contain no Inferred Mineral Resource.
	The infrastructure requirements of the selected mining methods.	DeGrussa is an operating mine and all infrastructure required to service the selected mining methods is in place.
Metallurgical factors or assumptions	The metallurgical process proposed and the appropriateness of that process to the style of mineralisation. Whether the metallurgical process is well-tested technology or novel in nature.	The underground Ore Reserve estimate is based on an operating 1.6 Mtpa process plant producing a 24.5% copper-concentrate that contains gold and silver. Mill feed is sourced from DeGrussa and Monty with DeGrussa supplying approximately 1.2 Mtpa.
	The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied.	DeGrussa copper recovery model is based on Copper:Sulphur ratio. This was used in the determination of the underground Ore Reserve estimate. Average weighted LOM copper recovery is 91.9%.
	Any assumptions or allowances made for deleterious elements.	Gold recovery fixed at 47%.
	The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole.	Silver recovery fixed at 49%.
	For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications?	
Environmental	The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.	DeGrussa is an operating mine and is compliant with all environmental regulatory requirements and permits.
Infrastructure	The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.	DeGrussa is an operating mine and all infrastructure required for continued operation is in place.

Criteria	JORC Code Explanation	Commentary
Costs	The derivation of, or assumptions made, regarding projected capital costs in the study.	DeGrussa is an operating mine and capital costs are generally limited to that required to sustain the operation.
	The methodology used to estimate operating costs.	Operating costs are based on current contracts and historical averages.
	Allowances made for the content of deleterious elements.	No allowances required for deleterious elements (see Market Assessment)
	The source of exchange rates used in the study. Derivation of transportation charges.	Exchange rates are based on consensus forecasts and vary over the life of the mine. The life-of- mine average rate is:
	The basis for forecasting or source of treatment and refining charges, penalties	• A\$/US\$: 0.71.
	for failure to meet specification, etc. The allowances made for royalties payable, both Government and private.	Land freight and port charges are based on existing contracts. Sea freight charges based on Braemar indices. TC / RC based on benchmark.
		DeGrussa is subject to Government Royalties and Royalties for Native Title. Rates for Government Royalties are:
		Copper is 5.0% of net revenue;
		Gold is 2.5% of net revenue; and
		• Silver is 2.5% of net revenue.
		The Royalty rate for Native Title is:
		0.6% of gross revenue (copper, gold, silver).
Revenue factors	The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products.	Commodity prices are based on consensus forecasts and vary over the life of the mine. The life-of- mine average values are: Copper (US\$/t): \$6,711; Gold (US\$/oz): \$1,807; and Silver (US\$/oz): \$21.65. A revenue reduction factor of 18.7% has been applied which includes all future estimated and calculated transport, smelting, refining and royalty payments. The factor is based on current costs, payments and charges.
Market assessment	The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future.	Sandfire is a low-cost copper concentrate producer selling into global market for custom concentrates.
	A customer and competitor analysis along with the identification of likely market	Pricing is fundamentally on value of contained metals the main metal being copper with gold and small silver credits.
	windows for the product.	The price of copper being set based on the LME which is a mature, well established and publically
	Price and volume forecasts and the basis for these forecasts.	traded exchange.
	For industrial minerals the customer specification, testing and acceptance	Sandfire produces a clean concentrate, low in deleterious elements.
	requirements prior to a supply contract.	Sandfire relies upon independent expert publications (CRU, Wood Mac, Metal Bulletin) and other sources (bank reports, trader reports, conferences, other trade publications) in forming a view about future demand and supply and the likely effects of this on both metal prices and concentrate prices.
		Sandfire concentrate is sold by competitive tender.

Criteria	JORC Code Explanation	Commentary
Economic	The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs.	DeGrussa is an operating mine with a focus on operating cash margins. The mine plan created to derive the underground Ore Reserves provides positive cash margins in all years when all modifying factors are applied.
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	DeGrussa is an operating mine, and all agreements are in place and are current with all key stakeholders including traditional owner claimants.
Other	To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.	Sandfire has advised that DeGrussa is currently compliant with all legal and regulatory requirements and valid marketing arrangements are in place.
Classification	The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any).	 Underground Ore Reserves have been derived from a mine plan that is based on extracting the 31 December 2020 Measured and Indicated Mineral Resources. Underground Ore Reserves are initially derived from development and stope designs that are evaluated against Mineral Resources. Designs do not inherently honour mineral resource classification boundaries therefore designs contain multiple mineral resource classification material types. Proved Ore Reserves have been derived from designs that contain greater than 70% Measured Mineral Resources. Probable Ore Reserves have been derived from designs that contain greater than 70% Measured Mineral Resources. Proved Ore reserves contain approximately 11% Indicated Mineral Resources and Probable Ore Reserves contain approximately 11% Indicated Mineral Resources. Final classification is set after considering all relevant modifying factors. The underground Ore Reserve classification appropriately reflects the competent person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	The underground Ore Reserve has been reviewed internally. The underground Ore Reserve estimate is in line with current industry standards.

ASX: SFR

	Criteria	JORC Code Explanation	Commentary
	Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a generative discussion of the feature which avoid a offect the relative accuracy	The project is considered robust with the underground Ore Reserve copper grade of 3.8% Cu significantly higher than the full cost cut-off grade of 2.1% Cu. Approximately 4.1% of the underground Ore Reserve tonnes which contains 1.9% of the underground Ore Reserve contained copper tonnes falls between the development cut-off copper grade of 0.9% Cu and the full cost cut-off grade of 2.1% Cu.
)	qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate.	There has been an appropriate level of consideration given to all modifying factors, which are established from an operating mine, to support the declaration and classification of underground
		The statement should specify whether it relates to global or local estimates,	Ore Reserves.
		and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	No statistical or geostatistical procedures were carried out to quantify the accuracy of the underground Ore Reserve.
		Accuracy and confidence discussions should extend to specific discussions of	Underground Ore Reserve tonnes are split 2 % DG, 35 % C1, 30 % C4, and 32 % C5. Annual ore production for the LOM loosely aligns with the underground Ore Reserve split.
)		any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage.	Approximately 75% of the underground Ore Reserves tonnes are classified as Proved with the remaining 25% classified as Probable.
)		It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	

APPENDIX 3: Monty – Underground Ore Reserve and Mineral Resource as at 31 December 2020

