

Challenger continues to receive positive drilling results from its flagship Hualilan Gold Project

Highlights

- Drilling at Verde, discovered 3 months ago, has intersected broad zones of gold mineralisation over 1 kilometre of strike with results including (Refer Tables 1 and 2):
 - 52.0m at 1.2 g/t AuEq² 1.1g/t Au, 4.1g/t Ag, 0.3% Zn from 175m (GNDD-236)
 - 155.5m at 0.7 g/t AuEq² 0.6 g/t Au, 2.1 g/t Ag, 0.1% Zn from 201.5m including;
 59.0m at 1.0 g/t AuEq² 0.9 g/t Au, 1.0 g/t Ag, 0.1% Zn from 137m (GNDD-237)
 - 55.5m at 1.2 g/t AuEq² 1.0g/t Au, 1.5g/t Ag, 0.4% Zn from 35m and;
 24.0m at 0.7 g/t AuEq² 0.2 g/t Au, 6.8 g/t Ag, 1.1% Zn from 112m (GNDD-183)
 - 146.0m at 0.5g/t AuEq² 0.4 g/t Au, 1.1g/t Ag, 0.2% Zn from 26.0m including;
 60.0m at 0.7 g/t AuEq² 0.6 g/t Au, 1.5 g/t Ag, 0.2% Zn from 26.0m (GNDD-199)
 - 83.5m at 0.8g/t AuEq² 0.7g/t Au, 1.3g/t Ag, 0.2% Zn from 96.3m (GNDD-193)
 - 60.0m at 0.7 g/t AuEq² 0.6g/t Au, 1.5g/t Ag, 0.3% Zn from 59m (GNDD-185)
 - 63.4m at 0.7 g/t AuEq² 0.6g/t Au, 1.8g/t Ag, 0.2% Zn from 41.5m (GNDD-177)
 - 42.6 metres at 1.0 g/t AuEq (0.9 g/t gold, 4.1 g/t silver, 0.3 zinc) from 33.4 metres including;
 3.5 metres at 10.1 g/t AuEq (9.2 g/t gold, 20.8 g/t silver, 1.5%
 - 43.7m at 1.1 g/t AuEq² 1.0g/t Au, 1.8g/t Ag, 0.4% Zn from 139m (GNDD-245)
- Step-out drilling another 200 metres south along strike (assays pending) has continued to intersect significant zones of sulphides indicating strong mineralisation continues south
- Major expansion of Verde which appears likely to be a continuous zone of mineralisation at least 1.2 kilometres long and 50-100 metres wide remaining open in all directions
- Drilling at Verde is ongoing with two of the six rigs on site dedicated to extending and infilling
 Verde and two further rigs to arrive on site during June

Commenting on the results, CEL Managing Director, Mr Kris Knauer, said

"In March three drillholes to test the first conceptual target from our geophysics resulted in the discovery of a repeat zone of mineralisation to the west, we named Verde. These first three holes covered 100 metres of strike, and now, three months later, we have expanded Verde to over one kilometre of strike with no signs of it being closed off.

The first of our new rigs has arrived on site, with two more schedule to be drilling before the end of June, taking us to eight rigs. This is timely with the first drilling on our surrounding Ayen exploration licence starting this week. Additionally, the first couple of new IP lines have thrown up some exciting targets away for the existing mineralisation that we are eager to test. "

Challenger Exploration (ASX: CEL) ("**CEL**" the "**Company**") is pleased to announce the results from drilling targeting the Verde prospect at Cerro Norte. Verde is located in an area of no outcrop, partially under an old waste dump, with no previous drilling west of the existing mineralisation at Hualilan. Verde was the first target generated by the Company's recent geophysics to be drill tested.

The follow-up program at Verde, after the initial discovery 3 months ago, was an overwhelming success. All drill holes intersected mineralisation with highlights listed in Table 1. The current results are from fences of drill holes spaced 40-80 metres apart covering 500 metres strike south of the Verde discovery holes. Additionally, drilling intersected broad zones of mineralisation one kilometre south along strike with several holes in the intervening 500 metres (assays pending) encountering broad zones of sulphide mineralisation. Drillholes GNDD-292 and GNDD-305 (assays pending located another 100 and 200 metres south) both intersected sulphide mineralisation including zones of massive sulphides. This encourages the Company that ongoing extension and infill drilling at Verde will demonstrate that it forms one continuous zone of mineralisation at least 1.2 kilometres in length.

The higher grade mineralisation at Verde is predominantly hosted in intrusives with a lower grade halo extending into the overlying sedimentary rocks. Verde has similar dimensions to the mineralisation in the Gap Zone being 50-100 metres wide, steeply dipping, and starting below the surface cover. Mineralisation has been intersected to 300 metres vertically and remains open at depth. If, as the Company interprets, Verde extends over the 1.2 kilometres of strike that mineralisation has been intersected, Verde has the potential to add material ounces at Hualilan.

The Company will continue extensional drilling at Verde with at least two of the current six drill rigs on site. This program will involve the continuation of 50 metre spaced fences of holes over the remaining 700 metres of strike and step-out drilling north and south along strike where mineralisation remains open. A series of holes will be collared further west to test another 50-100 metres below the existing drilling at Verde.

Drill Hole	Interval	Gold	Ag	Zn	Au Equiv	Hole	Comments
	(m)	(g/t)	(g/t)	(%)	(g/t)	(g x m)	
GNDD-173	66.0	0.5	3.1	0.1	0.6	40.5	not deep enough to intersect intrusives
GNDD-177	63.4	0.6	1.8	0.2	0.7	44.4	up-dip:intersected top of the mineralisation
GNDD-183	55.5	1.0	1.5	0.4	1.2	85.5	up-dip:intersected top of the mineralisation
and	24.0	0.2	6.8	1.1	0.7		
GNDD-185	60.0	0.6	1.5	0.3	0.7	55.0	not deep enough to intersect intrusives
GNDD-193	83.5	0.7	1.3	0.2	0.8	80.2	drilled underneath GNDD-185
GNDD-199	146.0	0.4	1.1	0.2	0.5	83.8	north-south oriented drill hole through the
inc	60.0	0.6	1.5	0.2	0.7		top of the mineralised system
GNDD-220	108.0	0.4	1.6	0.1	0.4	45.6	most southerly drill hole. 1-kilomtre to the
inc	49.0	0.6	1.3	0.1	0.6		south of GNDD-226
GNDD-226	16.0	0.5	2.4	0.3	0.7	33.0	most northerly drill hole at Verde which
and	44.0	0.5	0.7	0.1	0.5		extends Verde across the Sanchez Fault
GNDD-234	42.6	1.0	0.9	0.3	1.0	42.6	possible northern extension of Gap Zone
GNDD-236	52.0	1.1	4.1	0.3	1.2	72.8	intersected underlying intrusives
GNDD-237	155.5	0.6	2.1	0.1	0.7	93.3	intersected the underlying intrusives
inc	59.0	0.9	1.0	0.1	1.0		interpreted as resulting in higher grades
GNDD245	43.7	1.0	1.8	0.3	1.1	49.5	up-dip :intersected top of the mineralisation

Table 1 - Selected new significant intercepts reported from Verde

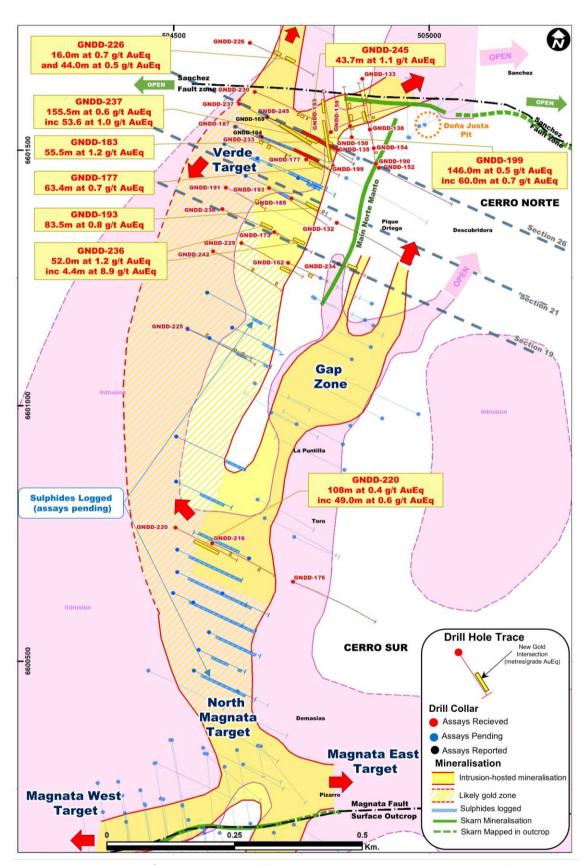


Figure 1 - Plan view of Verde showing drill holes reported this release and pending drilling only

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

DISCUSSION OF RESULTS

Verde is a recent discovery targeted using the Company's surface magnetics and IP (Induced Polarization) test lines at Cerro Norte. The IP and magnetics indicated a possible second trend of mineralised intrusives under cover with the same north-south orientation as the Gap Zone mineralisation. The three discovery holes (ASX release 2 March 2021) returned 125.5m at 1.1 g/t AuEq including 71.0m at 1.8 g/t AuEq (GNDD-169), 37 metres at 1.0 g/t AuEq (GNDD-164) and 45 metres at 0.5 g/t AuEq (GNDD-163).

Mineralisation at Verde is primarily hosted in intrusives, however there is a lower grade halo of mineralisation that extends into the overlying sedimentary rocks. The sedimentary rocks above the intrusives has been brecciated by the intrusion creating a second west dipping zone of mineralisation which is also a useful exploration guide to deeper intrusive-hosted mineralisation. The overlying mineralisation in the sedimentary rocks dips to the west at 30-40 degrees and is up to 50 metres thick.

As Figure 1 (over the page) shows, the current results are predominantly from fences of drill holes covering 500 metres strike south of the Verde discovery holes. Mineralisation appears to form one continuous body over this 500 metres. Figure 2, Figure 3, and Figure 4 are representative sections across the mineralisation at Verde in this 500 metres zone where a significant number of holes have been completed. The better grades are encountered where the drilling has been deep enough to intersect the intrusives with several holes (assays pending) confirming the model of deeper intrusive hosted mineralisation underlying the mineralisation in sediments.

Drill hole GNDD-226, was collared 80 metres north of the discovery holes across the Sanchez Fault confirming Verde extends north of the Sanchez Fault. Additionally, drill hole GNDD-220 intersected broad zones of mineralisation one kilometre south along strike with several holes in the intervening 500 metres (assays pending) encountering broad zones of sulphide mineralisation. Drillholes GNDD-305, GNDD-292 and GNDD-295 and GNDD-310 (assays pending covering another 200 metres south of GNDD-220) all intersected sulphide mineralisation including zones of massive sulphides.

The intrusives at Verde have similar dimensions to the mineralisation in the Gap Zone being 50-100 metres wide and steeply dipping on the 1.2 kilometres that mineralisation has been intersected over. Additionally, the Verde intrusives have intruded the western 200 metres of the Sanchez fault forming a sub-vertical east-west zone of mineralised intrusives up to 50 metres wide which joins Verde. The eastern limit of these intrusives in the Sanchez fault corresponds to the outcrop of the Hualilan Hills with high-grade Sanchez Fault hosted mineralisation intersected in drilling starting from the Hualilan Hills and mapped over a further 400 metres to the east.

Drilling covering 500 metres strike south of the discovery holes

Figure 2 shows Cross Section 26 on the main GNDD-169 discovery hole. GNDD-245 was drilled to test above GNDD-169 and intersected **43.7m at 1.1 g/t AuEq (1.0 g/t gold, 1.8 g/t silver 0.3% zinc)** from 139 metres with GNDD-183 (**55.5m at 1.2 g/t AuEq (1.0 g/t gold, 1.5 g/t silver 0.4% zinc)** from 35 metres another 50 metres up-dip. GNDD-183 also encountered a deeper zone of limestone hosted

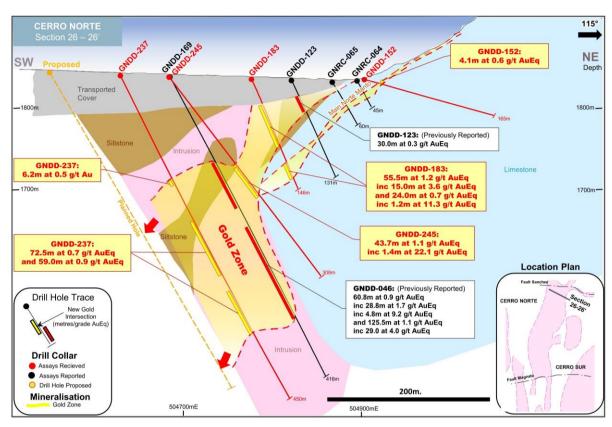


Figure 2 - Cross Section 26 Main Verde mineralisation across the GNDD-169 discovery hole

mineralisation (24 metres at 0.7 g/t AuEq including 1.2 metres at 11.3 g/t AuEq) which correlates with the down-dip position of the main Cerro Norte Manto mineralisation. GNDD-237 was collared to test 50 metres downdip of GNDD-169 and confirmed mineralisation remains strong and open at depth intersecting 155.5 metres at 0.7 g/t AuEq (0.6 g/t gold, 2.1 g/t silver, 0.1% zinc) from 201.6 metres including 59.0 metres at 0.9 g/t AuEq (0.9 g/t gold, 1.0 g/t silver, 0.1% zinc) from 298m. A hole is programmed to extend the Verde mineralisation another 50 metres down-dip of GNDD-237.

Section 21 (Figure 3 over the page) is located south along strike from Section 26 (Figure 2). The mineralisation intersected in GNRC-091 (24.0 metres at 0.5 g/t AuEq and previously announced) is interpreted to be the top of Verde. It is also possible GNRC-091 was terminated above the high-grade Cerro Norte manto which it was targeting. GNDD-185 was collared to test underneath GNRC-091 and intersected 60.0 metres at 0.7 g/t AuEq (0.6 g/t gold, 1.5g/t silver, 0.3% zinc) from 59 metres in the main Verde zone. GNDD-185 also intersected 7.1 metres at 1.6 g/t AuEq (1.0 g/t gold, 8.9g/t silver, 1.1% zinc) from 138 metres in limestone which, like GND-183 on Section 26, correlates with the down dip position of the main Cerro Norte Manto.

GNDD-193 was collared to test 50 metres down-dip of GNDD-185 and successfully extended the Verde mineralisation down dip returning **83.5 metres at 0.8 g/t AuEq (0.7 g/t gold, 1.3g/t silver, 0.2% zinc)** from 96.3 metres including four higher-grade zones averaging 1.5 g/t AuEq. The hole also intersected mineralisation deeper in the hole in the downdip location of the main Cerro Norte manto. GNDD-298 (assays pending) has been completed downdip of GNDD-193 and encountered sulphides.

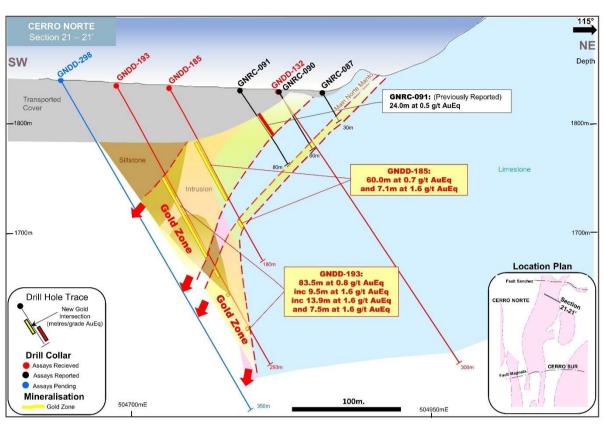


Figure 3 - Cross Section 21 Main Verde mineralisation

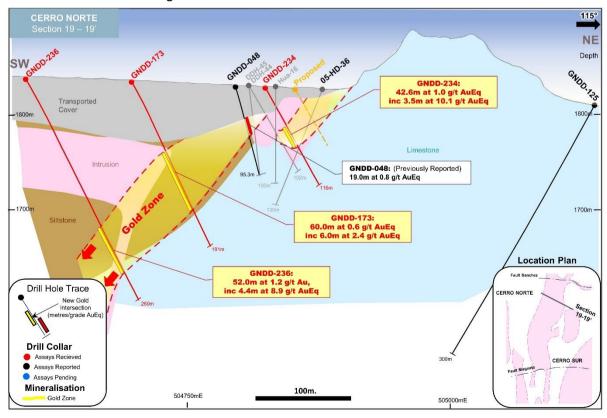


Figure 4 - Cross Section 19 Main Verde mineralisation GNDD-236 and GND-173

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Cross Section 19 (Figure 4 previous page) illustrates the lower grade mineralisation hosted in sedimentary rocks which was encountered in GNDD-173 and returned 66.0 metres at 0.6 g/t AuEq (0.5 g/t gold, 3.1 g/t silver, 0.1 zinc) from 83.0 metres. Drill hole GNDD-236 was collared to test 100 metres downdip of GNDD-173 and confirmed the Company's model intersecting the underlying intrusives returning 52.0 metres at 1.2 g/t AuEq (1.1 g/t gold, 3.1 g/t silver, 0.3% zinc) from 175.0 metres including 4.4 metres at 8.9 g/t AuEq (8.4 g/t gold, 33.6 g/t silver, 0.2% zinc).

Drillhole GNDD-234 on Section 26 returned 42.6 metres at 1.0 g/t AuEq (0.9 g/t gold, 4.1 g/t silver, 0.3 zinc) from 33.4 metres including 3.5 metres at 10.1 g/t AuEq (9.2 g/t gold, 20.8 g/t silver, 1.5% zinc) hosted in intrusives. This is interpreted as the northern extension of the intrusion-hosted mineralisation in the Gap Zone and extends the Gap Zone mineralisation 50 metres north along strike.

GNDD-229 was collared 50 metres south of section 19 and intercepted **38.3 metres at 0.9 g/t AuEq (0.7 g/t gold, 6.5 g/t silver, 0.3% zinc)** from 167 metres. The mineralisation occurred in sedimentary rocks and is interpreted as being above the main zone of Verde intrusives. Drilling is programmed to test underneath GNDD-229. Drillhole GNDD-162 was collared up dip of GNDD-229 too far to the east to intersect the Verde Zone. The hole encountered mineralisation in limestone and intersected 14.8 metres at 2.2 g/t AuEq (2.0 g/t gold, 3.5 g/t silver, 0.3% zinc) from 98.0 metres including **6.9 metres at 4.2 g/t AuEq (3.9 g/t gold, 6.4 g/t silver, 0.5% zinc)** in the down-dip position of the main Cerro Norte manto mineralisation. This continues the drilling at Verde intercepting deeper limestone hosted mineralisation in the down-dip position of the high-grade skarn mineralisation.

GNDD-177 (Figure 5 Plan view over the page) was collared between Section 26 and Section 21 up-dip of GNDD-164 (22 metres at 0.5 g/t AuEq, 10.0 metres at 0.5 g/t AuEq, and 37.0 metres at 1.0 g/t AuEq). GNDD-177 extended the Verde zone 50 metres up-dip intercepting 63.4m at 0.7 g/t AuEq (0.6g/t gold, 1.8g/t silver, 0.2% zinc) from 41.5 metres including 11.2m at 2.4 g/t AuEq (2.1 g/t gold, 3.0g/t silver, 0.6% zinc) in sediments and intrusives. GNDD-187 intersected a combined 37 metres of mineralisation in three zones hosted in sediments and limestones downdip of GNDD-164 and is interpreted as not extending deep enough to intersected the underlying intrusives. The same is believed to have occurred with GNDD-233 on the same section. GNDD-254 (assays pending), which was collared to test downdip of GNDD-187 and GNDD-233 appears to have successfully penetrated the underlying intrusives with the hole logged as encountering over 150 metres of sulphide mineralisation in intrusives and thin interbedded sediments.

Analogous to GNDD-177, drill hole GNDD-225 (9.2 metres at 0.2 g/t AuEq, 2 metres at 4.3 g/t AuEq, and 9.2 metres at 1.0 g/.t AuEq) predominantly encountered sediments and limestone with the mineralisation interpreted as being the halo above the main intrusion-hosted system. This appears to have been confirmed by and GNDD-285 (assays pending). GNDD-285 was drilled at a higher angle to test below GNDD-225 and intercepted intrusives under the limestone with two zones logged as containing strong sulphides in a series of baked limestones and intrusives. The system is interpreted as being deeper in this location with GNDD-285 likely still only Intersecting the top of the mineralised system. Additional drilling to test down dip of GNDD-285 is programmed.

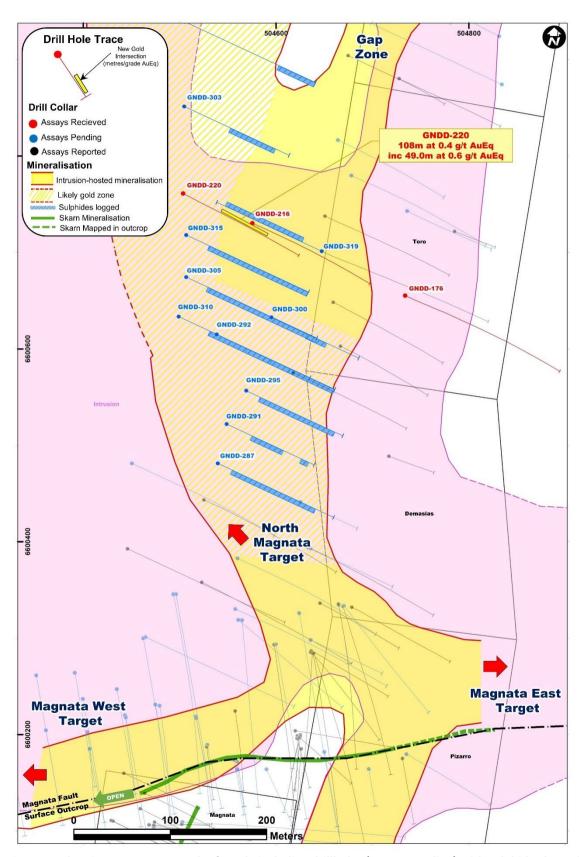


Figure 5 - Showing GNDD-220 south of Verde including drillholes (assays pending) with sulphides logged

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

GNDD-220 - Southern Extent of Verde

GNDD-216 and GNDD-220 were drilled to follow up earlier drillholes GNDD-137 (38 metres at 0.4 g/t AuEq and 1.4 metres at 11.6 g/t AuEq) and GNDD-122 (18.1 metres at 0.7 g/t AuEq and21m at 0.5 g/t AuEq, 1.5 metres at 5.1 g/t AuEq) at Toro in the southern end of the Gap Zone. Both holes tested magnetic highs prior to CEL understanding that the intrusion-hosted mineralisation is located on the flanks of positive magnetic anomalies due to demagnetisation by alteration of the intrusions associated with the mineralisation. Accordingly any extension of the Verde or Gap Zone intrusion-hosted mineralisation was interpreted to be further west of GNDDD-122 and GNDD-137.

GNDD-220 was collared 175 metres west of GNDD-137 and intersected 108 metres at 0.4 g/t AuEq (0.4 g/t gold, 1.6 g/t silver, 0.1% zinc) from 86 metres including 49 metres at 0.6 g/t AuEq (0.6 g/t gold, 1.3 g/t silver, 0.1% zinc) from 137 metres. This is interpreted as the southern extension of Verde 1 kilometre south. As Figure 5 shows several drill holes (all assays pending) both north and south of GNDD-220 are logged as intersecting significant sulphide mineralisation in intrusives and sediments which is interpreted as the extension of Verde to 1.2 kilometres in strike.

Noteworthy are drillholes GNDD-292, GNDD-305, and GNDD-287 (all assays pending) collared 100, 150, and 200 metres south of GNDD-220. Each has been logged as encountering strong mineralisation. GNDD-292 (Photos 1-3) is logged as intersecting 100 metres of intrusives containing sulphides including 5 zones of mineralisation over 1-3 metres downhole containing 15-30% pyrite and 5-30% sphalerite which is indicative of strong skarn mineralisation.

Photo 1: GNDD-292 sulphide Interval 233 metres downhole (skarn alteration 15% pyrite 5% sphalerite)

GNDD-292 - sulphide Interval 218-219m

GNDD-226 - northern extent of Verde

GNDD-226 was collared 50 metres north along strike from GNDD-163 (45.0 metres at 0.5 g/t AuEq previously reported) and extended Verde north across the Sanchez Fault intersecting 60 metres of mineralisation hosted in intrusives separated by separated by 20 metres of sedimentary rock. GNDD-226 returned 16.0 metres at 0.7 g/t AuEq (0.5 g/t gold, 2.4 g/t silver, 0.3% zinc) from 109 metres and

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

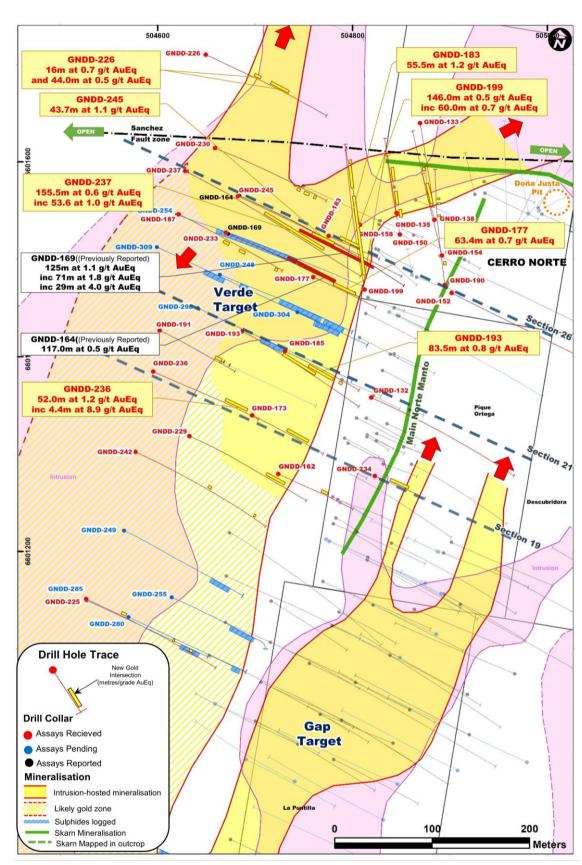


Figure 6 - Showing drilling in the north at Verde including drillholes (assays pending) with sulphides logged

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

44 metres at **0.5** g/t AuEq **(0.5** g/t gold, **0.7** g/t silver, **0.1%** zinc) from 146 metres. This result is highly encouraging given there is lateral movement mapped on the Sanchez Fault thus the Company is not clear where GNDD-226 Is located in relation to the extension of Verde mineralisation north of the Sanchez fault. Drilling is planned to test up-dip and downdip of GNDD-226 as well as further north along strike.

Intrusion-hosted mineralisation in the western end of the Sanchez Fault

As can be seen in Figure 6 the Verde intrusives have intruded the western 200 metres of the Sanchez fault forming a sub-vertical east-west zone of mineralised intrusives up to 50 metres wide which joins Verde. The mineralisation starts from surface and remains open at depth.

Drillhole GNDD-199 was collared to drill across the western ends of the Sanchez Fault and intersected 146.0 metres at 0.5 g/t AuEq (0.4 g/t gold, 1.1 g/t silver, 0.2% zinc) from 26.0 metres including 60.0metres at 0.7 g/t AuEq (0.6 g/t gold, 1.5 g/t silver, 0.2% zinc) from 26.0. GNDD-138, collared 100 metres east along strike from GNDD-199, returned 54.0 metres at 0.5 g/t AuEq (0.4 g/t gold, 2.4 g/t silver, 0.2% zinc) from 43.0 metres. GNDD-135, collared midway between GNDD-199 and GNDD-138 intercepted 22.6 metres at 0.5 g/t AuEq (0.4 g/t gold, 1.1 g/t silver, 0.1% zinc) from 31.0 metres and 27.2metres at 0.7 g/t AuEq (0.5 g/t gold, 2.6 g/t silver, 0.4% zinc) from 78.0 metres.

The eastern limit of the intrusives in the Sanchez fault corresponds to the outcrop of the Hualilan Hills (GNDD-138 and GNDD-154). The high-grade skarn mineralisation in the Sanchez Fault intersected in drill holes such as GNRC-068 (27 metres at 11.2 g/t AuEq) and mapped historically underground starts from the Hualilan Hills and is mapped as extending a further 400 metres to the east where it remains open.

Ends

This ASX announcement was approved and authorised by the Board.

For further information contact:

Kris Knauer Scott Funston Media Enquiries
Managing Director Chief Financial Officer Jane Morgan
+61 411 885 979 +61 413 867 600 +61 405 555 618

kris.knauer@challengerex.com scott.funston@challengerex.com jm@janemorganmanagement.com.au

Previous announcements referred to in this release include:

2 MARCH 2021 - Discovery of a second trend of mineralisation at Hualilan with 126m at 1.1 g/t Au including 71m at 1.7 g/t Au 11 Feb 2021 - MULTIPLE 200 METRE INTERCEPTS CONTINUE TO INCREASE THE SCALE OF CHALLENGER'S HUALILAN GOLD PROJECT

Table 2: New intercepts reported.

Drill Hole From To Interval Gold Ag Zn Au Equiv								Comments
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(g/t)	Comments
GNDD133	95.7	100.0	4.3	1.3	2.2	0.2	1.4	0.2 g/t AuEq cut
inc	95.7 95.7	96.8	1.1	3.8	5.3	0.5	4.1	1.0 g/t AuEq cut
and	163.0	174.5	11.5	0.3	1.0	0.0	0.3	0.2 g/t AuEq cut
GNDD135	31.0	53.6	22.6	0.4	1.1	0.1	0.5	0.2 g/t AuEq cut
inc	41.0	43.0	2.0	1.6	0.7	0.1	1.7	1.0 g/t AuEq cut
and	78.0	105.2	27.2	0.5	2.6	0.4	0.7	0.2 g/t AuEq cut
inc	79.6	83.0	3.4	1.4	3.9	0.3	1.6	1.0 g/t AuEq cut
inc	95.0	97.0	2.0	1.9	2.0	0.2	2.0	1.0 g/t AuEq cut
inc	104.3	105.2	0.9	0.1	5.3	3.2	1.5	1.0 g/t AuEq cut
GNDD138	43.0	97.0	54.0	0.4	2.4	0.2	0.5	0.2 g/t AuEq cut
GNDD150	40.0	62.0	22.0	0.3	0.9	0.1	0.3	0.2 g/t AuEq cut
and	76.0	111.9	35.9	0.3	2.6	0.4	0.5	0.2 g/t AuEq cut
and	180.3	181.6	1.3	16.8	26.1	2.9	18.4	1.0 g/t AuEq cut
GNDD154	125.9	128.5	2.6	4.6	34.6	3.0	6.3	1.0 g/t AuEq cut
and	146.0	168.0	22.0	0.2	1.0	0.0	0.2	0.2 g/t AuEq cut
inc	146.0	147.0	1.0	1.8	12.6	0.0	2.0	1.0 g/t AuEq cut
GNDD158		126.0	19.0	0.6	1.0	0.1	0.7	
	107.0 120.1	126.0	1.0	2.8	4.2	0.1	2.9	0.2 g/t AuEq cut 0.2 g/t AuEq cut
inc		145.0		0.4		0.3	0.6	
and	139.0		6.0		0.8			0.2 g/t AuEq cut
GNDD-162	98.0	112.8	14.8 6.9	2.0 3.9	3.5	0.3	2.2	1.0 g/t AuEq cut
CNDD173	102.1	109.0			6.4	0.5	4.2 0.6	1.0 g/t AuEq cut
GNDD173	83.0	149.0	66.0	0.5	3.1	0.1		0.2 g/t AuEq cut
inc	87.0	93.0 122.0	6.0 6.0	2.0 1.4	18.8 2.8	0.3 0.1	2.4 1.5	1.0 g/t AuEq cut
inc	116.0			8.9			9.3	1.0 g/t AuEq cut
inc CNDD176	130.4	131.0	0.6 3.0		23.9	0.1		1.0 g/t AuEq cut
GNDD176	73.9 76.1	76.9 76.9		0.9 2.5	3.3 1.7	0.2 0.2	1.0 2.6	0.2 g/t AuEq cut
inc			0.8	0.3	98.9			1.0 g/t AuEq cut 1.0 g/t AuEq cut
and	247.2	248.5	1.3			0.1	1.6	
GNDD177	41.5 55.0	104.9 56.3	63.4	0.6	1.8	0.2 0.1	0.7	0.2 g/t AuEq cut 1.0 g/t AuEq cut
inc		62.0	1.3 2.0	1.3 1.0	3.5	0.1	1.4	1.0 g/t AuEq cut
inc	60.0 71.8	72.3	2.0 0.5	1.3	1.2 7.3	0.2	1.1	1.0 g/t AuEq cut
inc							1.5	
CNDD103	86.0	97.2	11.2	2.1	3.0	0.6	2.4	1.0 g/t AuEq cut
GNDD183	35.0	90.5	55.5	1.0	1.5	0.4	1.2	0.2 g/t AuEq cut
inc	37.0	39.0	2.0	1.1	1.0	0.1 0.1	1.1	1.0 g/t AuEq cut 1.0 g/t AuEq cut
inc	57.0	59.0	2.0	1.0	0.4		1.0 3.6	1.0 g/t AuEq cut 1.0 g/t AuEq cut
inc	72.0	87.0 126.0	15.0 24.0	3.2	3.5	0.9 1.1	3.6 0.7	0.2 g/t AuEq cut
and	112.0 119.0	136.0 120.2	24.0 1.2	0.2 2.6	6.8	1.1 17.1		- '
inc GNDD185					95.1		11.3	1.0 g/t AuEq cut 0.2 g/t AuEq cut
	59.0	119.0	60.0	0.6	1.5	0.3	0.7	1.0 g/t AuEq cut
inc	67.0	71.5	4.5	1.8	3.3	0.4	2.0	1.0 g/t AuEq cut 1.0 g/t AuEq cut
inc	83.0	93.0 119.0	10.0	1.0	1.7	0.2	1.1 1.9	1.0 g/t AuEq cut 1.0 g/t AuEq cut
inc	114.0		5.0 7.1	1.4	2.0	1.1		- '
and	138.0	145.1	7.1	1.0	8.9	1.1	1.6	1.0 g/t AuEq cut
GNDD187	145.0	161.0	16.0	0.4	0.6	0.1	0.5	0.2 g/t AuEq cut
inc er Exploration Lin	149.0	151.0 ued Capital	2.0	1.6 tralian Re	2.5	0.6	1.9 Directors	1.0 g/t AuEq cut Contact