JORC 2012 MINERAL RESOURCE AND ORE RESERVES PARAMETERS - Monty

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Sampling boundaries are geologically defined and commonly one metre in length unless a significant geological feature warrants a change from this standard unit.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling is guided by Sandfire protocols and Quality Control (QC) procedures as per industry standard.
	Aspects of the determination of mineralisation that are Material to the Public Report.	The determination of mineralisation is based on observed amount of sulphides and lithological differences.
	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which	Diamond drill core sample is first crushed through a Jaques jaw crusher to -10mm, then Boyc crushed to -4mm and pulverised via LM2 to nominal 90% passing -75µm.
	3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	0.3g charge portions of the sub-sample are collected and used for Mixed 4 Acid Digest (MAD) respectively with ICPAES/MS.A 40g portion of the sub-sample is used for Fire Assay.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Surface drillholes primarily used NQ2 (50.6mm) core size although a small portion used HC (63.5mm) core size (standard tubes). All underground drillholes used NQ2 (50.6mm) core size (standard tubes).
		All surface drill collars are surveyed using RTK GPS with downhole surveying by gyroscopic methods.
		All underground drill collars are surveyed using Trimble S6 electronic theodolite. Downhole survey is completed by gyroscopic downhole survey.
		Drill holes are inclined at varying angles for optimal ore zone intersection.
		All core where possible is oriented using a Reflex ACT II RD orientation tool with stated accuracy of +/-1% in the range 0 to 88°.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Diamond core recovery is logged and captured into the database with weighted average core recoveries greater than 98%.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Core is meter marked and orientated to check against the driller's blocks, ensuring that all core loss is taken into account.

Criteria	JORC Code Explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No sample recovery issues have impacted on potential sample bias.
Logging Sub-sampling techniques and sample preparation	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Geological logging is completed for all holes and is representative across the ore body. The lithology, sulphide, alteration, and structural characteristics of core are logged directly to a digital format following standard procedures and using Sandfire DeGrussa geological codes. The reliability and consistency of data is monitored though regular peer review. Data is imported onto the central database after validation in LogChief [™] .
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Logging is both qualitative and quantitative depending on the field being logged. All cores are photographed.
	The total length and percentage of the relevant intersections logged.	All drill holes are fully logged.
	If core, whether cut or sawn and whether quarter, half or all core taken.	Core orientation is completed where possible and all are marked prior to sampling. Longitudinally cut half core samples are produced using Almonte Core Saw. Samples are weighed and recorded.
		Some quarter core samples have been used and statistical test work has shown them to be representative.
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	No non-core used in Mineral Resource Estimate.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation at the onsite laboratory involves weighing and drying the original sample at 80° for up to 24 hours. All samples are crushed through Jaques crusher to nominal -10mm followed by a second stage crushing through Boyd crusher to nominal -4mm. The sample is split to less than 2kg through a linear splitter and excess retained for metallurgical work. Sample splits are weighed at a frequency of 1:20 and entered into the job results file. Pulverising is completed using LM2 mill to 90% passing 75%µm. Pulp fines test is completed at a minimum of 1:20. A 1.5kg of rock quartz is pulverised at rate of 1:20 samples. Two lots of packets are retained for the onsite laboratory services whilst the pulverised residue is shipped externally to Bureau Veritas laboratory in Perth for further analysis.
		Sample preparation at the Bureau Veritas laboratory involves weighing and drying the original sample at 80° for up to 24 hours. Samples are first crushed through a Jaques crusher to nominal -10mm. Second stage crushing is through Boyd crusher to a nominal -4mm. The sample is then split to less than 2kg through linear splitter and excess retained. Sample splits are weighed at a frequency of 1:20 and entered into the job. Pulverising is completed using LM5 mill to 90% passing 75%µm. Grind size checks are completed at a minimum of 1 per batch. 1.5kg of rock quartz is pulverised at every 1:10 sample.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Sandfire has protocols that cover auditing of sample preparation at the laboratories and the collection and assessment of data to ensure accurate steps in producing representative samples for the analytical process.
		Weekly onsite laboratory audits are completed to ensure the laboratory conforms to standards.

Criteria	JORC Code Explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in situ material	Duplicate analysis has been completed and identified no issues with sampling representatively.
	collected, including for instance results for field duplicate/second-half sampling.	Test work on half-core versus quarter-core has been completed with results confirming that sampling at either core size is representative of the in-situ material.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample size is considered appropriate for the Massive Sulphide mineralisation style.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples are submitted to Bureau Veritas laboratory in Perth and analysed using Mixed 4 Acid Digest (MAD) with ICP-AES or ICP-MS finish. The samples are digested and refluxed with a mixture of acids including Hydrofluoric, Nitric, Hydrochloric and Perchloric acids with the suite elements assayed for including Cu, Ag, S, Fe, As, Pb, Zn, Bi, Sb, Cd, MgO, Se, and Te. Additionally Au, Pt and Pd were analysed via fire assay.
	For geophysical tools, spectrometers, handheld XRF instruments etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to analyse the drilling products
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Sandfire Monty Quality Control (QC) protocol is considered industry standard with standard reference material (SRM) submitted on regular basis with routine samples.
		SRMs and blanks are inserted at a minimum of 5% frequency rate. A minimum of 2% of assays are routinely re-submitted as Check Assays and Check Samples through blind submittals to external and the onsite primary laboratories respectively. Additionally, Umpire Checks are completed on quarterly basis.
		QC data returned is automatically checked against set pass/fail limits within the SQL database and are either passed or failed on import. On import a first pass automatic QC report is generated and sent to QAQC Geologists for a recommended action. Results of all QC samples for every laboratory batch received are analysed to determine assay accuracy and repeatability.
		Analysis of pulp residue and coarse reject material shows acceptable repeatability and no significant bias
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections have been verified by alternative company personnel.
2.0	The use of twinned holes.	There are no twinned holes drilled for the Monty Mineral Resource.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data are captured on field tough book laptops using Logchief™ Software. The software has validation routines and data is then imported into a secure central database.
	Discuss any adjustment to assay data.	The primary data is always kept and is never replaced by adjusted or interpreted data.