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

and 192.0 207.0 15.0 0.5 0.9 0.2 0.5 0.2 g/t AuEq cut and 302.5 308.0 5.5 1.7 26.0 0.7 2.4 1.0 g/t AuEq cut inc 302.5 305.0 2.5 3.7 55.9 1.2 5.0 1.0 g/t AuEq cut inc 302.5 305.0 2.5 3.7 55.9 1.2 5.0 1.0 g/t AuEq cut inc 302.5 305.0 2.5 3.7 55.9 1.2 5.0 1.0 g/t AuEq cut inc 302.5 305.0 2.5 3.7 55.9 1.2 5.0 1.0 g/t AuEq cut inc 302.5 305.0 2.5 3.7 5.9 1.2 5.0 1.0 g/t AuEq cut inc 302.5 305.0 2.5 3.7 5.2 0.2 0.4 0.2 g/t AuEq cut inc 302.5 305.0 2.5 3.2 0.4 0.2 g/t AuEq cut inc 302.5 305.0 2.2 g/t AuEq cut inc 302.5 305.0 305									
Inc	and	192.0	207.0	15.0	0.5	0.9	0.2	0.5	0.2 g/t AuEq cut
Inc	and	302.5	308.0	5.5	1.7	26.0	0.7	2.4	- '
GNDD190 4.7.3 55.0 7.7 0.1 4.6 4.9 2.3 1.0 g/t AuEq cut and 161.1 163.0 1.9 0.2 5.7 0.2 0.4 0.2 g/t AuEq cut and 186.0 191.0 5.0 0.2 0.1 0.0 0.2 0.2 g/t AuEq cut GNDD191 188.4 209.5 21.2 0.5 3.2 0.4 0.7 1.0 g/t AuEq cut GND193 21.7 21.79 0.5 2.5 16.8 2.5 3.8 1.0 g/t AuEq cut GND193 96.3 179.8 83.5 0.7 1.3 0.2 0.8 0.2 g/t AuEq cut inc 96.3 105.8 9.5 1.5 2.7 0.1 1.6 1.0 g/t AuEq cut inc 121.4 135.2 13.9 1.3 1.7 0.5 1.6 1.0 g/t AuEq cut inc 121.4 135.2 13.9 1.3 1.7 0.5 1.6 1.0 g/t AuEq cut	inc		305.0	2.5	3.7	55.9	1.2	5.0	
and 161.1 163.0 191.0 5.0 0.2 0.1 0.0 0.2 0.2 g/t AuEq cut and 186.0 191.0 5.0 0.2 0.1 0.0 0.2 0.2 g/t AuEq cut and 200.0 204.0 4.0 0.3 0.1 0.0 0.3 0.2 g/t AuEq cut CMDD191 188.4 209.5 21.2 0.5 3.2 0.4 0.7 1.0 g/t AuEq cut and 217.4 217.9 0.5 2.5 16.8 2.5 3.8 1.0 g/t AuEq cut and 217.4 217.9 0.5 2.5 16.8 2.5 3.8 1.0 g/t AuEq cut and 217.4 217.9 0.5 1.5 16.8 2.5 3.8 1.0 g/t AuEq cut and 238.0 240.0 2.0 0.4 3.5 0.8 0.8 0.8 0.2 g/t AuEq cut inc 121.4 135.2 13.9 1.3 1.7 0.5 1.6 1.0 g/t AuEq cut inc 121.4 135.2 13.9 1.3 1.7 0.5 1.6 1.0 g/t AuEq cut inc 147.8 149.0 1.2 0.9 1.8 1.9 1.7 1.0 g/t AuEq cut and 191.0 198.5 7.5 1.3 9.3 0.5 1.6 0.2 g/t AuEq cut inc 194.7 198.5 3.8 2.1 16.6 0.9 2.7 1.0 g/t AuEq cut inc 194.7 198.5 3.8 2.1 16.6 0.9 2.7 1.0 g/t AuEq cut inc 194.7 198.5 3.8 2.1 16.6 0.9 2.7 1.0 g/t AuEq cut inc 218.0 219.5 1.5 0.1 72.3 0.1 1.0 1.0 g/t AuEq cut inc 36.0 38.0 2.2 g/t AuEq cut inc 36.0 38.0 2.2 g/t AuEq cut inc 36.0 38.0 2.0 172.0 146.0 0.4 1.1 0.2 0.5 0.2 g/t AuEq cut inc 36.0 38.0 2.0 172.0 146.0 0.4 1.1 0.2 0.5 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.5 0.2 0.7 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.5 0.2 0.7 0.7 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.5 0.2 0.7 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.5 0.2 0.7 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.5 0.2 0.7 0.2 g/t AuEq cut inc 44.0 45.0 1.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 0.5 0.2 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 0.5 0.2 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 0.5 0.2 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 0.5 0.2 g/t AuEq cut inc 58.0 68.0 10.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 0.7 0.1 0.2 0.2 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 0.5 0.2 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 0.5 0.2 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 0.5 0.2 g/t AuEq cut inc 19.0 172.0 3.0 1.0 0.5 0.5 0.2 g/t AuEq cut inc 19.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	GNDD190	47.3	55.0	7.7	0.1	4.6	4.9	2.3	
and 186.0 191.0 204.0 4.0 0.3 0.1 0.0 0.2 0.2 g/t AuEq cut CMDD191 188.4 209.5 21.2 0.5 3.2 0.4 0.7 1.0 g/t AuEq cut and 217.4 217.9 0.5 2.5 16.8 2.5 3.8 1.0 g/t AuEq cut and 238.0 240.0 2.0 0.4 3.5 0.8 0.8 0.2 g/t AuEq cut and 238.0 240.0 2.0 0.4 3.5 0.8 0.8 0.2 g/t AuEq cut and 238.0 240.0 2.0 0.4 3.5 0.8 0.8 0.2 g/t AuEq cut and 238.0 240.0 2.0 0.4 3.5 0.8 0.8 0.2 g/t AuEq cut inc 96.3 179.8 83.5 0.7 1.3 0.2 0.8 0.2 g/t AuEq cut inc 96.3 179.8 83.5 0.7 1.3 0.2 0.8 0.2 g/t AuEq cut inc 121.4 135.2 13.9 1.3 1.7 0.5 1.6 1.0 g/t AuEq cut inc 147.8 149.0 1.2 0.9 1.8 1.9 1.7 1.0 g/t AuEq cut inc 160.5 171.6 11.1 1.0 2.1 0.4 1.2 1.0 g/t AuEq cut and 191.0 198.5 7.5 1.3 9.3 0.5 1.6 0.2 g/t AuEq cut and 218.0 219.5 3.8 2.1 16.6 0.9 2.7 1.0 g/t AuEq cut and 218.0 219.5 1.5 0.1 72.3 0.1 1.0 1.0 g/t AuEq cut and 221.0 252.9 1.9 1.1 7.6 0.2 1.3 1.0 g/t AuEq cut inc 36.0 86.0 60.0 0.6 1.5 0.2 0.7 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 44.0 45.0 1.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 44.0 45.0 1.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut inc 137.0 288.0 41.0 0.2 0.7 0.1 0.2 0.2 g/t AuEq cut inc 137.0 186.0 40.0 0.4 1.6 0.1 0.4 0.2 g/t AuEq cut inc 138.0 9.0 2.0 1.1 1.05 0.5 1.4 1.0 g/t AuEq cut inc 138.0 9.0 2.0 2.0 0.6 3.3 0.1 0.6 0.2 g/t AuEq cut inc 138.0 9.0 2.0 2.0 0.6 3.3	and	161.1	163.0	1.9	0.2	5.7	0.2	0.4	
Band 200.0 204.0 4.0 0.3 0.1 0.0 0.3 0.2 g/t AuEq cut									
GNDD191 188.4 209.5 21.2 0.5 3.2 0.4 0.7 1.0 g/t AuEq cut and 217.4 217.9 0.5 2.5 1.68 2.5 3.8 1.0 g/t AuEq cut and 238.0 240.0 2.0 0.4 3.5 0.8 0.8 0.8 0.2 g/t AuEq cut GNDD193 96.3 179.8 83.5 0.7 1.3 0.2 0.8 0.2 g/t AuEq cut inc 96.3 105.8 9.5 1.5 2.7 0.1 1.6 1.0 g/t AuEq cut inc 121.4 135.2 13.9 1.3 1.7 0.5 1.6 1.0 g/t AuEq cut inc 121.4 135.2 13.9 1.3 1.7 0.5 1.6 1.0 g/t AuEq cut inc 147.8 149.0 1.2 0.9 1.8 1.9 1.7 1.0 g/t AuEq cut inc 160.5 171.6 11.1 1.0 2.1 0.4 1.2 1.0 g/t AuEq cut inc 191.0 198.5 7.5 1.3 9.3 0.5 1.6 0.2 g/t AuEq cut inc 194.7 198.5 3.8 2.1 16.6 0.9 2.7 1.0 g/t AuEq cut inc 194.7 198.5 3.8 2.1 16.6 0.9 2.7 1.0 g/t AuEq cut and 218.0 219.5 1.5 0.1 72.3 0.1 1.0 1.0 g/t AuEq cut inc 251.0 252.9 1.9 1.1 7.6 0.2 1.3 1.0 g/t AuEq cut inc 251.0 252.9 1.9 1.1 7.6 0.2 1.3 1.0 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 36.0 38.0 2.0 1.6 3.3 0.1 1.6 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut inc 169.0 172.0 3.0 3.0 3.0 0.0 3.0 0.2 g/t AuEq cut inc 137.0 186.0 4.9 0.6 3.5 0.2 0.8 0.2 g/t AuEq cut inc 137.0 186.0 4.9 0.6 0.5 0.5 1.4 1.0 g/t AuEq cut inc 137.0 18					0.3	0.1			
and 217.4 217.9 0.5 2.5 16.8 2.5 3.8 1.0 g/t AuEq cut and and 238.0 280 2.2 ft AuEq cut and	GNDD191				0.5				
Annio									
GNDD193									
Inc									
Inc									
inc 147.8 149.0 1.2 0.9 1.8 1.9 1.7 1.0 g/t AuEq cut inc 160.5 171.6 11.1 1.0 2.1 0.4 1.2 1.0 g/t AuEq cut and 191.0 198.5 7.5 1.3 9.3 0.5 1.6 0.2 g/t AuEq cut and 218.0 219.5 1.5 0.1 72.3 0.1 1.0 1.0 g/t AuEq cut and 251.0 252.9 1.9 1.1 7.6 0.2 1.3 1.0 g/t AuEq cut inc 26.0 86.0 60.0 0.6 1.5 0.2 0.5 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 58.0 68.0 10.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 1.5 1.0 g/t AuEq cut i									
inc 160.5 171.6 11.1 1.0 2.1 0.4 1.2 1.0 g/t AuEq cut and 191.0 198.5 7.5 1.3 9.3 0.5 1.6 0.2 g/t AuEq cut inc 194.7 198.5 3.8 2.1 16.6 0.9 2.7 1.0 g/t AuEq cut and 218.0 219.5 1.5 0.1 72.3 0.1 1.0 1.0 g/t AuEq cut and 251.0 252.9 1.9 1.1 7.6 0.2 1.3 1.0 g/t AuEq cut inc 36.0 86.0 60.0 0.6 1.5 0.2 0.7 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 44.0 45.0 1.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 1.5 1.0 g/t AuEq cut i									
and 191.0 198.5 7.5 1.3 9.3 0.5 1.6 0.2 g/t AuEq cut inc inc 194.7 198.5 3.8 2.1 16.6 0.9 2.7 1.0 g/t AuEq cut inc and 218.0 219.5 1.5 0.1 72.3 0.1 1.0 1.0 g/t AuEq cut inc GNDD199 26.0 172.0 146.0 0.4 1.1 0.2 0.5 0.2 g/t AuEq cut inc inc 26.0 86.0 60.0 0.6 1.5 0.2 0.7 0.2 g/t AuEq cut inc inc 34.0 3.0 1.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc inc 44.0 45.0 1.0 1.4 1.2 0.2 1.5 1.0 g/t AuEq cut inc inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut inc inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut i									
inc 194.7 198.5 3.8 2.1 16.6 0.9 2.7 1.0 g/t AuEq cut and 218.0 219.5 1.5 0.1 72.3 0.1 1.0 1.0 g/t AuEq cut GNDD199 26.0 172.0 146.0 0.4 1.1 0.2 0.5 0.2 g/t AuEq cut inc 26.0 86.0 60.0 0.6 1.5 0.2 0.7 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 58.0 68.0 1.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 1.5 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut GNDD216 81.0 85.0 4.0 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut									
and 218.0 219.5 1.5 0.1 72.3 0.1 1.0 1.0 g/t AuEq cut and 251.0 252.9 1.9 1.1 7.6 0.2 1.3 1.0 g/t AuEq cut GNDD199 26.0 172.0 146.0 0.4 1.1 0.2 0.5 0.2 g/t AuEq cut inc 26.0 86.0 60.0 0.6 1.5 0.2 0.7 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 44.0 45.0 1.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 1.5 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut and 187.0 228.0 41.0 0.2 0.7 0.1 0.2 g/t AuEq cut inc 204.0 206.0 2.0 0.6 3.5 0.2 0.8 0.2 g/t AuEq cut inc 38.0 85.0 4.0 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut and 204.0 206.0 2.0 0.6 3.5 0.2 0.8 0.2 g/t AuEq cut inc 88.0 90.0 2.0 1.1 10.5 0.5 1.4 1.0 g/t AuEq cut inc 137.0 186.0 49.0 0.6 1.3 0.1 1.2 1.0 g/t AuEq cut inc 183.0 186.0 49.0 0.6 1.3 0.1 1.2 1.0 g/t AuEq cut inc 185.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut inc 186.0 150.0 4.0 1.2 1.4 0.1 1.2 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.2 1.4 0.1 1.2 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.2 1.4 0.1 1.2 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.0 1.0 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.0 1.0 1.0 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.5 2.7 1.0 g/t AuEq									
and 251.0 252.9 1.9 1.1 7.6 0.2 1.3 1.0 g/t AuEq cut GNDD199 26.0 172.0 146.0 0.4 1.1 0.2 0.5 0.2 g/t AuEq cut inc 26.0 86.0 60.0 0.6 1.5 0.2 0.7 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 44.0 45.0 1.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut GNDD216 81.0 85.0 4.0 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut GNDD216 81.0 85.0 4.0 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut GNDD220 86.0 194.0 108.0 0.4 1.6 0.1 0.4 0.2 g/t AuEq cut									
GNDD199 26.0 172.0 146.0 0.4 1.1 0.2 0.5 0.2 g/t AuEq cut inc 26.0 86.0 60.0 0.6 1.5 0.2 0.7 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 44.0 45.0 1.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 1.5 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut inc 187.0 228.0 41.0 0.2 0.7 0.1 0.2 0.2 g/t AuEq cut 0.2 g/t AuEq cut 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut 0.2 g/t AuEq cut 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut 0.2 g/t AuEq cut 0.3 0.0 0.3 0.2 g/t AuEq cut 0.3 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut 0.3 0									
inc 26.0 86.0 60.0 0.6 1.5 0.2 0.7 0.2 g/t AuEq cut inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 44.0 45.0 1.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 1.5 1.0 g/t AuEq cut and 187.0 228.0 41.0 0.2 0.7 0.1 0.2 0.2 g/t AuEq cut and 204.0 206.0 2.0 0.6 3.5 0.2 0.8 0.2 g/t AuEq cut inc 88.0 90.0 2.0 1.1 10.5 0.5 1.4 1.0 g/t AuEq cut inc 137.0 186.0 49.0 0.6 1.3 0.1 0.6 0.2 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 169.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 160.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 0.0 0.2 0.2 g/t AuEq cut inc 182.0 184.0 2.0 1.0 g/t AuEq cut inc 182.0 184.0 190.0 2.0 2.0 2.0 3.8 1.1 0.0 4.0 1.0 g/t AuEq cut inc 182.0 190.0 2.0 2.0 3.8 3.1 1.0 0.0 2.0 2.0 2/t AuEq cut inc 188.0 190.0 2.0 2.0 3.8 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0									
inc 36.0 38.0 2.0 1.6 1.3 0.1 1.6 1.0 g/t AuEq cut inc 44.0 45.0 1.0 1.8 5.4 0.2 1.9 1.0 g/t AuEq cut inc 58.0 68.0 10.0 1.4 1.2 0.2 1.5 1.0 g/t AuEq cut and 187.0 228.0 41.0 0.2 0.7 0.1 0.2 0.2 g/t AuEq cut and 204.0 206.0 2.0 0.6 3.5 0.2 0.8 0.2 g/t AuEq cut inc 188.0 190.0 2.0 1.1 10.5 0.5 1.4 1.0 g/t AuEq cut inc 137.0 186.0 49.0 0.6 1.3 0.1 0.6 0.2 g/t AuEq cut inc 158.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut inc 158.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 186.0 190.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 186.0 190.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 186.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 186.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 186.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 186.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 186.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 186.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut inc 186.0 190.0 2.0 4.3 1.1 0.0 4.3 1.0 g/t AuEq cut inc 186.0 190.0 2.0 4.3 1.1 0.0 2.2 g/t AuEq cut inc 186.0 190.0 2.0 2.0 4.3 1.1 0.0 2.2 g/t AuEq cut inc 186.0 190.0 244.2 9.2 0.9 0.6 0.0 1.0 1.0 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9									
inc									
inc 58.0 68.0 10.0 1.4 1.2 0.2 1.5 1.0 g/t AuEq cut inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut and 187.0 228.0 41.0 0.2 0.7 0.1 0.2 0.2 g/t AuEq cut GNDD216 81.0 85.0 4.0 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut GNDD220 86.0 194.0 108.0 0.4 1.6 0.1 0.4 0.2 g/t AuEq cut inc 88.0 90.0 2.0 1.1 10.5 0.5 1.4 1.0 g/t AuEq cut inc 137.0 186.0 49.0 0.6 1.3 0.1 0.6 0.2 g/t AuEq cut inc 146.0 150.0 4.0 1.2 1.4 0.1 1.2 1.0 g/t AuEq cut inc 158.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut									
inc 169.0 172.0 3.0 1.0 7.9 1.8 1.9 1.0 g/t AuEq cut and 187.0 228.0 41.0 0.2 0.7 0.1 0.2 0.2 g/t AuEq cut GNDD216 81.0 85.0 4.0 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut and 204.0 206.0 2.0 0.6 3.5 0.2 0.8 0.2 g/t AuEq cut inc 88.0 190.0 108.0 0.4 1.6 0.1 0.4 0.2 g/t AuEq cut inc 186.0 49.0 0.6 1.3 0.1 0.6 0.2 g/t AuEq cut inc 146.0 150.0 4.0 1.2 1.4 0.1 1.2 1.0 g/t AuEq cut inc 158.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut GNDD225									
and 187.0 228.0 41.0 0.2 0.7 0.1 0.2 0.2 g/t AuEq cut GNDD216 81.0 85.0 4.0 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut and 204.0 206.0 2.0 0.6 3.5 0.2 0.8 0.2 g/t AuEq cut inc 88.0 194.0 108.0 0.4 1.6 0.1 0.4 0.2 g/t AuEq cut inc 88.0 90.0 2.0 1.1 10.5 0.5 1.4 1.0 g/t AuEq cut inc 137.0 186.0 49.0 0.6 1.3 0.1 0.6 0.2 g/t AuEq cut inc 146.0 150.0 4.0 1.2 1.4 0.1 1.2 1.0 g/t AuEq cut inc 158.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut GNDD225 79.0 88.2 9.2 0.2 0.8 0.0 1.7 1.0 g/t AuEq cut									
GNDD216 81.0 85.0 4.0 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut and 204.0 206.0 2.0 0.6 3.5 0.2 0.8 0.2 g/t AuEq cut GNDD220 86.0 194.0 108.0 0.4 1.6 0.1 0.4 0.2 g/t AuEq cut inc 88.0 90.0 2.0 1.1 10.5 0.5 1.4 1.0 g/t AuEq cut inc 137.0 186.0 49.0 0.6 1.3 0.1 0.6 0.2 g/t AuEq cut inc 146.0 150.0 4.0 1.2 1.4 0.1 1.2 1.0 g/t AuEq cut inc 158.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut GNDD225 79.0 88.2 9.2 0.2 0.8 0.0 0.2 0.2 g/t AuEq cut									
and 204.0 206.0 2.0 0.6 3.5 0.2 0.8 0.2 g/t AuEq cut GNDD220 86.0 194.0 108.0 0.4 1.6 0.1 0.4 0.2 g/t AuEq cut inc 88.0 90.0 2.0 1.1 10.5 0.5 1.4 1.0 g/t AuEq cut inc 137.0 186.0 49.0 0.6 1.3 0.1 0.6 0.2 g/t AuEq cut inc 146.0 150.0 4.0 1.2 1.4 0.1 1.2 1.0 g/t AuEq cut inc 158.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut GNDD225 79.0 88.2 9.2 0.2 0.8 0.0 0.2 0.2 g/t AuEq cut and 207.0 209.0 2.0 4.3 1.1 0.0 4.3 1.0 g/t AuEq cut	-								
GNDD220 86.0 194.0 108.0 0.4 1.6 0.1 0.4 0.2 g/t AuEq cut inc 88.0 90.0 2.0 1.1 10.5 0.5 1.4 1.0 g/t AuEq cut inc 137.0 186.0 49.0 0.6 1.3 0.1 0.6 0.2 g/t AuEq cut inc 146.0 150.0 4.0 1.2 1.4 0.1 1.2 1.0 g/t AuEq cut inc 158.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut GNDD225 79.0 88.2 9.2 0.2 0.8 0.0 0.2 0.2 g/t AuEq cut and 207.0 209.0 2.0 4.3 1.1 0.0 4.3 1.0 g/t AuEq cut GNDD226 109.0 125.0 16.0 0.5 2.4 0.3 0.7 0.2 g/t AuEq cut <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
inc 88.0 90.0 2.0 1.1 10.5 0.5 1.4 1.0 g/t AuEq cut inc 137.0 186.0 49.0 0.6 1.3 0.1 0.6 0.2 g/t AuEq cut inc 146.0 150.0 4.0 1.2 1.4 0.1 1.2 1.0 g/t AuEq cut inc 158.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut GNDD225 79.0 88.2 9.2 0.2 0.8 0.0 0.2 0.2 g/t AuEq cut and 207.0 209.0 2.0 4.3 1.1 0.0 4.3 1.0 g/t AuEq cut GNDD226 109.0 125.0 16.0 0.5 2.4 0.3 0.7 0.2 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut									
inc 137.0 186.0 49.0 0.6 1.3 0.1 0.6 0.2 g/t AuEq cut inc 146.0 150.0 4.0 1.2 1.4 0.1 1.2 1.0 g/t AuEq cut inc 158.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut GNDD225 79.0 88.2 9.2 0.2 0.8 0.0 0.2 0.2 g/t AuEq cut and 207.0 209.0 2.0 4.3 1.1 0.0 4.3 1.0 g/t AuEq cut and 235.0 244.2 9.2 0.9 0.6 0.0 1.0 1.0 g/t AuEq cut GNDD226 109.0 125.0 16.0 0.5 2.4 0.3 0.7 0.2 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut									= -
inc 146.0 150.0 4.0 1.2 1.4 0.1 1.2 1.0 g/t AuEq cut inc 158.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut GNDD225 79.0 88.2 9.2 0.2 0.8 0.0 0.2 0.2 g/t AuEq cut and 207.0 209.0 2.0 4.3 1.1 0.0 4.3 1.0 g/t AuEq cut and 235.0 244.2 9.2 0.9 0.6 0.0 1.0 1.0 g/t AuEq cut GNDD226 109.0 125.0 16.0 0.5 2.4 0.3 0.7 0.2 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut and 146.0 190.0 44.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut									
inc 158.3 162.0 3.7 1.8 1.9 0.0 1.8 1.0 g/t AuEq cut inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut GNDD225 79.0 88.2 9.2 0.2 0.8 0.0 0.2 0.2 g/t AuEq cut and 207.0 209.0 2.0 4.3 1.1 0.0 4.3 1.0 g/t AuEq cut and 235.0 244.2 9.2 0.9 0.6 0.0 1.0 1.0 g/t AuEq cut GNDD226 109.0 125.0 16.0 0.5 2.4 0.3 0.7 0.2 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut inc 176.0 190.0 44.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut									
inc 182.0 184.0 2.0 1.7 2.8 0.0 1.7 1.0 g/t AuEq cut GNDD225 79.0 88.2 9.2 0.2 0.8 0.0 0.2 0.2 g/t AuEq cut and 207.0 209.0 2.0 4.3 1.1 0.0 4.3 1.0 g/t AuEq cut and 235.0 244.2 9.2 0.9 0.6 0.0 1.0 1.0 g/t AuEq cut GNDD226 109.0 125.0 16.0 0.5 2.4 0.3 0.7 0.2 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut and 146.0 190.0 44.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut GNDD229 167.0 205.3 38.3 0.7 6.5 0.3 0.9 0.2 g/t AuEq cut <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
GNDD225 79.0 88.2 9.2 0.2 0.8 0.0 0.2 0.2 g/t AuEq cut and 207.0 209.0 2.0 4.3 1.1 0.0 4.3 1.0 g/t AuEq cut and 235.0 244.2 9.2 0.9 0.6 0.0 1.0 1.0 g/t AuEq cut GNDD226 109.0 125.0 16.0 0.5 2.4 0.3 0.7 0.2 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut and 146.0 190.0 44.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 188.0 190.0 2.0 3.8 1.1 0.2 3.9 1.0 g/t AuEq cut GNDD229 167.0 205.3 38.3 0.7 6.5 0.3 0.9 0.2 g/t AuEq cut <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
and 207.0 209.0 2.0 4.3 1.1 0.0 4.3 1.0 g/t AuEq cut and 235.0 244.2 9.2 0.9 0.6 0.0 1.0 1.0 g/t AuEq cut GNDD226 109.0 125.0 16.0 0.5 2.4 0.3 0.7 0.2 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut and 146.0 190.0 44.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut GNDD229 167.0 205.3 38.3 0.7 6.5 0.3 0.9 0.2 g/t AuEq cut inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
and 235.0 244.2 9.2 0.9 0.6 0.0 1.0 1.0 g/t AuEq cut GNDD226 109.0 125.0 16.0 0.5 2.4 0.3 0.7 0.2 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut and 146.0 190.0 44.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 188.0 190.0 2.0 3.8 1.1 0.2 3.9 1.0 g/t AuEq cut GNDD229 167.0 205.3 38.3 0.7 6.5 0.3 0.9 0.2 g/t AuEq cut inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut GNDD230 211.0 217.0 6.0 0.2 2.5 0.0 0.2 0.2 g/t AuEq cut									
GNDD226 109.0 125.0 16.0 0.5 2.4 0.3 0.7 0.2 g/t AuEq cut inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut and 146.0 190.0 44.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 188.0 190.0 2.0 3.8 1.1 0.2 3.9 1.0 g/t AuEq cut GNDD229 167.0 205.3 38.3 0.7 6.5 0.3 0.9 0.2 g/t AuEq cut inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut GNDD230 211.0 217.0 6.0 0.2 2.5 0.0 0.2 0.2 g/t AuEq cut									
inc 116.0 123.4 7.4 0.7 4.0 0.5 1.0 1.0 g/t AuEq cut and 146.0 190.0 44.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 188.0 190.0 2.0 3.8 1.1 0.2 3.9 1.0 g/t AuEq cut GNDD229 167.0 205.3 38.3 0.7 6.5 0.3 0.9 0.2 g/t AuEq cut inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut GNDD230 211.0 217.0 6.0 0.2 2.5 0.0 0.2 0.2 g/t AuEq cut and 227.0 242.0 15.0 0.2 1.1 0.1 0.2 0.2 g/t AuEq cut <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></tr<>									-
and 146.0 190.0 44.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 188.0 190.0 2.0 3.8 1.1 0.2 3.9 1.0 g/t AuEq cut GNDD229 167.0 205.3 38.3 0.7 6.5 0.3 0.9 0.2 g/t AuEq cut inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut GNDD230 211.0 217.0 6.0 0.2 2.5 0.0 0.2 0.2 g/t AuEq cut and 227.0 242.0 15.0 0.2 1.1 0.1 0.2 0.2 g/t AuEq cut GNDD233 113.0 115.0 2.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut									
inc 170.0 172.0 2.0 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut inc 188.0 190.0 2.0 3.8 1.1 0.2 3.9 1.0 g/t AuEq cut GNDD229 167.0 205.3 38.3 0.7 6.5 0.3 0.9 0.2 g/t AuEq cut inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut GNDD230 211.0 217.0 6.0 0.2 2.5 0.0 0.2 0.2 g/t AuEq cut and 227.0 242.0 15.0 0.2 1.1 0.1 0.2 0.2 g/t AuEq cut and 256.0 260.0 4.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut GNDD233 113.0 115.0 2.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut									
inc 188.0 190.0 2.0 3.8 1.1 0.2 3.9 1.0 g/t AuEq cut GNDD229 167.0 205.3 38.3 0.7 6.5 0.3 0.9 0.2 g/t AuEq cut inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut GNDD230 211.0 217.0 6.0 0.2 2.5 0.0 0.2 0.2 g/t AuEq cut and 227.0 242.0 15.0 0.2 1.1 0.1 0.2 0.2 g/t AuEq cut and 256.0 260.0 4.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut GNDD233 113.0 115.0 2.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut and 180.1 182.5 2.4 0.4 0.5 0.0 0.4 0.2 g/t AuEq cut <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· ·</td>									· ·
GNDD229 167.0 205.3 38.3 0.7 6.5 0.3 0.9 0.2 g/t AuEq cut inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut GNDD230 211.0 217.0 6.0 0.2 2.5 0.0 0.2 0.2 g/t AuEq cut and 227.0 242.0 15.0 0.2 1.1 0.1 0.2 0.2 g/t AuEq cut and 256.0 260.0 4.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut GNDD233 113.0 115.0 2.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut and 180.1 182.5 2.4 0.4 0.5 0.0 0.4 0.2 g/t AuEq cut									
inc 171.0 177.0 6.0 1.7 30.1 1.5 2.7 1.0 g/t AuEq cut inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut GNDD230 211.0 217.0 6.0 0.2 2.5 0.0 0.2 0.2 g/t AuEq cut and 227.0 242.0 15.0 0.2 1.1 0.1 0.2 0.2 g/t AuEq cut and 256.0 260.0 4.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut GNDD233 113.0 115.0 2.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut and 180.1 182.5 2.4 0.4 0.5 0.0 0.4 0.2 g/t AuEq cut	-								
inc 204.5 205.3 0.8 4.8 5.9 0.3 5.0 1.0 g/t AuEq cut GNDD230 211.0 217.0 6.0 0.2 2.5 0.0 0.2 0.2 g/t AuEq cut and 227.0 242.0 15.0 0.2 1.1 0.1 0.2 0.2 g/t AuEq cut and 256.0 260.0 4.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut GNDD233 113.0 115.0 2.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut and 180.1 182.5 2.4 0.4 0.5 0.0 0.4 0.2 g/t AuEq cut									
GNDD230 211.0 217.0 6.0 0.2 2.5 0.0 0.2 0.2 g/t AuEq cut and 227.0 242.0 15.0 0.2 1.1 0.1 0.2 0.2 g/t AuEq cut and 256.0 260.0 4.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut GNDD233 113.0 115.0 2.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut and 180.1 182.5 2.4 0.4 0.5 0.0 0.4 0.2 g/t AuEq cut									
and 227.0 242.0 15.0 0.2 1.1 0.1 0.2 0.2 g/t AuEq cut and 256.0 260.0 4.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut GNDD233 113.0 115.0 2.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut and 180.1 182.5 2.4 0.4 0.5 0.0 0.4 0.2 g/t AuEq cut	-					5.9			-
and 256.0 260.0 4.0 0.5 0.7 0.1 0.5 0.2 g/t AuEq cut GNDD233 113.0 115.0 2.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut and 180.1 182.5 2.4 0.4 0.5 0.0 0.4 0.2 g/t AuEq cut	GNDD230	211.0			0.2	2.5			
GNDD233 113.0 115.0 2.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut and 180.1 182.5 2.4 0.4 0.5 0.0 0.4 0.2 g/t AuEq cut	and					1.1			
and 180.1 182.5 2.4 0.4 0.5 0.0 0.4 0.2 g/t AuEq cut	and	256.0	260.0	4.0	0.5	0.7	0.1		-
	GNDD233	113.0	115.0	2.0	0.5	0.6	0.1	0.6	0.2 g/t AuEq cut
									- · · · · · · · · · · · · · · · · · · ·