Criteria	JORC Code Explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Sandfire Monty Survey team undertakes survey works under the guidelines of best industry practice.
		All surface drill collars are accurately surveyed using RTK GPS system within +/-50mm of accuracy (X, Y, Z) with no coordinate transformation applied to the picked-up data.
		There is a GPS base station onsite that has been located by a static GPS survey from two government standard survey marks (SSM) recommended by Landgate. Downhole survey is completed by gyroscopic downhole methods at regular intervals.
		Underground drilling collar surveys are carried out using Trimble S6 electronic theodolite and wall station survey control. Re-traverse is carried out every 100 vertical meters within main decline. Downhole surveys are completed by gyroscopic downhole methods at regular intervals.
	Specification of the grid system used.	MGA94 Zone 50 grid coordinate system is used.
	Quality and adequacy of topographic control	A 1m ground resolution DTM with an accuracy of 0.1m was collected by Digital Mapping Australia using LiDAR and a vertical medium format digital camera (Hasselblad). The LiDAR DTM and aerial imagery were used to produce a 0.1m resolution orthophoto that has been used for subsequent planning purposes.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	No Exploration Results are included in this release.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Data spacing of surface drilling is approximately 30m x 40m and underground grade control drilling is approximately 10m x 10m. The distribution is sufficient to establish the degree of geological and grade continuity appropriate for the JORC 2012 classifications applied.
	Whether sample compositing has been applied.	No sample compositing is applied during the sampling process.
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The majority of the drill holes are orientated to achieve intersection angles as close to perpendicular to the mineralisation as practicable.
geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No significant sampling bias occurs in the data due to the orientation of drilling with regards to mineralised bodies.
Sample security	The measures taken to ensure sample security.	Chain of custody of samples is being managed by Sandfire Resources.
		Appropriate security measures are taken to dispatch samples to the laboratory. Samples are transported to the external laboratory by Toll IPEC or Nexus transport companies in sealed bulka bags.
		The laboratory receipt received samples against the sample dispatch documents and issues a reconciliation report for every sample batch.
		Laboratory dumps the excess material (residue) after 30 days unless instructed otherwise.
		Laboratory returns all pulp samples within 60 days.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The sampling techniques and data collection processes are of industry standard and have been subjected to multiple internal and external reviews.

Section 2: Reporting of Exploration Result

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Springfield Project includes Mining Lease 52/1071. Mining Lease 52/1071 is wholly held by Sandfire and has a registered caveat over the tenement made by Taurus Mining Finance AIV L.P and Taurus Mining Finance Annex Fund AV L.P in respect of a royalty that Taurus continues to maintain over the Monty deposit.
		Mining Lease 52/1071 is currently subject to the Yugunga-Nya Native Title Claim (WC99/046) Sandfire currently has a Land Access Agreements in place with the Yugunga-Nya Native Title Claim Group which overlays the Monty Copper deposit and has allowed mining and exploration activities to be carried out on their traditional land.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All tenements are current and in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No Exploration Results are included in this release.
Geology	Deposit type, geological setting and style of mineralisation.	The Monty Mine lies within the Proterozoic-aged Bryah rift basin that is enclosed between the Archaean Marymia Inlier to the north and the Proterozoic Yerrida basin to the south.
		The principal exploration targets in the Springfield Project area are Volcanogenic Hosted Massive Sulphide (VHMS) deposits located within the Proterozoic Bryah Basin of Western Australia.
		The style of mineralisation referred to in the main body of this announcement is considered to be from VHMS mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	No Exploration Results are included in this release.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No Exploration Results are included in this release.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No Exploration Results are included in this release.

Criteria	JORC Code Explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No Exploration Results are included in this release.
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	No Exploration Results are included in this release.
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported.	No Exploration Results are included in this release.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	No Exploration Results are included in this release.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	No Exploration Results are included in this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	No Exploration Results are included in this release.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No Exploration Results are included in this release.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	No Exploration Results are included in this release.

Section 3: Estimation and Reporting of Mineral Resources

Criteria	JORC Code Explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Sandfire uses SQL as the central data storage system via Datashed [™] software front end. User access to the database is regulated by specific user permissions. Only the Database Management team can overwrite data.
Ð		Existing protocols maximise data functionality and quality whilst minimising the likelihood of error introduction at primary data collection points and subsequent database upload, storage and retrieval points.
		Data templates with lookup tables and fixed formatting are used for collecting primary data on field Toughbook laptops. The software has validation routines and data is subsequently imported into a secure central database.
		An IT contracting company is responsible for the daily Server backups of both the source file data on the file server and the SQL Server databases. The selected SQL databases are backed up each day to allow for a full recovery.
	Data validation procedures used.	The SQL server database is configured for optimal validation through constraints, library tables, triggers and stored procedures. Data that fails these rules on import is rejected or quarantined until it is corrected.
		Database is centrally managed by a Database Manager who is responsible for all aspects of data entry, validation, development, quality control and specialist queries.
		There is a standard suite of vigorous validation checks for all data.
Site Visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The Competent Person for this Mineral Resource update is a former employee of Sandfire Resources and undertakes regular site visits.
	If no site visits have been undertaken indicate why this is the case.	Sites visits are undertaken.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	Interpretation is based on geological knowledge acquired through data acquisition from the underground workings, including detailed geological core, assay data and underground development face mapping of the orebody. This information increases the confidence in the interpretation of the deposit.
	Nature of the data used and of any assumptions made.	All available geological logging data from diamond core are used for the interpretations.
		Interpreted fault planes have been used to constrain the wireframes where applicable.
		All development drives are mapped and surveyed, and interpretation adjusted as per ore contacts mapped.
		Wireframes are constructed using domain selections based on abundance of sulphide minerals (incl. chalcopyrite, pyrite and bornite), lithology, chlorite alteration of host rock and elevated Cu grades (>0.3%).
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	The geological interpretation of mineralised boundaries is considered robust and alternative interpretations do not have the potential to impact significantly on the Mineral Resources.
		Ongoing site and corporate peer reviews, and external reviews, ensure that the geological interpretation is robust.

Page 35 of 47

Criteria	JORC Code Explanation	Commentary
	The use of geology in guiding and controlling Mineral Resource estimation.	The interpreted mineralisation boundaries are used as hard boundaries during the Mineral Resource estimation.
	The factors affecting continuity both of grade and geology.	The nature of VMS mineralisation style and regional setting have an influence on mineralisation grade and geology. The Arneis, Cava, Raboso and Raboso North and South splay faults post-date and off-set mineralisation.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	All known Monty deposit mineralisation extends from 743,400mE to 743,800mE, 7,170,800mN to 7,171,300mN and 600m below surface. The Monty massive sulphide mineralisation generally strikes east and steeply dips to the northwest between 75-85°.

ASX: SFR

Criteria	JORC Code Explanation	Comment	ary								
Estimation and modelling techniques	nodelling echniques assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	g, Three-dimensional mineralisation wireframes are completed within Seequent™ Leapfrog software and these are then imported into StudioRM™.									
		The Minera wireframe estimating	boundarie	s and then	compos	quely flag sited into	ged with r density w	nineralisat eighted 1r	ion doma n lengths	in codes as and these a	defined by are used fo
		Top cuts w on review							timation w	here applic	able based
		moderate I	D1/D2 ani s. Variogra	sotropy and	dmoder	ate to stro	ong D1/D3	3 anisotrop	by, which v	for all doma was reflecte wo spherica	d in search
		blocks that	t were not re tripled.	estimated For edge bl	within th	ne first se	arch were	estimated	d in a seco	in part of th and pass wh with reduce	nere search
								earch Distand			
		UZ			Rotation		ు	earch Distant	es	Maximum	Minimum
		Variable	Domain		X	Z	Max	Mid	Min	Maximum Samples	Minimum Samples
		Variable CU	11	Z 20	X -75	135	Max 50	Mid 25	Min 8	Samples 8	Samples 4
		Variable CU AU	11 11	Z 20 20	X -75 -75	135 135	Max 50 50	Mid 25 25	Min 8 8	Samples 8 8	Samples 4 4
		Variable CU AU AG	11 11 11	Z 20 20 20	× -75 -75 -75	135 135 135	Max 50 50 50	Mid 25 25 25 25	Min 8 8 8	Samples 8 8 8	Samples 4 4 4
		Variable CU AU AG AS	11 11 11 11	Z 20 20 20 20 20	X -75 -75 -75 -75 -75	135 135 135 135 135	Max 50 50 50 50 50 50	Mid 25 25 25 25 25	Min 8 8 8 8 8	Samples888888	Samples 4 4 4 4 4
		Variable CU AU AG AS BI	11 11 11 11 11	Z 20 20 20	× -75 -75 -75	135 135 135	Max 50 50 50	Mid 25 25 25 25	Min 8 8 8	Samples 8 8 8	Samples 4 4 4
		Variable CU AU AG AS BI FE	11 11 11 11 11 11 11	Z 20 20 20 20 20 20	X -75 -75 -75 -75 -75 -75	135 135 135 135 135 135	Max 50 50 50 50 50 50	Mid 25 25 25 25 25 25 25	Min 8 8 8 8 8 8	Samples 8 8 8 8 8 8 8 8 8 8	Samples 4 4 4 4 4 4 4 4 4 4 4
		Variable CU AU AG AS BI	11 11 11 11 11	Z 20 20 20 20 20 20 20	× -75 -75 -75 -75 -75 -75 -75	135 135 135 135 135 135 135	Max 50 50 50 50 50 50 50 50 50 50 50 50	Mid 25 25 25 25 25 25 25 25	Min 8 8 8 8 8 8 8 8	Samples 8 8 8 8 8 8 8 8 8 8 8 8 8	Samples 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		Variable CU AU AG AS BI FE PB	11 11 11 11 11 11 11 11	Z 20 20 20 20 20 20 20 20	X -75 -75 -75 -75 -75 -75 -75 -75 -75	135 135 135 135 135 135 135 135	Max 50 50 50 50 50 50 50 50 50 50 50 50 50 50	Mid 25 25 25 25 25 25 25 25 25 25	Min 8 8 8 8 8 8 8 8 8 8	Samples 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Samples 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		Variable CU AU AG AS BI FE PB S	11 11 11 11 11 11 11 11 11	Z 20 20 20 20 20 20 20 20 20 20	X -75 -75 -75 -75 -75 -75 -75 -75 -75	135 135 135 135 135 135 135 135 135	Max 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	Mid 25 25 25 25 25 25 25 25 25 25 25	Min 8 8 8 8 8 8 8 8 8 8 8	Samples 8	Samples 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		Variable CU AU AG AS BI FE PB S ZN	11 11 11 11 11 11 11 11 11 11	Z 20 20 20 20 20 20 20 20 20 20 20	X -75 -75 -75 -75 -75 -75 -75 -75 -75 -75	135 135 135 135 135 135 135 135 135 135	Max 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	Mid 25 25 25 25 25 25 25 25 25 25 25 25	Min 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Samples 8	Samples 4
		Variable CU AU AG AS BI FE PB S ZN DENSITY	11 11	Z 20 20 20 20 20 20 20 20 20 20 20 20	× -75 -75 -75 -75 -75 -75 -75 -75 -75 -75	135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135	Max 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	Mid 25 25 25 25 25 25 25 25 25 25 25 25 25	Min 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Samples 8	Samples 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Mandalala	Damai							Maximum Samples	Minimu Sample
Variable	Domain	Z	Х	Z	Max	Mid	Min		
CU	21	20	-78	-90	40	32	8	12	6
AU	21	20	-78	-90	24	17	8	12	6
AG	21	20	-78	78	26	14	8	12	6
AS	21	20	-78	150	19	11	8	12	6
BI	21	20	-78	160	28	18	8	12	6
FE	21	20	-78	145	28	20	8	12	6
РВ	21	20	-78	120	23	17	8	12	6
S	21	20	-78	127.5	42	27	8	12	6
ZN	21	20	-78	110	27	16	8	12	6
DENSITY	21	20	-78	112	41	26	8	12	6
TE	21	20	-78	70	15	9	8	12	6
SE	21	20	-78	90	24	13	8	12	6
SB	21	20	-78	145	23	15	8	12	6
W2			Rotation		Widxinia	im Search Dist		Maximum	
W2 Variable	Domain		Х		Max	Mid	Min	Maximum Samples	Minimun Samples
	Domain 21	Z 15		Z 122					Samples
Variable			x		Max	Mid	Min	Samples	
Variable CU	21	15	X -85	122	Max 16	Mid 10	Min 8	Samples	Sample: 6
Variable CU AU	21 21	15 15	X -85 -85	122 90	Max 16 13	Mid 10 9	Min 8 8	Samples 12 12	Samples 6 6
Variable CU AU AG	21 21 21 21	15 15 15	× -85 -85 -85	122 90 120	Max 16 13 16	Mid 10 9 10	Min 8 8 8	Samples 12 12 12 12	Samples 6 6 6
Variable CU AU AG AS	21 21 21 21 21	15 15 15 15	X -85 -85 -85 -85	122 90 120 140	Max 16 13 16 16	Mid 10 9 10 11	Min 8 8 8 8 8	Samples 12 12 12 12 12 12	Samples 6 6 6 6 6
Variable CU AU AG AS BI	21 21 21 21 21 21 21	15 15 15 15 15 15	× -85 -85 -85 -85 -85	122 90 120 140 160	Max 16 13 16 16 20	Mid 10 9 10 11 11	Min 8 8 8 8 8 8 8	Samples 12 12 12 12 12 12 12 12 12 12 12 12 12	Samples 6 6 6 6 6 6 6
Variable CU AU AG AS BI FE	21 21 21 21 21 21 21 21	15 15 15 15 15 15 15	X -85 -85 -85 -85 -85 -85 -85	122 90 120 140 160 112.5	Max 16 13 16 20 23	Mid 10 9 10 11 11 15	Min 8 8 8 8 8 8 8 8 8	Samples 12 12 12 12 12 12 12 12 12 12	Samples 6 6 6 6 6 6 6 6
Variable CU AU AG AS BI FE PB	21 21 21 21 21 21 21 21 21	15 15 15 15 15 15 15 15	X -85 -85 -85 -85 -85 -85 -85 -85	122 90 120 140 160 112.5 120	Max 16 13 16 20 23 16	Mid 10 9 10 11 11 15 12	Min 8 8 8 8 8 8 8 8 8 8	Samples 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12	Samples 6 6 6 6 6 6 6 6 6
Variable CU AU AG AS BI FE PB S	21 21 21 21 21 21 21 21 21 21	15 15 15 15 15 15 15 15 15	× -85 -85 -85 -85 -85 -85 -85 -85 -85	122 90 120 140 160 112.5 120 112.5	Max 16 13 16 16 20 23 16 25	Mid 10 9 10 11 11 15 12 19	Min 8 8 8 8 8 8 8 8 8 8 8	Samples 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12	Samples 6 6 6 6 6 6 6 6 6 6 6 6 6
Variable CU AU AG AS BI FE PB S S ZN	21 21 21 21 21 21 21 21 21 21 21	15 15 15 15 15 15 15 15 15 15	X -85 -85 -85 -85 -85 -85 -85 -85 -85 -85	122 90 120 140 160 112.5 120 112.5 123	Max 16 13 16 20 23 16 25 20	Mid 10 9 10 11 11 15 12 19 12	Min 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Samples 12	Samples 6
Variable CU AU AG AG BI FE PB S ZN DENSITY	21 21 21 21 21 21 21 21 21 21 21 21	15 15 15 15 15 15 15 15 15 15 15 15	X -85 -85 -85 -85 -85 -85 -85 -85 -85 -85	122 90 120 140 160 112.5 120 112.5 123 110	Max 16 13 16 20 23 16 25 20 26	Mid 10 9 10 11 11 15 12 19 12 22	Min 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Samples 12	Samples 6 6 6 6 6 6 6 6 6 6 6 6 6
Variable CU AU AG AG BI BI FE PB S S ZN DENSITY TE	21 21 21 21 21 21 21 21 21 21 21 21 21	15 15 15 15 15 15 15 15 15 15 15 15 15	X -85 -85 -85 -85 -85 -85 -85 -85 -85 -85	122 90 120 140 160 112.5 120 112.5 123 110 135	Max 16 13 16 20 23 16 20 23 26 26	Mid 10 9 10 11 11 15 12 12 19 12 22 22 17	Min 8	Samples 12	Samples 6 6 6 6 6 6 6 6 6 6 6 6 6