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1

1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

	Ì	Ì	İ	1	İ			1
GNDD234	33.40	76.00	42.60	0.9	4.1	0.3	1.0	0.2/g/t AuEq cut
inc	52.5	56.00	3.5	9.2	20.8	1.5	10.1	1.0 g/t AuEq cut
inc	53.3	54.30	1.1	25.5	51.9	0.4	26.3	10.0 g/t AuEq cut
GNDD236	175.0	227.0	52.0	1.1	4.1	0.3	1.2	0.2/g/t AuEq cut
inc	177.0	179.0	2.0	2.9	9.6	0.4	3.3	1.0 g/t AuEq cut
inc	201.0	221.0	2.0	1.0	5.6	1.9	1.9	1.0 g/t AuEq cut
inc	216.6	151.0	4.4	8.4	33.6	0.2	8.9	1.0 g/t AuEq cut
GNDD237	139.0	357.0	12.0	0.3	1.2	0.3	0.5	0.2/g/t AuEq cut
and	201.6	270.0	155.5	0.6	2.1	0.1	0.7	0.2/g/t AuEq cut
inc	201.6	243.0	72.5	0.6	3.8	0.2	0.7	0.2/g/t AuEq cut
inc	234.0	256.3	9.0	1.2	14.2	0.2	1.5	1.0 g/t AuEq cut
inc	254.5	351.6	1.8	6.7	10.8	0.5	7.1	1.0 g/t AuEq cut
inc	298	357.0	59.0	0.91	1	0.05	1.0	1.0 g/t AuEq cut
inc	302	304.0	2.0	3.3	0.32	0	3.3	1.0 g/t AuEq cut
inc	349.65	351.6	1.95	17.5	2.9	0	17.5	1.0 g/t AuEq cut
GNDD242	185.5	194.0	8.6	0.5	0.5	0.1	0.6	0.2 g/t AuEq cut
inc	185.5	187.1	1.6	1.0	1.2	0.3	1.1	1.0 g/t AuEq cut
and	306.5	307.2	0.7	2.3	0.9	0.0	2.3	1.0 g/t AuEq cut
GNDD245	139.0	182.7	43.7	1.0	1.8	0.4	1.1	0.2 g/t AuEq cut
inc	143.0	145.0	2.0	3.6	3.0	0.8	4.0	1.0 g/t AuEq cut
inc	181.3	182.7	1.4	18.7	38.0	6.8	22.1	1.0 g/t AuEq cut

Table 2: Continued

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$24 Oz, Zn US\$2,800 /t
- Metallurgical recoveries for Au, Ag and Zn are estimated to be 89%, 84% and 79% respectively (see JORC Table 1
 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: AuEq (g/t) = Au (g/t) + $[Ag (g/t) \times (24/1780) \times (0.84/0.89)]$ + $[Zn (\%) \times (28.00*31.1/1780) \times (0.79/0.89)]$
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation in Ecuador. CEL Is fully funded having complete a \$42 million capital raise in May 2021.

- 1. **Hualilan Gold Project**, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and a non-JORC historical resource ⁽¹⁾ of 627,000 Oz @ 13.7 g/t gold which remains open in most directions. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. Results from CEL's first drilling program included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over almost 2 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 116m at 1.0 g/t Au, 4.0 g/t Ag, 0.2% Zn and 39.0m at 5.5 g/t Au, 2.0 g/t Ag, 0.3% Zn in porphyry dacites. CEL's current program includes 150,000 metres of drilling, metallurgical test work of key ore types, and an initial JORC Compliant Resource and PFS.
- 2. **El Guayabo Gold/Copper Project** covers 35 sqkms in southern Ecuador and was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t which have never been followed up. The Project has multiple targets including breccia hosted mineralisation, an extensive flat lying late stage vein system and an underlying porphyry system target neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134m at 1.0 g/t gold and 4.1 g/t silver including 63m at 1.6 g/t gold and 5.1 g/t silver.

Foreign Resource Estimate Hualilan Project

La Mancha Resources 2003 foreign	resource estimate for th	ne Hualilan Project ^	
Category	Tonnes (kt)	Gold Grade	Contained Gold
Measured		(g/t)	(koz)
Indicated	218	14.2	100
Total of Measured & Indicated	445	14.0	206
Inferred	977	13.4	421
Measured, Indicated & Inferred	1,421	13.7	627

[^] Source: La Mancha Resources Toronto Stock Exchange Release dated 14 May 2003 -Independent Report on Gold Resource Estimate.
Rounding errors may be present. Troy ounces (oz) tabled here

#¹ For details of the foreign non-JORC compliant resource and to ensure compliance with LR 5.12 please refer to the Company's ASX Release dated 25 February 2019. These estimates are foreign estimates and not reported in accordance with the JORC Code. A competent person has not done sufficient work to clarify the foreign estimates as a mineral resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign estimate will be able to be reported as a mineral resource. The company is not in possession of any new information or data relating to the foreign estimates that materially impact on the reliability of the estimates or CEL's ability to verify the foreign estimates estimate as minimal resources in accordance with Appendix 5A (JORC Code). The company confirms that the supporting information provided in the initial market announcement on February 25, 2019 continues to apply and is not materially changed.

Competent Person Statement – Exploration results

The information that relates to sampling techniques and data, exploration results and geological interpretation has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Competent Person Statement - Foreign Resource Estimate

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to Mineral Resources has been compiled by Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration to qualify as Competent Person as defined in the 2012 Edition of the JORC Code for Reporting of, Mineral Resources and Ore Reserves. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

JORC Code, 2012 Edition – Table 1 report template Section 1 Sampling Techniques and Data -Hualilan Project

Criteria	JORC Code explanation	Commentary
Sampling echniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to 	For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling.
	the minerals under investigation, such as down hole gamma sondes,	For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples lengths are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts.
	or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of	For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine.
	sampling Include reference to measures taken to ensure sample representivity and	CEL channel samples are cut into underground or surface outcrop using a hand-held diamond edged cutting tool. Parallel saw cuts 3-5cm apart are cut 2-4cm deep into the rock which allows for the extraction of a representative sample using and hammer and chisel. The sample is collected onto a plastic mat and collected into a sample bag.
	 the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to 	Core and channel samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75 μ m. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination.
	the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse	A 10g charge was analysed for 48 elements by 4-acid digest and ICP-MS determination. Elements determined were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10% were re-analysed by the same method using a different calibration.
	circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be	Sample intervals were selected according to geological boundaries. There was no coarse gold observed in any of the core or channel samples.
	required, such as where there is coarse gold that has inherent sampling problems. Unusual	
	commodities or mineralisation types (eg submarine nodules) may	
	warrant disclosure of detailed information.	

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria

JORC Code explanation

Commentary

Drilling techniques

 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in WGS84, zone 19s which is the standard projection used by CEL for the Project. Collar locations have been check surveyed using differential GPS (DGPS) by CEL to verify if the site coincides with a marked collar or tagged drill site. In most cases the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.

Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date
AG01	DD	2504908.0	6602132.3	1807.6	000	-90	84.5	Jan-84
AG02	DD	2504846.5	6602041.1	1803.4	112	-70	60.0	Jan-84
AG03	DD	2504794.5	6601925.6	1803.1	080	-55	110.0	Jan-84
AG04	DD	2504797.1	6602065.5	1806.6	000	-90	168.0	Jan-84
AG05	DD	2504843.5	6601820.3	1798.1	000	-90	121.8	Jan-84
AG06	DD	2504781.9	6601922.8	1803.8	000	-90	182.2	Jan-84
AG07	DD	2504826.3	6601731.0	1796.9	000	-90	111.5	Jan-84
AG08	DD	2504469.8	6600673.7	1779.7	090	-57	80.2	Jan-84
AG09	DD	2504455.7	6600458.5	1772.6	000	-90	139.7	Jan-84
AG10	DD	2504415.5	6600263.9	1767.7	000	-90	200.8	Jan-84
AG11	DD	2504464.8	6600566.5	1775.9	000	-90	141.0	Jan-84
AG12	DD	2504847.6	6602161.7	1808.8	000	-90	171.4	Jan-84
AG13	DD	2504773.6	6601731.3	1798.7	000	-90	159.5	Jan-84
AG14	DD	2504774.7	6601818.8	1801.2	000	-90	150.2	Jan-84
AG15	DD	2504770.7	6601631.4	1796.7	000	-90	91.3	Jan-84
AG16	DD	2504429.5	6600665.8	1779.8	000	-90	68.8	Jan-84

Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date
MG01	RC	2504825.5	6602755.4	1800.0	100	-60	51.0	Jan-95
MG01A	RC	2504810.5	6602755.4	1800.0	100	-60	116.0	Jan-95
MG02	RC	2504835.5	6602805.4	1800.0	100	-60	90.0	Jan-95
MG03	RC	2504853.5	6602880.4	1795.0	100	-60	102.0	Jan-95
MG04	RC	2504843.5	6602975.4	1800.0	100	-60	120.0	Jan-95
MG05	RC	2506130.5	6605055.4	1750.0	85	-60	96.0	Jan-95
MG06	RC	2506005.5	6605115.4	1750.0	100	-60	90.0	Jan-95
MG07	RC	2506100.5	6605015.4	1750.0	100	-60	96.0	Jan-95
MG08	RC	2505300.5	6603070.4	1740.0	95	-70	66.0	Jan-95
MG09	RC	2505285.5	6603015.4	1740.0	0	-90	102.0	Jan-95

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	ry							
		MG10	RC	2505025.5	6600225.4	1724.0	100	-60	120.0	Jan-95
		MG11	RC	2503380.5	6598560.5	1740.0	100	-60	78.0	Jan-95
		MG12	RC	2503270.5	6597820.5	1740.0	100	-60	66.0	Jan-95
		-								
				Foot	Nicosh	Flavotian	A =:	D:	Danah	
		Hole_id	Type	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date
		Hua01	RC	2504845.3	6602041.2	1809.7	117	-50		1999
		Hua01	RC	2504845.5	6602081.1	1809.7	125	-50 -55		1999
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90		1999
		Hua04	RC	2504873.3	6602169.1	1810.7		-90		1999
		Hua04 Hua05	RC	2505003.2	6602152.6	1810.7	000 180	-60		1999
		Hua06	RC	2505003.2	6602161.6	1810.7	360	-60		1999
		Hua07	RC	2503003.3 2504967.7	6602153.2	1810.7	000	-90		1999
		Hua08	RC	2504967.7 2504973.2	6602153.7	1810.2	000	-90 -90		1999
		Hua09	RC	2504973.2	6602150.3	1810.2	180	-60		1999
										1999
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60		1999
		Hua11 Hua12	RC RC	2504913.3 2504912.8	6602167.4 6602165.9	1809.7 1809.7	360 000	-60 -90		1999
		Hua13		2504912.8	6602156.9	1809.7		-60		1999
			RC				180			
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60		1999
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60		1999
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90		1999
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50		1999
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90		1999
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90	54.0	1999
		II-l- id	T	East	North	Elevation	Azimuth	Dip	Depth	Date
		Hole_id	Type	(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		DDH20	DD	2504977.3	6602133.3	1804.8	116	-54	49.1	1999-00
		DDH21	DD	2504978.3	6602118.3	1804.8	000	-90	88.6	1999-00
		DDH22	DD	2504762.9	6601587.1	1769.8	116	-65	66.0	1999-00
		DDH23	DD	2504920.4	6601994.3	1767.9	000	-90	58.8	1999-00
		DDH24	DD	2504821.0	6601938.8	1802.0	116	-80	100.3	1999-00
		DDH25	DD	2504862.6	6601964.5	1803.7	116	-74	49.2	1999-00
		DDH26	DD	2504920.4	6601975.3	1795.0	312	-60	80.3	1999-00
		DDH27	DD	2504752.7	6601565.1	1806.6	116	-60	43.2	1999-00

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	iry							
		DDH29	DD	2504964.1	6602136.6	1810.0	350	-52	113.5	1999-00
		DDH30	DD	2505004.1	6602156.3	1809.3	059	-85	62.1	1999-00
		DDH31	DD	2504897.6	6602112.7	1808.1	116	-75	41.4	1999-00
		DDH32	DD	2504939.4	6602139.2	1809.1	350	-51	100.7	1999-00
		DDH33	DD	2504939.4	6602139.2	1809.1	350	-65	62.9	1999-00
		DDH34	DD	2504826.5	6601920.2	1801.3	116	-70	69.4	1999-00
		DDH35	DD	2505003.9	6602156.7	1808.8	310	-85	174.6	1999-00
		DDH36	DD	2504637.5	6600777.3	1799.9	330	-50	45.5	1999-00
		DDH37	DD	2504826.5	6601920.2	1809.4	000	-90	121.0	1999-00
		DDH38	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999-00
		DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999-00
		DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999-00
		DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999-00
		DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999-00
		DDH43	DD	2504829.2	6601952.5	1801.8	116	-70	70.8	1999-00
		DDH44	DD	2504811.3	6601895.1	1802.0	116	-60	102.2	1999-00
		DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999-00
		DDH46	DD	2504884.4	6601976.3	1805.9	116	-45	71.6	1999-00
		DDH47	DD	2504884.4	6601976.3	1805.9	116	-65	71.0	1999-00
		DDH48	DD	2504866.9	6601962.7	1803.1	116	-47	30.7	1999-00
		DDH49	DD	2504866.9	6601962.7	1803.1	116	-72	41.9	1999-00
		DDH50	DD	2504821.4	6601913.9	1801.1	116	-77	87.5	1999-00
		DDH51	DD	2504821.4	6601913.9	1801.1	116	-80	87.5	1999-00
		DDH52	DD	2504825.5	6601901.1	1800.9	116	-83	74.0	1999-00
		DDH53	DD	2504504.1	6600714.0	1788.7	090	-62	85.7	1999-00
		DDH54	DD	2504504.1	6600714.0	1788.7	090	-45	69.1	1999-00
		DDH55	DD	2504997.9	6602163.5	1808.6	360	-53	63.1	1999-00
		DDH56	DD	2504943.1	6602171.3	1810.5	360	-75	50.6	1999-00
		DDH57	DD	2504943.1	6602171.3	1810.5	000	-90	66.2	1999-00
		DDH58	DD	2504970.3	6602153.3	1809.1	360	-71	62.0	1999-00
		DDH59	DD	2504970.3	6602153.3	1809.1	000	-90	66.3	1999-00
		DDH60	DD	2504997.9	6602162.5	1809.0	360	-67	59.9	1999-00
		DDH61	DD	2504997.9	6602162.5	1809.0	000	-90	58.1	1999-00
		DDH62	DD	2504751.4	6601602.6	1789.2	170	-45	68.4	1999-00
		DDH63	DD	2504751.4	6601602.6	1789.2	170	-70	131.5	1999-00
		DDH64	DD	2504776.3	6601596.9	1789.1	170	-45	66.7	1999-00
		DDH65	DD	2504552.7	6600792.0	1793.8	194	-45	124.8	1999-00
		DDH66	DD	2504552.7	6600792.0	1793.8	194	-57	117.0	1999-00