E1			Rotation		waximu	um Search Dist		Maximum	Minimu
Variable	Domain				Max	Mid	Min	Samples	Sampl
CU	22	30	-75	80	20	12	8	12	6
AU	22	30	-75	100	33	23	8	12	6
AG	22	30	-75	100	28	16	8	12	6
AS	22	30	-75	80	25	22	8	12	6
BI	22	30	-75	80	21	16	8	12	6
FE	22	30	-75	80	46	27	8	12	6
РВ	22	30	-75	80	27	14	8	12	6
S	22	30	-75	80	43	22	8	12	6
ZN	22	30	-75	80	28	16	8	12	6
DENSITY	22	30	-75	80	42	24	8	12	6
TE	22	30	-75	80	19	13	8	12	6
SE	22	30	-75	80	19	16	8	12	6
SB	22	30	-75	80	24	19	8	12	6
Bornite1*	31	95	-65	0	25	20	8	6	3
E2 Variable	Domain	Z	Rotation X	z	Maximı Max	um Search Dist Mid	ances Min	Maximum Samples	
Variable			x		Max	Mid	Min	Samples	Minimu Sample
Variable CU	22	35	X -85	80	Max 20	Mid 12	Min 8	Samples	Sample 6
Variable CU AU	22 22	35 35	X -85 -85	80 60	Max 20 20	Mid 12 12	Min 8 8	Samples	Sample 6 6
Variable CU AU AG	22 22 22 22	35 35 35	X -85 -85 -85	80 60 10	Max 20 20 20 20	Mid 12 12 12	Min 8 8 8	Samples 12 12 12 12	Sample 6 6 6
Variable CU AU AG AS	22 22 22 22 22	35 35 35 35	X -85 -85 -85 -85	80 60 10 80	Max 20 20 20 20 20 20	Mid 12 12 12 12 12	Min 8 8 8 8 8	Samples 12 12 12 12 12 12	Sample 6 6 6 6
Variable CU AU AG	22 22 22 22	35 35 35 35 35 35	X -85 -85 -85 -85 -85 -85	80 60 10 80 80	Max 20 20 20 20 20 20 20 20 20 20 20 20	Mid 12 12 12 12 12 12 12	Min 8 8 8 8 8 8 8	Samples 12 12 12 12	Sample 6 6 6 6 6 6 6
Variable CU AU AG AS	22 22 22 22 22 22 22 22	35 35 35 35 35 35 35	X -85 -85 -85 -85 -85 -85 -85	80 60 10 80 80 105	Max 20 20 20 20 20 20 20 20	Mid 12 12 12 12 12 12 12 12	Min 8 8 8 8 8 8 8 8 8	Samples 12 12 12 12 12 12 12 12 12 12	Sample 6 6 6 6 6 6 6 6
Variable CU AU AG AS BI FE PB	22 22 22 22 22 22 22 22 22 22	35 35 35 35 35 35 35 35	X -85 -85 -85 -85 -85 -85 -85 -85	80 60 10 80 80 105 80	Max 20 20 20 20 20 20 20 20	Mid 12 12 12 12 12 12 12 12 12	Min 8 8 8 8 8 8 8 8 8 8 8	Samples 12 12 12 12 12 12 12 12 12 12	Sample 6 6 6 6 6 6 6 6
Variable CU AU AG AS BI FE PB S	22 22 22 22 22 22 22 22 22 22 22	35 35 35 35 35 35 35 35 35 35	X -85 -85 -85 -85 -85 -85 -85 -85 -85	80 60 10 80 105 80 105	Max 20	Mid 12 12 12 12 12 12 12 12 12 12 12	Min 8 8 8 8 8 8 8 8 8 8 8 8	Samples 12 12 12 12 12 12 12 12 12 12	Sample 6 6 6 6 6 6 6 6 6 6
Variable CU AU AG AS BI FE PB S S ZN	22 22 22 22 22 22 22 22 22 22 22 22	35 35 35 35 35 35 35 35 35 35 35	× -85 -85 -85 -85 -85 -85 -85 -85 -85 -85	80 60 10 80 80 105 80 105 80	Max 20	Mid 12 12 12 12 12 12 12 12 12 12 12 12	Min 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Samples 12 12 12 12 12 12 12 12 12 12	Sample 6 6 6 6 6 6 6 6 6 6 6
Variable CU AU AG AS BI FE PB S	22 22 22 22 22 22 22 22 22 22 22 22 22	35 35 35 35 35 35 35 35 35 35 35 35	X -85 -85 -85 -85 -85 -85 -85 -85 -85 -85	80 60 10 80 105 80 105 80 80 80	Max 20	Mid 12 12 12 12 12 12 12 12 12 12	Min 8	Samples 12 12 12 12 12 12 12 12 12 12	Sample 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Variable CU AU AG AG BI BI FE PB S S ZN DENSITY TE	22 22 22 22 22 22 22 22 22 22 22 22 22	35 35 35 35 35 35 35 35 35 35 35 35 35	X -85 -85 -85 -85 -85 -85 -85 -85 -85 -85	80 60 10 80 105 80 105 80 80 80 80 80	Max 20	Mid 12 12 12 12 12 12 12 12 12 12	Min 8	Samples 12 12 12 12 12 12 12 12 12 12	Sample 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Variable CU AU AG AS BI FE PB S ZN DENSITY	22 22 22 22 22 22 22 22 22 22 22 22 22	35 35 35 35 35 35 35 35 35 35 35 35 35 3	× -85 -85 -85 -85 -85 -85 -85 -85 -85 -85	80 60 10 80 80 105 80 105 80 80 80 80 80	Max 20	Mid 12 12 12 12 12 12 12 12 12 12	Min 8	Samples 12 12 12 12 12 12 12 12 12 12	Sample 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Variable CU AU AG AG BI BI FE PB S S ZN DENSITY TE	22 22 22 22 22 22 22 22 22 22 22 22 22	35 35 35 35 35 35 35 35 35 35 35 35 35 3	× -85 -85 -85 -85 -85 -85 -85 -85 -85 -85	80 60 10 80 80 105 80 105 80 80 80 80 80 80 80	Max 20	Mid 12 12 12 12 12 12 12 12 12 12	Min 8	Samples 12 12 12 12 12 12 12 12 12 12	Sample 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Variable CU AU AG AS BI FE PB S S ZN DENSITY TE SE	22 22 22 22 22 22 22 22 22 22 22 22 22	35 35 35 35 35 35 35 35 35 35 35 35 35 3	× -85 -85 -85 -85 -85 -85 -85 -85 -85 -85	80 60 10 80 80 105 80 105 80 80 80 80 80	Max 20	Mid 12 12 12 12 12 12 12 12 12 12	Min 8	Samples 12 12 12 12 12 12 12 12 12 12	Sample 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Criteria