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentar	У							
		DDH67	DD	2504552.7	6600792.0	1793.8	194	-66	126.1	1999-00
		DDH68	DD	2504623.9	6600779.0	1800.7	000	-90	79.5	1999-00
		DDH69	DD	2504623.9	6600779.0	1800.7	194	-60	101.5	1999-00
		DDH70	DD	2504595.5	6600797.7	1798.1	190	-81	128.0	1999-00
		DDH71	DD	2504631.6	6600797.4	1799.0	194	-63	136.3	1999-00
		DDH72	DD	2504547.2	6600764.1	1799.6	194	-45	75.6	1999-00
		DDH73	DD	2504593.4	6600766.5	1807.5	190	-57	70.8	1999-00
		DDH74	DD	2504598.2	6600831.8	1795.3	190	-62	190.9	1999-00
		DDH75	DD	2504731.2	6600784.7	1821.4	194	-45	40.2	1999-00
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7	1999-00
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90	85.6	1999-00
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75	132.9	1999-00
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6	1999-00
				East	North	Elevation	Azimuth	n Dip	Dep	th
		Hole_id	Туре	(m)	(m)	(m ASL)	(°)	(°)	(m)	
		03HD01A	DD	2504627.8	6600800.1	1798.4	180	-60	13	30.2
		03HD02	DD	2504457.9	6600747.8	1782.9	180	-60	13	30.5
		03HD03	DD	2504480.1	6600448.6	1774.0	360	-45	10	00.2
		04HD04	DD	2504436.6	6600439.3	1773.4	360	-60	10	04.6
		04HD05	DD	2504420.9	6600256.8	1769.5	110	-68	12	22.6
		04HD06	DD	2504428.6	6600236.6	1768.1	110	-68	13	36.0
		04HD07	DD	2504415.7	6600277.7	1769.0	100	-63	10	08.2
		04HD08	DD	2504826.5	6601920.2	1801.3	116	-70	-	70.0
		04HD09	DD	2504832.3	6601928.1	1801.7	116	-70	-	75.9
		04HD10	DD	2504648.5	6600788.9	1801.5	205	-60	12	20.0
		04HD11	DD	2504462.0	6600428.3	1773.6	075	-62	9	95.1
		04HD12	DD	2504449.3	6600648.9	1779.6	360	-60	-	77.4
		04HD13	DD	2504434.5	6600646.6	1779.7	360	-60	-	74.0
		04HD14	DD	2504461.1	6600748.4	1783.1	180	-70	13	30.6
		04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	10	60.0
		04HD16C	DD	2504457.1	6600311.7	1770.3	195	-65	22	25.5
		04HD17	DD	2504417.5	6600256.6	1769.5	110	-72	2:	13.2
		04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	14	40.7
		04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	12	20.0
		04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	12	20.0

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

2504648.5

2504441.0

DD

DD

04HD21

04HD23

Contact T: +61 8 6380 9235 E: admin@challengerex.com

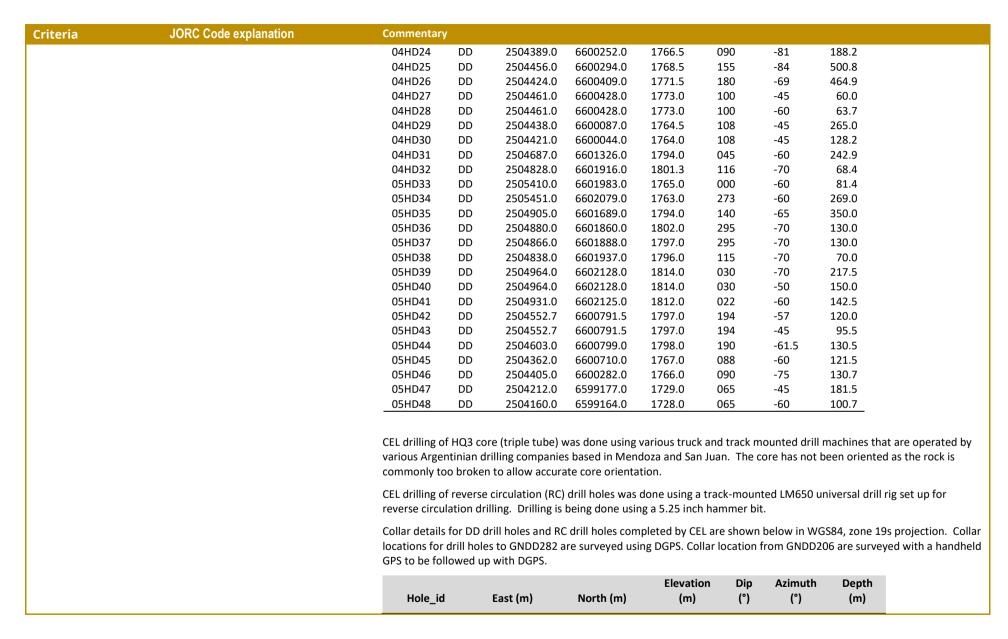
1801.5

1772.5

205

075

-60


-82

120.0

499.7

6600788.9

6600456.0

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		GNDD001	504803.987	6601337.067	1829.289	-57	115	109.0	
		GNDD002	504793.101	6601312.095	1829.393	-60	115	25.6	
		GNDD002A	504795.405	6601311.104	1829.286	-60	115	84.5	
		GNDD003	504824.427	6601313.623	1827.768	-70	115	90.2	
		GNDD004	504994.416	6601546.302	1835.345	-60	115	100.0	
		GNDD005	504473.042	6600105.922	1806.448	-55	090	110.0	
		GNDD006	504527.975	6600187.234	1817.856	-55	170	100.9	
		GNDD007	504623.738	6600196.677	1823.447	-68	190	86.3	
		GNDD007A	504624.021	6600198.394	1823.379	-68	190	219.0	
		GNDD008	504625.047	6600198.059	1823.457	-60	184	109.4	
		GNDD008A	504625.080	6600199.718	1823.264	-60	184	169.0	
		GNDD009	504412.848	6599638.914	1794.22	-55	115	147.0	
		GNDD010	504621.652	6600196.048	1823.452	-68	165	146.5	
		GNDD011	504395.352	6599644.012	1794.025	-64	115	169.2	
		GNDD012	504450.864	6599816.527	1798.321	-55	115	120.0	
		GNDD013	504406.840	6599613.052	1792.378	-58	112	141.0	
		GNDD014	504404.991	6599659.831	1793.728	-59	114	140.0	
		GNDD015	504442.039	6600159.812	1808.700	-62	115	166.7	
		GNDD016	504402.958	6599683.437	1794.007	-60	115	172.0	
		GNDD017	504460.948	6600075.899	1806.143	-55	115	132.6	
		GNDD018	504473.781	6600109.152	1806.458	-60	115	130.0	
		GNDD019	504934.605	6601534.429	1834.720	-70	115	80.0	
		GNDD020	504463.598	6600139.107	1807.789	-58	115	153.0	
		GNDD021	504935.804	6601567.863	1835.631	-60	115	120.0	
		GNDD022	504835.215	6601331.069	1828.015	-60	113	100.0	
		GNDD023	504814.193	6601336.790	1828.535	-55	117	100.0	
		GNDD024	504458.922	6600123.135	1807.237	-70	115	150.0	
		GNDD025	504786.126	6601137.698	1823.876	-60	115	141.0	
		GNDD026	504813.588	6601444.189	1831.810	-55	115	100.0	
		GNDD027	504416.311	6599703.996	1794.702	-55	115	139.2	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		GNDD028	504824.752	6601321.020	1827.837	-57	115	100.0	
		GNDD029	504791.830	6601316.140	1829.344	-71	115	120.2	
		GNDD030	504454.538	6599860.757	1799.266	-60	115	148.0	
		GNDD031	504622.013	6600198.726	1823.191	-60	130	149.0	
		GNDD032	504619.803	6600203.906	1822.790	-55	097	166.6	
		GNDD033	504830.792	6601385.842	1829.315	-55	115	62.0	
		GNDD034	504862.613	6601524.893	1834.263	-60	115	60.0	
		GNDD035	504782.969	6601234.234	1827.709	-78	115	119.5	
		GNDD036	504303.325	6599128.637	1779.458	-55	115	131.0	
		GNDD037	504462.875	6599831.674	1798.456	-55	115	83.5	
		GNDD038	504465.362	6600097.111	1806.580	-55	115	87.7	
		GMDD039	504815.800	6601318.000	1829.100	-70	115	80.0	
		GMDD040	504402.100	6599641.500	1794.800	-55	115	135.5	
		GMDD041	504473.000	6600104.000	1806.400	-55	095	428.0	
		GNDD042	504392.551	6599574.224	1790.603	-60	115	140.0	
		GMDD043	504815.800	6601320.000	1829.100	-67	115	80.0	
		GNDD044	504380.090	6599622.578	1791.934	-65	115	185.0	
		GNDD045	504366.823	6599679.058	1793.712	-57	115	311.0	
		GNDD046	504364.309	6599702.621	1794.533	-60	115	191.0	
		GNDD047	504459.642	6599644.133	1793.422	-60	115	101.0	
		GNDD048	504792.642	6601286.638	1828.497	-74	115	95.0	
		GNDD049	504807.030	6601419.483	1831.588	-60	115	90.0	
		GNDD050	504826.614	6601509.677	1833.357	-60	115	80.0	
		GNDD051	504766.792	6601032.571	1823.273	-60	115	120.0	
		GNDD060	504801.654	6601066.131	1822.596	-60	115	200.0	
		GNDD073	504367.546	6599724.992	1795.493	-57	115	150.2	
		GNDD074	504366.299	6599725.496	1795.450	-73	115	152.0	
		GNDD077	504821.005	6601145.026	1823.951	-60	115	222.0	
		GNDD079	504636.330	6600286.824	1823.053	-60	115	181.4	
		GNDD082	504769.532	6601169.127	1825.621	-60	115	266.0	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		GNDD083	504646.604	6600336.172	1823.893	-60	115	181.0	
		GNDD085	504456.068	6599888.509	1799.895	-60	115	90.0	
		GNDD088	504815.0	6601194	1825.2	-60	115	237.0	
		GNDD088A	504815.621	6601193.811	1825.210	-60	115	265.0	
		GNDD089	504635.811	6600285.352	1823.032	-55	133	200.1	
		GNDD092	504839.792	6601208.375	1824.849	-60	115	300.0	
		GNDD093	504679.396	6600332.075	1827.365	-55	115	209.0	
		GNDD095	504804.597	6601219.844	1826.834	-67	115	203.0	
		GNDD096	504666.622	6600602.793	1820.371	-60	115	215.0	
		GNDD099	504384.933	6599759.693	1796.525	-60	115	150.0	
		GNDD100	504424.250	6599784.711	1796.728	-60	115	120.0	
		GNDD101	504781.691	6600986.509	1821.679	-60	115	220.0	
		GNDD102	504787.340	6601285.049	1828.549	-57	115	260.0	
		GNDD103	504432.004	6599482.162	1788.500	-55	115	299.0	
		GNDD105	504701.392	6601025.961	1824.818	-60	115	300.0	
		GNDD106	504438.745	6599613.089	1792.511	-55	115	300.0	
		GNDD108	504893.480	6601156.138	1824.948	-60	115	200.0	
		GNDD109	504788.659	6601026.581	1822.675	-60	115	209.0	
		GNDD112	504893.408	6601198.421	1825.402	-60	115	188.0	
		GNDD113	504704.700	6601067.100	1826.300	-60	115	230.0	
		GNDD113A	504705.888	6601065.628	1825.877	-60	115	461	
		GNDD114	504430.719	6600110.231	1807.080	-50	115	116.0	
		GNDD115	504860.469	6601289.558	1826.422	-60	115	251.0	
		GNDD116	504441.894	6599558.746	1790.917	-65	115	269.0	
		GNDD117	504428.815	6600110.985	1807.008	-60	115	120.0	
		GNDD118	505085.614	6601107.067	1811.275	-60	295	300.0	
		GNDD119	504827.094	6601535.651	1835.088	-66	115	115.0	
		GNDD120	504411.171	6600099.998	1806.316	-60	110	164.0	
		GNDD121	504863.473	6601140.462	1821.954	-57	115	181.0	
		GNDD122	504659.288	6600648.314	1819.643	-60	115	250.0	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		GNDD123	504823.784	6601510.706	1833.612	-63	130	130.0	
		GNDD124	504410.706	6600099.603	1806.296	-70	115	160.0	
		GNDD125	505135.977	6601131.034	1809.281	-60	295	300.0	
		GNDD126	504716.358	6601149.031	1827.257	-60	115	196.0	
		GNDD127	504889.851	6601503.430	1834.161	-55	115	300.0	
		GNDD128	504715.660	6601106.719	1826.595	-60	115	230.0	
		GNDD129	504637.632	6600284.287	1805.395	-55	185	291.0	
		GNDD130	504838.247	6601093.352	1821.556	-60	115	227.0	
		GNDD131	504650.672	6600737.758	1821.134	-60	115	280.0	
		GNDD132	504819.319	6601357.930	1829.373	-55	115	300.0	
		GNDD133	504869.366	6601639.665	1835.213	-60	170	182.0	
		GNDD134	504639.057	6600284.444	1805.499	-55	154	290.0	
		GNDD135	504845.188	6601547.554	1834.906	-64	350	135.0	
		GNDD136	504837.721	6601445.719	1830.128	-55	115	310.0	
		GNDD137	504647.268	6600701.174	1820.549	-60	115	370.0	
		GNDD138	504883.975	6601540.420	1835.042	-65	350	237.0	
		GNDD139	504755.726	6601084.848	1824.694	-60	115	200.0	
		GNDD140	504991.396	6601549.750	1835.464	-60	60	230.0	
		GNDD141	504779.587	6601255.947	1828.225	-70	115	270.0	
		GNDD142	504433.887	6599629.407	1792.717	-62	115	360.0	
		GNDD143	504902.285	6601209.174	1826.545	-20	115	120.0	
		GNDD144	504961.182	6601524.651	1835.687	-70	40	410.0	
		GNDD145	504557.511	6600224.447	1818.092	-64	170	200.0	
		GNDD146	504772.849	6601212.611	1827.389	-70	115	350.0	
		GNDD147	504959.171	6601525.259	1835.597	-60	355	240.0	
		GNDD148	504845.962	6601442.396	1831.403	-24	115	85.5	
		GNDD149	504847.402	6601441.816	1832.186	-5	115	88.1	
		GNDD150	504848.651	6601525.476	1834.636	-65	350	251.0	
		GNDD151	504673.689	6601219.059	1830.640	-60	115	430.0	
		GNDD152	504901.725	6601465.446	1834.787	-15	115	165.0	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD153	504690.458	6600986.257	1824.840	-70	115	326.0
		GNDD154	504891.810	6601503.838	1834.134	-65	350	212.0
		GNDD155	504779.116	6601123.548	1823.862	-60	115	420.0
		GNDD156	504842.752	6601402.888	1830.505	-37	115	59.0
		GNDD157	504638.216	6600284.907	1805.408	-55	170	527.0
		GNDD158	504807.600	6601535.300	1837.000	-60	350	170.0
		GNDD159	504910.382	6601145.345	1825.562	-40	115	202.0
		GNDD160	504980.539	6601546.905	1835.243	-55	350	170.0
		GNDD161	504664.113	6600816.520	1822.385	-60	115	251.00
		GNDD162	504723.843	6601279.506	1830.376	-60	115	180.00
		GNDD163	504749.611	6601575.347	1837.394	-60	115	180.00
		GNDD164	504672.435	6601526.078	1836.853	-60	115	311.00
		GNDD165	504488.377	6599862.768	1803.486	-10	115	253.80
		GNDD166	504557.654	6600330.511	1817.438	-60	115	327.00
		GNDD167	504727.540	6600880.315	1820.767	-60	115	251.00
		GNDD168	504559.923	6600382.723	1816.844	-60	115	314.00
		GNDD169	504683.848	6601565.336	1837.928	-60	115	416.00
		GNDD170	504663.000	6600335.000	1822.900	-60	170	123.50
		GNDD170A	504664.576	6600335.390	1826.501	-60	170	380.00
		GNDD171	504674.659	6600904.137	1823.445	-70	115	350.00
		GNDD172	504487.566	6599863.343	1802.727	-45	115	119.70
		GNDD173	504697.019	6601339.596	1833.656	-60	115	191.00
		GNDD174	504474.118	6600097.716	1807.933	-11	115	329.50
		GNDD175	504653.221	6601093.209	1828.285	-60	115	353.00
		GNDD176	504733.851	6600655.255	1817.503	-60	115	350.00
		GNDD177	504759.610	6601481.663	1834.257	-60	115	160.00
		GNDD178	504625.984	6600185.259	1824.078	-60	185	145.20
		GNDD179	504406.541	6600185.242	1809.531	-55	170	192.10
		GNDD180	504678.044	6600779.784	1821.026	-60	115	341.00
		GNDD181	504669.174	6600332.942	1809.056	-60	160	401.00

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD182	504669.526	6601127.040	1828.630	-60	115	332.00
		GNDD183	504775.514	6601523.887	1835.124	-65	115	146.00
		GNDD184	504670.292	6601174.696	1829.453	-60	115	321.50
		GNDD185	504730.718	6601405.556	1832.739	-60	115	180.00
		GNDD186	504735.990	6600742.990	1818.290	-60	115	209.00
		GNDD187	504621.493	6601546.173	1839.975	-67	115	320.00
		GNDD188	504658.832	6601043.631	1826.939	-60	115	277.00
		GNDD189	504473.828	6600097.778	1807.415	-29	115	320.00
		GNDD190	504894.932	6601473.630	1833.192	-65	350	269.00
		GNDD191	504602.016	6601426.850	1837.553	-70	115	260.00
		GNDD192	504617.912	6600575.207	1820.347	-60	115	260.00
		GNDD193	504686.491	6601425.894	1834.934	-60	115	293.00
		GNDD194	504670.153	6600333.303	1808.999	-60	140	300.00
		GNDD195	504473.117	6600098.042	1807.172	-44	115	370.00
		GNDD196	504633.370	6600393.771	1822.260	-60	115	296.00
		GNDD197	504860.921	6601483.879	1831.591	-68	350	72.00
		GNDD198	504787.448	6601250.012	1827.763	-60	115	161.00
		GNDD199	504812.268	6601468.783	1832.487	-56	350	266.00
		GNDD200	504966.362	6601074.292	1816.847	-60	295	280.00
		GNDD201	504310.496	6599798.094	1798.387	-65	115	170.00
		GNDD202	504524.999	6600443.375	1816.607	-60	115	320.00
		GNDD203	504597.900	6600292.924	1820.443	-60	170	361.50
		GNDD204	504858.596	6601037.331	1820.096	-60	295	190.10
		GNDD205	504368.667	6599653.253	1792.808	-60	115	320.00
		GNDD206	504502.882	6600109.342	1814.752	-45	90	315.60
		GNDD207	504522.884	6600357.893	1816.137	-60	115	365.00
		GNDD208	504919.928	6601011.763	1817.683	-60	295	299.00
		GNDD209	504455.248	6599665.027	1793.655	-60	115	212.00
		GNDD210	504462.426	6600034.696	1804.674	-55	115	404.00
		GNDD211	504918.046	6601053.056	1818.575	-60	295	260.00

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD212	504556.481	6600173.681	1823.158	-50	170	90.00
		GNDD213	504437.719	6599952.199	1801.892	-55	115	401.00
		GNDD214	504479.068	6599647.469	1794.866	-25	115	185.30
		GNDD215	504841.586	6601002.965	1820.301	-60	295	215.50
		GNDD216	504575.288	6600730.335	1823.004	-60	115	260.00
		GNDD217	504528.620	6600189.318	1817.887	-60	170	140.00
		GNDD218	504744.099	6601001.774	1823.249	-60	295	250.00
		GNDD219	504559.700	6600171.900	1821.200	-67	170	125.00
		GNDD220	504503.489	6600761.157	1825.667	-60	115	269.00
		GNDD221	504559.700	6600171.900	1821.200	-75	170	165.00
		GNDD222	504740.575	6600963.697	1822.322	-60	295	251.00
		GNDD223	504516.675	6600218.714	1815.407	-60	170	200.00
		GNDD224	504450.361	6600481.295	1818.275	-60	115	338.00
		GNDD225	504526.735	6601150.967	1834.202	-60	115	299.00
		GNDD226	504649.341	6601710.086	1842.687	-60	115	281.00
		GNDD227	504517.120	6600217.001	1815.363	-66	170	266.00
		GNDD228	504776.100	6601210.300	1827.900	-61	115	330.00
		GNDD229	504632.614	6601318.236	1833.884	-60	115	255.00
		GNDD230	504658.776	6601614.082	1840.047	-60	115	284.00
		GNDD231	504919.069	6602642.725	1840.857	-60	110	240.00
		GNDD232	504317.901	6599836.390	1799.881	-65	115	179.30
		GNDD233	504669.895	6601527.348	1836.811	-50	115	236.00
		GNDD234	504822.913	6601277.432	1827.472	-60	115	116.00
		GNDD235	504381.663	6599939.975	1802.201	-65	115	140.00
		GNDD236	504595.397	6601384.531	1836.630	-60	115	260.00
		GNDD237	504628.160	6601590.640	1839.508	-60	115	450.00
		GNDD238	504906.977	6602616.887	1841.656	-60	110	250.00
		GNDD239	504477.711	6599648.097	1794.358	-50	115	91.00
		GNDD240	504474.701	6600231.137	1813.421	-55	170	200.00
		GNDD241	504489.556	6599566.448	1793.976	-45	115	146.50

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD242	504577.073	6601302.101	1835.696	-60	115	340.20
		GNDD243	504443.175	6600220.099	1811.582	-60	170	161.00
		GNDD244	504840.051	6602586.818	1845.192	-60	110	281.00
		GNDD245	504682.392	6601564.613	1837.879	-50	115	306.00
		GNDD246	504304.458	6599841.564	1800.364	-72	115	212.00
		GNDD247	504467.820	6599499.478	1797.272	-35	115	180.00
		GNDD248	504663.877	6601484.106	1837.295	-60	115	320.00
		GNDD249	504565.561	6601221.295	1834.153	-60	115	280.00
		GNDD250	504330.009	6599876.638	1800.342	-60	115	197.00
		GNDD251	504477.971	6599538.205	1794.923	-45	115	170.50
		GNDD252	504831.382	6600924.214	1818.699	-60	295	308.00
		GNDD253	504457.312	6599611.851	1792.452	-60	115	277.90
		GNDD254	504619.880	6601545.848	1839.946	-60	115	413.00
		GNDD255	504614.456	6601152.752	1830.734	-60	115	229.00
		GNDD256	504439.108	6599479.931	1789.382	-40	115	200.00
		GNDD257	504846.070	6600960.942	1819.000	-60	295	290.00
		GNDD258	504479.202	6600229.965	1813.512	-64	170	270.00
		GNDD259	504891.047	6601156.539	1824.952	-78	295	209.00
		GNDD260	504686.229	6601779.816	1843.684	-60	115	281.00
		GNDD261	504735.261	6600179.706	1847.318	-45	120	140.00
		GNDD262	504907.951	6600975.057	1817.254	-60	295	290.00
		GNDD263	504874.653	6601167.487	1825.604	-60	295	152.00
		GNDD264	504404.218	6600202.470	1810.311	-60	170	229.80
		GNDD265	504493.431	6600345.518	1815.122	-55	170	345.00
		GNDD266	504730.982	6600175.224	1847.381	-40	170	90.00
		GNDD267	504886.046	6601114.747	1820.458	-65	295	221.00
		GNDD268	504445.758	6600392.598	1815.641	-60	115	360.00
		GNDD269	504696.082	6600164.192	1843.123	-45	170	112.60
		GNDD270	504888.213	6601199.370	1825.457	-80	295	155.30
		GNDD271	504560.712	6600319.000	1817.861	-60	130	281.00

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		GNDD272	504444.186	6600217.869	1811.622	-52	170	191.00	
		GNDD273	504559.651	6600163.955	1825.649	-20	170	80.00	
		GNDD274	504564.640	6600318.832	1818.105	-55	175	340.00	
		GNDD275	504887.265	6601199.716	1825.475	-55	295	131.00	
		GNDD276	504464.535	6600301.076	1814.073	-60	115	340.00	
		GNDD277	504848.561	6601090.785	1821.157	-60	295	155.00	
		GNDD278	504496.144	6600345.519	1815.221	-62	170	380.00	
		GNDD279	504590.000	6600164.000	1829.600	-45	155	90.00	
		GNDD280	504570.040	6601132.497	1831.818	-60	115	266.00	
		GNDD281	504599.717	6600293.500	1820.179	-67	170	470.00	
		GNDD282	504462.194	6600299.930	1814.097	-60	170	370.00	
		GNDD283	504590.0	6600164.0	1829.6	-5	155	95.00	
		GNDD284	504625.209	6600441.245	1819.581	-60	115	130.00	
		GNDD285	504525.3	6601150.7	1833.8	-70	115	401.00	
		GNDD286	504396.4	6600235.1	1813.1	-60	170	260.00	
		GNDD287	504538.7	6600482.6	1815.7	-60	115	265.00	
		GNDD288	504624.0	6600326.0	1819.4	-60	170	450.00	
		GNDD289	504650.0	6600182.0	1824.3	-45	170	276.00	
		GNDD290	504361.2	6600204.4	1813.1	-60	170	200.00	
		GNDD291	504548.7	6600522.0	1817.3	-60	115	200.00	
		GNDD292	504538.5	6600615.0	1820.2	-60	115	270.00	
		GNDD293	504665.0	6601394.7	1837.4	-60	115	215.00	
		GNDD294	504434.8	6600247.2	1812.4	-60	170	290.00	
		GNDD295	504569.0	6600556.6	1818.1	-60	115	221.00	
		GNDD296	504380.1	6599622.6	1791.9	-60	115	299.00	
		GNDD297	504650.0	6600182.0	1824.3	-20	170	167.50	
		GNDD298	504641.1	6601449.8	1840.0	-60	115	350.00	
		GNDD299	504312.9	6599705.1	1797.7	-60	115	170.00	
		GNDD300	504595.1	6600632.7	1819.0	-60	115	200.00	
		GNDD301	504636.0	6600298.0	1823.1	-25	115	90.20	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNDD302	504110.5	6599843.6	1800.0	-60	115	221.00	
		GNDD303	504504.7	6600851.4	1828.2	-60	115	240.00	
		GNDD304	504743.6	6601445.5	1836.9	-60	115	158.00	
		GNDD305	504506.7	6600674.4	1823.4	-60	115	299.00	
		GNDD306	504187.5	6599940.3	1808.0	-62	115	320.00	
		GNDD307	504635.7	6600393.1	1822.3	-20	115	100.00	
		GNDD308	504504.9	6600939.5	1827.7	-60	115	300.00	
		GNDD309	504599.3	6601512.4	1840.8	-60	115	390.00	
		GNDD310	504499.0	6600633.4	1822.4	-60	115	300.00	
		GNDD311	504218.7	6600013.8	1805.0	-60	115	240.00	
		GNDD312	504463.0	6599679.2	1793.4	-25	115	80.50	
		GNDD313	504321.1	6600198.2	1814.9	-60	170	210.00	
		GNDD314	504300.0	6599667.1	1797.9	-60	115	350.00	
		GNDD315	504506.7	6600718.1	1824.6	-60	115	280.00	
		GNRC052	504443.927	6599554.145	1790.676	-60	115	90	
		GNRC053	504452.888	6599589.416	1791.660	-60	115	96	
		GNRC054	504458.908	6599679.484	1794.408	-60	115	90	
		GNRC055	504461.566	6599726.253	1795.888	-60	115	102	
		GNRC056	504463.187	6599763.817	1796.276	-60	115	102	
		GNRC057	504453.440	6599901.106	1800.270	-60	115	96	
		GNRC058	504716.992	6600488.640	1825.624	-60	115	102	
		GNRC059	504785.101	6600721.845	1817.042	-60	115	84	
		GNRC061	504963.888	6601521.567	1835.635	-60	115	30	
		GNRC062	504943.260	6601531.855	1834.917	-60	115	30	
		GNRC063	504914.884	6601499.583	1833.781	-60	115	36	
		GNRC064	504895.067	6601472.101	1833.039	-60	115	36	
		GNRC065	504865.673	6601481.570	1831.536	-60	115	60	
		GNRC066	504896.480	6601506.894	1834.226	-60	115	48	
		GNRC067	504911.268	6601541.124	1836.127	-60	115	50	
		GNRC068	504990.546	6601552.694	1835.287	-60	030	114	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		GNRC069	504934.855	6601579.782	1836.179	-60	115	120	
		GNRC070	504925.545	6601566.505	1835.127	-60	350	84	
		GNRC071	504878.397	6601572.030	1833.873	-60	350	54	
		GNRC072	504877.872	6601568.814	1833.843	-70	350	72	
		GNRC075	504842.742	6601573.984	1835.428	-60	350	60	
		GNRC076	504828.279	6601539.638	1835.244	-60	115	76	
		GNRC078	504842.744	6601450.106	1830.180	-60	115	70	
		GNRC080	504864.734	6601560.758	1834.333	-60	115	86	
		GNRC081	504815.835	6601460.850	1832.033	-73	115	86	
		GNRC084	504965.730	6601530.280	1836.056	-55	030	145	
		GNRC086	504838.724	6601402.481	1829.645	-60	115	60	
		GNRC087	504858.585	6601345.400	1828.417	-60	115	30	
		GNRC090	504821.284	6601359.986	1829.379	-60	115	60	
		GNRC091	504789.111	6601376.410	1830.448	-60	115	80	
		GNRC094	504852.454	6601307.187	1827.304	-60	115	60	
		GNRC097	504831.396	6601289.723	1827.153	-60	115	70	
		GNRC098	504784.865	6601253.409	1827.869	-76	115	96	
		GNRC104	504780.186	6601228.313	1827.663	-64	115	150	
		GNRC107	504623.1	6600197.1	1823.3	-60	185	120	
		GNRC110	504502.0	6600107.0	1814.0	-62	90	60	
		GNRC111	504427.8	6599739.8	1796.4	-60	115	120	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and 		d into wooden boxe is are reconciled by					n blocks at the	end of each
	results assessed Measures taken to maximise sample	Triple tube drilling	g has been being do	ne by CEL to maxim	ise core recov	ery.			
	recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	collected for each splitter to split ou consistency in sar A possible relatio recoveries have re	re collected from a n metre of RC drilling at a 2-4 kg sub-samp mpling. nship has been obse esulted in underrep re recovery is influel	g. Duplicate sample le. The whole sample erved between histo orting of grade. Insi	es are taken at ole recovered i oric sample rec ufficient inforn	the rate o s weighed covery and nation is n	f I every 25-3 to measure s Au Ag or Zn g ot yet availab	O samples using cample recovery grade whereby le to more accu	g a riffle y and low urately