JORC Code Explanation	Commentary				
The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	The new estimates have been checked against the previous estimates. The current Mineral Resource takes into account mine production using CMS data for undergroun mined out areas as at the end of December 2020.				
The assumptions made regarding recovery of by-products.	No assumptions are made regarding recovery of by-products during the Mineral Resource estimation				
Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	Estimates includes deleterious or penalty elements As, Bi, MgO, Pb and Zn.				
In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Data spacing was the pri estimation block size. The grade control drilling (10m The model geometry is tab	Monty deposit is drilled on x 10m).			
		mn1220d Bl	ock Model		
		Surface	Drilled		
		Northing	Easting	Elevation	
	Minimum Coordinates	3,200	70,840	5,000	
	Maximum Coordinates	3,700	71,100	5,600	
	Parent Block Size	20m	4m	10m	
	Minimum Sub-cell	0.5m	0.25m	0.5m	
		Grade Cont	rol Drilled		
		Northing	Easting	Elevation	
	Minimum Coordinates	3,200	70,840	5,000	
	Maximum Coordinates	3,700	71,100	5,600	
	Parent Block Size	5m	1m	5m	
	Minimum Sub-cell	0.5m	0.25m	0.5m	
Any assumptions behind modelling of selective mining units.	No selective mining units a	re assumed in this estim	ate.		
Any assumptions about correlation between variables.	No assumptions made about correlation between variables				
Description of how the geological interpretation was used to control the resource estimates.	The geological interpreta boundaries. The block moo the geological domain as o boundaries during interpo corresponding domain cod	del is assigned unique m defined by wireframes. (plation where blocks an	ineralisation domain coo Geological interpretation	des that corresponds with is are then used as hard	
Discussion of basis for using or not using grade cutting or capping.	Top cuts were applied to is on review of histograms an		osites prior to estimatior	h where applicable based	

Criteria	JORC Code Explanation	Commentary
)	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 The process of validation includes standard model validation using visual and numerical methods: The block model estimates are checked against the input composite/drillhole data; Swath plots of the estimated block grades and composite mean grades are generated by eastings, northings and elevations and reviewed to ensure acceptable correlation; and Block Kriging Efficiency (KE) and Slope of Regression (ZZ) are used to quantitatively check the estimation quality. Cumulative LOM production data shows a slight positive reconciliation of Cu metal (4%) with respect to the Mineral Resource estimate.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages are estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	Based upon data review a cut-off of 1.0% Cu for massive sulphides appear to be a natural grade boundary between ore and trace assay values.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The underground mining method is long-hole open stoping (both transverse and longitudinal) with minor areas of jumbo cut and fill or uphole benching in some of the narrower areas. The primary method of backfill is paste fill. The sequence aims for 100% extraction of the orebody. Detailed mine plans are in place and mining is occurring.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	The underground Ore Reserve estimate is based on an operating 1.6 Mtpa process plant producing a 24.5% copper-concentrate that contains gold and silver. Mill feed is sourced from DeGrussa and Monty with Monty supplying approximately 0.4 Mtpa. Monty copper recovery model is based on Copper:Sulphur ratio were used in the determination of the underground Ore Reserve estimate. Average weighted LOM copper recovery is 94.3%. Average weighted gold recovery is 50%.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	The Monty project is constructed with a fully lined Tailings Storage Facility and all Sulphide materia mined from the operation will be processed in the concentrator, eliminating any PAF on the waste dumps.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Bulk density was sampled on >95% of drill holes and is representative throughout the deposit. Sample mass was determined by weighing the core in air and sample volume was determined by the Archimedes principle. Within the massive sulphide the density varies between 2.7 g/cm ³ and 4.8 g/cm ³ , with an average density reading of 4.0 g/cm ³ . Bulk Density is estimated using OK.

Criteria	JORC Code Explanation	Commentary
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit.	The procedure used is suitable for non-porous or very low porosity samples, which can be quickly weighed in water before saturation occurs.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	No assumptions for bulk density made.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	The Mineral Resource is classified as a function of drillhole spacing and geological continuity. Areas where drilling has been completed on a nominal 10m x 10m pattern, where geological continuity is high and proven through mining are classified as Measured. Areas where drill density is 40m x 40m or less and geological continuity is moderate to high are classified as indicated. Elsewhere where drill density is sparse the resource is classified as Inferred.
	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	The Mineral Resource classification has appropriately taken into account data spacing, distribution, reliability, quality and quantity of input data as well as the confidence in predicting grade and geological continuity.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The Mineral Resource estimation appropriately reflects the Competent Person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The process for geological modelling, estimation and reporting of Mineral Resources is industry standard and has been subject to an independent external review.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	The Mineral Resources has been reported in accordance with the guidelines of the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves and reflects the relative accuracy of the Mineral Resources estimates. Resource has been reconciled against mined areas and results indicated appropriate accuracy.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The Monty Mineral Resource Estimate is a global estimate.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	Cumulative LOM production data shows a slight positive reconciliation of Cu metal (4%) with respect to the Mineral Resource estimate.

Section 4: Estimation and Reporting of Ore Reserves

Criteria	JORC Code Explanation	Commentary
Mineral Resource estimate for conversion to Ore	Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve.	The underground Ore Reserves estimate is based on the Mineral Resources estimate as at the 31 st December 2020. The estimation and reporting of Mineral Resources is outlined in Section 3 of this Table.
Reserves	Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves.	Mineral Resources are reported inclusive of Ore Reserves.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The Competent Person for this Ore Reserve statement is a full-time employee of Sandfire Resources (Sandfire), is based in Perth, and undertakes site visits.
	If no site visits have been undertaken indicate why this is the case.	Site visits are undertaken as described above.
Study status	The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves.	Underground development of the Monty mine was started in October 2018. Underground stope production commenced in March 2019. The Modifying Factors used in the conversion of Mineral Resources to Ore Reserves are based on current operational experience.
Cut-off parameters	The basis of the cut-off grade(s) or quality parameters applied.	 Three copper only cut-off grades have been calculated and applied as economic cut-offs in the determination of the underground Ore Reserves. These are based on current and forecasted costs, revenues, mill recoveries and modifying factors, forecast for the life of the mine. These cut-off values are: Full cost cut-off grade (2.0%) – is based on all operating costs associated with the production of copper metal; Stope incremental cut-off grade with fill (1.3%) - considers material below the full cost cut-off that is accessible; and Development cut-off grade (0.8%) – considers material that must be mined in the process of gaining access to fully costed economic material.
Mining factors or assumptions	The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design).	Underground Ore Reserves have been estimated by generating detailed mining shapes for all areas that contain Measured or Indicated Mineral Resources as well as access development. Internal stope dilution has been designed into the mining shapes and interrogated. External stope dilution and mining recovery factors have been applied post geological block model interrogation to generate final mining diluted and recovered ore tonnage and grade.
	The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc.	Primary mining method employed is long-hole open stoping (LHOS) with fill. Primary fill materials are cemented aggregate fill (CAF) and rock fill. The selected mining methods are considered appropriate for the nature of the defined Mineral Resources.
	The assumptions made regarding geotechnical parameters (e.g. pit slopes, stope sizes, etc.), grade control and pre-production drilling.	Stopes to be mined in the short term are assessed on an individual basis using all related local mining, geological and geotechnical experience to date. This includes data gathered from back- analysis of stopes mined to date in adjacent or similar areas.
		Stopes to be mined in the medium to long term employ geotechnical parameters derived from area mining experience and / or diamond drill core.
	The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate).	The Mineral Resource model created to estimate the Mineral Resources as at the 31 st December 2020 was used as the basis for stope and development design. No modifications were made to this model for mine design purposes.

Criteria	JORC Code Explanation	Commentary
	The mining dilution factors used.	Internal stope dilution from interrogation of detailed mining shapes against the geological block model ranges from 5% to 95% with a weighted average of 28%. External stope dilution is applied to stopes on an individual basis and is based on mining experience to date. This ranges from 5% to 55% with a weighted average of 10%. External dilution is considered at zero grade.
	The mining recovery factors used.	A mining recovery factor is applied to stopes on an individual basis. The factor is based on mining experience to date and ranges from 95% to 105% with a weighted average of 101%. The factor is applied to diluted stopes.
	Any minimum mining widths used.	A minimum mining width of 2.0 m is used based on the nature of the deposit and the equipment fleet employed.
	The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion.	The underground Ore Reserves contain less than 1% of Inferred Mineral Resource. This material is included in mining shapes therefore has mining modifying factors applied. Its inclusion and subsequent impact on economic viability is negligible.
	The infrastructure requirements of the selected mining methods.	Monty is an operating mine and all infrastructure required to service the selected mining method is in place.
Metallurgical factors or assumptions	The metallurgical process proposed and the appropriateness of that process to the style of mineralisation. Whether the metallurgical process is well-tested technology or novel in nature.	The underground Ore Reserve estimate is based on an operating 1.6 Mtpa process plant producing a 24.5% copper-concentrate that contains gold and silver. Mill feed is sourced from DeGrussa and Monty with Monty supplying approximately 0.4 Mtpa.
	The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied.	The Monty copper recovery model is based on copper:sulphur ratio. This was used in the determination of the underground Ore Reserve estimate. Average weighted LOM copper recovery is 94.3%.
	Any assumptions or allowances made for deleterious elements.	Average weighted LOM gold recovery is 50%.
	The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole. For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications?	Average weighted LOM silver recovery is 65%.
Environmental	The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.	Monty is an operating mine and is compliant with all environmental regulatory requirements and permits.
Infrastructure	The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.	Monty is an operating mine and all infrastructure required for continued operation is in place.

	Criteria	JORC Code Explanation	Commentary
	Costs	The derivation of, or assumptions made, regarding projected capital costs in the study.	Monty is an operating mine and capital costs are generally limited to that required to sustain the operation.
		The methodology used to estimate operating costs.	Operating costs are based on current contracts and historical averages.
		Allowances made for the content of deleterious elements.	No allowances required for deleterious elements (see Market Assessment)
		The source of exchange rates used in the study.	Exchange rates are based on consensus forecasts and vary over the life of the mine. The life-of-
. 1		Derivation of transportation charges.	mine average rate is:
		The basis for forecasting or source of treatment and refining charges, penalties	• A\$/US\$: 0.71.
		for failure to meet specification, etc. The allowances made for royalties payable, both Government and private.	Land freight and port charges are based on existing contracts. Sea freight charges based on Braemar indices. TC / RC based on benchmark.
1			Monty is subject to Government Royalties and Royalties for Native Title. Rates for Government Royalties are:
)			Copper is 5.0% of net revenue;
			Gold is 2.5% of net revenue; and
			Silver is 2.5% of net revenue.
			The Royalty rate for Native Title is:
			0.6% of gross revenue (copper, gold, silver).
			Private royalty (nominally):
)			2.25% of 30% of mill production (copper and gold).
1	Revenue factors	The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and	Commodity prices are based on consensus forecasts and vary over the life of the mine. The life-of- mine average values are:
		treatment charges, penalties, net smelter returns, etc.	• Copper (US\$/t): \$6,711.
		The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products.	• Gold (US\$/oz): \$1,807; and
		pinopal metals, minorais and co producis.	• Silver (US\$/oz): \$21.65.
1			A revenue reduction factor of 18.7% has been applied which includes all future estimated and calculated transport, smelting, refining and royalty payments. The factor is based on current costs, payments and charges.
1	Market assessment	The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the	Sandfire is a low-cost copper concentrate producer selling into global market for custom concentrates.
1		future. A customer and competitor analysis along with the identification of likely market	Pricing is fundamentally on value of contained metals the main metal being copper with gold and small silver credits.
)		windows for the product. Price and volume forecasts and the basis for these forecasts.	The price of copper being set based on the LME which is a mature, well established and publically traded exchange.
		For industrial minerals the customer specification, testing and acceptance	Sandfire produces a clean concentrate, low in deleterious elements.
)		requirements prior to a supply contract.	Sandfire relies upon independent expert publications (CRU, Wood Mac, Metal Bulletin) and other sources (bank reports, trader reports, conferences, other trade publications) in forming a view about future demand and supply and the likely effects of this on both metal prices and concentrate prices.
			Sandfire concentrate is sold by competitive tender.

Criteria	JORC Code Explanation	Commentary
Economic	The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs.	Monty is an operating mine with a focus on operating cash margins. The mine plan created to derive the underground Ore Reserves provides positive cash margins in all years when all modifying factors are applied.
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	Monty is an operating mine and all agreements are in place and are current with all key stakeholders including traditional owner claimants.
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent. 	Sandfire has advised that Monty is currently compliant with all legal and regulatory requirements and valid marketing arrangements are in place.
Classification	The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any).	 Underground Ore Reserves have been derived from a mine plan that is based on extracting the 31 December 2020 Measured and Indicated Mineral Resources. Underground Ore Reserves are initially derived from development and stope designs that are evaluated against Mineral Resources. Designs do not inherently honour mineral resource classification boundaries therefore designs contain multiple mineral resource classification material types. Proved Ore Reserves have been derived from designs that contain greater than 70% Measured Mineral Resources. Probable Ore Reserves have been derived from designs that contain greater than 70% Indicated Mineral Resources and less than 70% Measured Mineral Resources. Proved Ore reserves contain approximately 8% Indicated Mineral Resources and Probable Ore Reserves contain approximately 44% Measured Mineral Resources. Final classification is set after considering all relevant modifying factors. The underground Ore Reserve classification appropriately reflects the competent person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	The underground Ore Reserve has been reviewed internally. The underground Ore Reserve estimate is in line with current industry standards.

ASX: SFR

	Criteria	JORC Code Explanation	Commentary
	Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a	The project is considered robust with the underground Ore Reserve copper grade of 7.2% Cu significantly higher than the full cost cut-off grade of 2.0% Cu. Approximately 2% of the <i>in situ</i> underground Ore Reserve tonnes which contains 0.4% of the <i>in situ</i> underground Ore Reserve contained copper tonnes falls between the development cut-off copper grade of 0.8% Cu and the full cost cut-off grade of 2.0% Cu.
)	qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate.	There has been an appropriate level of consideration given to all modifying factors, which are established from an operating mine, to support the declaration and classification of underground
		The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical	Ore Reserves.
		and economic evaluation. Documentation should include assumptions made and the procedures used.	No statistical or geostatistical procedures were carried out to quantify the accuracy of the underground Ore Reserve.
)		Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current	Underground Ore Reserve tonnes are approximately split 13 % UZ and 84 % LZ with the remaining in stockpiles. Annual ore production for the LOM roughly aligns with the underground Ore Reserve split.
		study stage.	Approximately 88% of the underground Ore Reserves tonnes are classified as Proved with the
)		It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	remaining 12% classified as Probable.