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	recovery and mineralisatio Detailed logs from the hist	n.		served. Th	e fracturing	is generally	post mineral	and not dire	ectly associate	d with the
been geologically and geotechnically	_	are av							,	a with the
annun minta Minanul Danassusa	For CEL drilling, all the core is logged for recovery RQD weathering lithology alteration mineralization and structure to a level that is suitable for geological modelling resource estimation and metallurgical test work. RC drill chips are logged for geology, alteration and mineralisation. Where possible logging is quantitative. Geological logging is done in MS Excel in a format that can readily be transferred to a database which holds all drilling logging sample and assay data. Competent drill core is cut longitudinally using a diamond saw for sampling of ½ the core. Soft core is split using a wide									
If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique.	blade chisel c be made to e Sample interv No second-ha trays for futu From hole GN diamond core	or a manure vals are alf core reference vals are reference value v	anual core so half-core so half-core so e selected ke samples herence. 3, duplicate les are ¼ co	population press. In press	The geologisesentivity. hology alteraubmitted. To	et logging th ation and m he second h s have been	e core indicat ineralization I alf of the core collected for	es on the drooundaries. e samples ha	rill core where Sample lengt as been retain Om drilled. The	the saw cut is to hs average 1.38m. ed in the core e duplicate
r V G C T t I I V t I I S S F G S C f r N S S I I C V C	metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insistu material collected including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the	metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. If core whether cut or sawn and whether quarter half or all core blade chisel of taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the institu material collected including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Pe (material being sampled)	metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Whether sampled. Whether logging is qualitative or format that can read geology, alteration for all core taken. Competent drill core taken. No second-half core trays for future reference for all sub-sample geology, alteration format half can read geology, alteration for the land of the lan	metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Whether logging is qualitative or for core samples format that can readily be transformat on. Competent drill core is cut long blade chisel or a manual c	metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representative of the institute material collected including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The total length and percentage of the transferred to a geology, alteration and mineralisation. We format that can readily be transferred to a geology, alteration and mineralisation. We format that can readily be transferred to a geology, alteration and mineralisation. We format that can readily be transferred to a geology, alteration and mineralisation. We format that can readily be transferred to a geology, alteration and mineralisation. We format that can readily be transferred to a geology, alteration and mineralisation. We format that can readily be transferred to a geology, alteration and mineralisation. We format that can readily be transferred to a geology, alteration and mineralisation. We format that can readily be transferred to a geology, alteration and mineralisation. We format that can readily be transferred to a geology. Competent drill core is cut longitudinally blade chisel or a manual core split press. Sample intervals are selected based on lit No second-half core samples have been so trays for future reference. From hole GNDD073, duplicate diamond diamond core samples are ¼ core samples are ¼ core samples. Au (ppm) 693 0.980 0.158 Ag (ppm) 693 0.987 0.987 0.990 Cu (ppm) 693 0.987 0.990 Fe (%) 693 0.985 0.329 Pb (ppm) 693 0.985 0.329	metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representative of the institu material collected including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. For all sub-sampling size of the material being sampled. For all sub-sampling stages to maximise representative of the institu material collected including for instance results for field chuplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. For all sub-sampling size of the material being sampled. For all sub-sampling stages to maximise representative of the institution and mineralisation. Where possible format that can readily be transferred to a database with that can readily be transferred to a database with that can readily be transferred to a database with that can readily be transferred to a database with that can readily be transferred to a database with that can readily be transferred to a database with that can readily be transferred to a database with that can readily be transferred to a database with that can readily be transferred to a database with that can readily be transferred to a database with that can readily be transferred to a database with the can readily be transferred to a database with the can readily be transferred to a database with the can readily be transferred to a database with the can readily be transferred to a database with to remain thic core is cut longitudinally using a diam back of se	metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insistu material collected including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. We seed that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format that can readily be transferred to a database which holds in format th	metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling is representative of the instance results for field duplicate results for field fulplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. Metal and mineralisation. Where possible logging is quantitative, format that can readily be transferred to a database which holds all drilling log. Beology, alteration and mineralisation. Under possible logging is quantitative. The second half original being sambled. Competent drill core is cut longitudinally using a diamond saw for sampling of blade chisel or a manual core split press. The geologist logging the core indicate be made to ensure half-core sample representivity. Sample intervals are selected based on lithology alteration and mineralization in the child core is cut longitudinally using a diamond saw for sampling of blade chisel or a manual core split press. The geologist logging the core indicate be made to ensure half-core sample representivity. Sample intervals are selected based on lithology alteration and mineralization in the child core is cut longitudinally using a diamond saw for sampling of the blade chisel or a manual core split press. The geologist logging the core indicate be made to ensure half-core sample representivity. Sample intervals are selected based on lithology alteration and mineralization. Whose cond-half core samples have been submitted. The second half of the condition of the core samples are ½ core samples. Duplicate core sample representivity. All (ppm) 693 0.980 0.158	metallurgical studies. Whether logging is qualitative or control photography. The total length and percentage of the relevant intersections logged. If core whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and popropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representative of the instance results for field dipulcate/second-half sampling. Whether samples size are appropriate to the grain size of the material being sampled. Methods all drilling logging is quantitative. Geological format that can readily be transferred to a database which holds all drilling logging sample for all abase which holds all drilling logging sample format that can readily be transferred to a database which holds all drilling logging is quantitative. Geological format that can readily be transferred to a database which holds all drilling logging is quantitative. Geological format that can readily be transferred to a database which holds all drilling logging is quantitative. Geological format that can readily be transferred to a database which holds all drilling logging is quantitative. Geological format that can readily be transferred to a database which holds all drilling logging is quantitative. Geological format that can readily be transferred to a database which holds all drilling logging is quantitative. Geological format that can readily be transferred to a database which holds all drilling logging is quantitative. Geological format that can readily be transferred to a database which holds all drilling logging the core indicates on the dibacters. The geologist logging the core indicates on the drill core is cut longitudinally using a diamond saw for sampling of \$\forall \text{the core.} \text{blade diseason} \text{blade chisel or a manual core sample representivity.} Sample intervals are selected based on lithology alteration and m	metallurgical studies. Whether logging is qualitative or geology, alteration and mineralisation. Where possible logging is quantitative. Geological logging is don format that can readily be transferred to a database which holds all drilling logging sample and assay data quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. If ore whether cut or sawn and whether riffled tube tampled rotary split etc and whether ampled rotary split et cand whether sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the institutionate results for field duplicate original correlation format that can readily be transferred to a database which holds all drilling logging is don format that can readily be transferred to a database which holds all drilling logging is don format that can readily be transferred to a database which holds all drilling logging is don format that can readily be transferred to a database which holds all drilling logging is don format that can readily be transferred to a database which holds all drilling logging is don format that can readily be transferred to a database which holds all drilling logging is don format that can readily be transferred to a database which holds all drilling logging is don format that can readily be transferred to a database which holds all drilling logging is don format that can readily be transferred to a database which holds all drilling logging is don format that can readily be transferred to a database which holds all drilling logging the core indicates on the drill core where the definition and mineralization. Whether ore indicates on the drill core where the definition and mineralization and mineralization and mineralization and mineralization and mineralization and mineralization and minerali

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

n=count
RSQ = R squared
The correlation for Cu is poor because of 1 pair, where Cu results vary significantly. Removing this outlier provides at RSQ for Cu of 0.954

The dillian DD - Duplicate Samples - Au (ppm)

Hualilan DD - Duplicate Samples - Ag (ppm)

Hualilan DD - Duplicate Samples - Ag (ppm)

Ag (ppm) Original

The dillian DD - Duplicate Samples - Ag (ppm)

Ag (ppm) Original

The dillian DD - Duplicate Samples - Ag (ppm)

Ag (ppm) Original

Commentary

RC sub-samples over 1m intervals are collected at the drill site from a cyclone mounted on the drill rig. A duplicate RC sample is collected for every 25-30m drilled.

The duplicate RC sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:

	n	RSQ	mean		median		variance	
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	85	0.799	0.101	0.140	0.017	0.016	0.041	0.115
Ag (ppm)	85	0.691	1.74	2.43	0.59	0.58	13.59	64.29
Cd (ppm)	85	0.989	15.51	16.34	0.41	0.44	4189	4737
Cu (ppm)	85	0.975	47.74	53.86	5.80	5.70	2.4E+04	3.1E+04
Fe (%)	85	0.997	1.470	1.503	0.450	0.410	7.6	7.6
Pb (ppm)	85	0.887	296.0	350.6	26.3	32.4	6.0E+05	7.4E+05
S (%)	85	0.972	0.113	0.126	0.020	0.020	0.046	0.062
Zn (ppm)	85	0.977	3399	3234	158	177	2.5.E+08	2.1.E+08
n=count								
RSQ = R squa	ared							

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

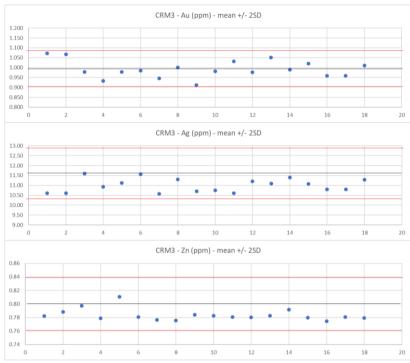
Criteria

JORC Code explanation

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

JORC Code explanation Criteria Commentary 2020 Hualilan RC - Duplicate Samples - Au (ppm) 2020 Hualilan RC - Duplicate Samples - Ag (ppm) 2020 Hualilan RC - Duplicate Samples - Zn (ppm) 0.1 0.01 100 100 1000 10000 CEL samples have been submitted to the MSA laboratory in San Juan and the ALS laboratory in Mendoza for sample preparation. The sample preparation technique is considered appropriate for the style of mineralization present in the Project. Sample sizes are appropriate for the mineralisation style and grain size of the deposit. 34 duplicate channel sample assays have been finalised from the underground sampling program. The data is consistent with the diamond drill core results. I more detailed analysis of the channel sample duplicate data will follow receipt of additional final results. Quality of assay The nature quality and The MSA laboratory used for sample preparation in San Juan has been inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory procedures are consistent with appropriateness of the assaying and data and laboratory international best practice and are suitable for samples from the Project. The ALS laboratory in Mendoza has not yet been laboratory procedures used and tests inspected by CEL representatives. whether the technique is considered partial or total. Internal laboratory standards were used for each job to ensure correct calibration of elements. For geophysical tools spectrometers CEL submit blank samples (cobble and gravel material from a quarry nearby to Las Flores San Yuan) with drill core, RC subhandheld XRF instruments etc the samples and channel sample to both the MSA laboratory and the ALS laboratory. The blank samples are strategically parameters used in determining the placed in the sample sequence immediately after samples that were suspected of containing high grade Au Ag Zn or Cu to analysis including instrument make test the lab preparation contamination procedures. The values received from the blank samples suggest rare cross and model reading times contamination of samples during sample preparation. calibrations factors applied and their derivation etc. Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman


Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value > 2SD above the certified value. All other analyses are within 2SD of the expected value. The standards demonstrate suitable precision and

Commentary

accuracy of the analytic process. No systematic bias is observed.

For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, nine different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures of both the MSA and ALS. In the results received to date there has been no observed bias in results of the CRM. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed. A summary of the standard deviations from the expected values for CRM's used is summarised below. Generally, an average of standard deviations close to zero indicates a high degree of accuracy and a low range of standard deviations with a low fail count indicates a high degree of precision.

Only 12 standard (CRM) sample assays submitted with the channel samples have been finalised. The results are consistent with CRM submitted with drill core samples.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria JORC Code explanation

Verification of sampling and assaying

The verification of significant intersections by either independent

or alternative company personnel.

- The use of twinned holes.
- Documentation of primary data entry procedures data verification data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

Commentary

Repeat sampling of 186 coarse reject samples from 2019 drilling has been done to verify sampling. Original samples were from the 2019 DD drilling which were analysed by MSA (San Juan preparation and Vancouver analysis). Repeat samples were analysed by ALS (Mendoza preparation and Vancouver analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate very closely with the original analyses providing a high confidence in the sample preparation and analysis from MSA and ALS. A summary of the results for the 186 sample pairs for key elements is provided below:

ALS	MSA	ALS	MSA	ALS	Correlation coefficient
4.27	0.50	0.49	11.15	11.00	0.9972
31.1	5.8	6.2	72.4	73.9	0.9903
12636	2574	2715	32648	33744	0.9997
474	74	80	1028	1050	0.9994
1983	403	427	6626	6704	0.9997
1.95	0.05	0.06	5.53	5.10	0.9987
68.8	12.4	12.8	162.4	159.3	0.9988
79.5	45.8	47.6	88.1	90.6	0.9983
4.91	2.12	2.19	6.87	6.72	0.9994
56.2	28.7	31.6	98.2	97.6	0.9954
	4.27 31.1 12636 474 1983 1.95 68.8 79.5 4.91	4.27 0.50 31.1 5.8 12636 2574 474 74 1983 403 1.95 0.05 68.8 12.4 79.5 45.8 4.91 2.12	4.27 0.50 0.49 31.1 5.8 6.2 12636 2574 2715 474 74 80 1983 403 427 1.95 0.05 0.06 68.8 12.4 12.8 79.5 45.8 47.6 4.91 2.12 2.19	4.27 0.50 0.49 11.15 31.1 5.8 6.2 72.4 12636 2574 2715 32648 474 74 80 1028 1983 403 427 6626 1.95 0.05 0.06 5.53 68.8 12.4 12.8 162.4 79.5 45.8 47.6 88.1 4.91 2.12 2.19 6.87	4.27 0.50 0.49 11.15 11.00 31.1 5.8 6.2 72.4 73.9 12636 2574 2715 32648 33744 474 74 80 1028 1050 1983 403 427 6626 6704 1.95 0.05 0.06 5.53 5.10 68.8 12.4 12.8 162.4 159.3 79.5 45.8 47.6 88.1 90.6 4.91 2.12 2.19 6.87 6.72

Cd values >1000 are set at 1000.

REE is the sum off Ce, La, Sc, Y. CE > 500 is set at 500. Below detection is set at zero

CEL have sought to twin some of the historic drill holes to check the results of previous exploration. A full analysis of the twin holes has yet to be completed. The holes are:

GNDD003 - DDH34 and 04HD08

GNRC110 - DDH53

GNDD144 - 05HD39

GNRC107 - GNDD008/008A

GNDD206 - DDH54

Final sample assay analyses are received by digital file in PDF and CSV format. The original files are backed-up and the data copied into a drill hole database for geological modelling.

Criteria	JORC Code explanation	Commentary						
		Assay results summarised in the context of this report have been rounded appropriately to 2 significant figures. No assay data have been otherwise adjusted.						
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys) trenches mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Following completion of drilling collars are surveyed using a differential GPS (DGPS) relative into the Argentinian SGM survey. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s. Following completion of the channel sampling, the location of the channel samples taken underground is surveyed from a survey mark at the entrance to the underground which is located using differential GPS. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s. The drill machine is set-up on the drill pad using hand-held equipment according to the proposed hole design. Diamond core drill holes are surveyed at 30-40m intervals down hole using a Reflex tool. RC drill holes are surveyed down hole every 10 metres using a gyroscope to avoid magnetic influence from the drill rods. All current and previous drill collar sites, Minas corner pegs and strategic surface points have been surveyed using DGPS to provide topographic control for the Project.						
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	No regular drill hole spacing has been applied across the Project, although a nominal 40m x 40m drill spacing is being applied to infill and extension drilling where appropriate. The current drilling is designed to check previous exploration, extend mineralisation along strike, and provide some information to establish controls on mineralization and exploration potential. No Mineral Resource Estimate to JORC 2012 reporting standards has been made at this time. Samples have not been composited.						
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have 	As far as is currently understood and where practicable, the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. For underground channel sampling, the orientation of the sample is determined by the orientation of the workings. Where the sampling is parallel with the strike of the mineralisation, plans showing the location of the sampling relative to the orientation of the mineralisation, weighted average grades and estimates of true thickness are provided to provide a balanced report of the mineralisation that has been sampled. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.						

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	introduced a sampling bias this should be assessed and reported if material.	
Sample security	 The measures taken to ensure sample security. 	Samples were under constant supervision by site security, senior personnel and courier contractors prior to delivery to the preparation laboratories in San Juan and Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria

JORC Code explanation

Commentary

Mineral tenement and land tenure status

- Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings.
- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

The current Hualilan project comprises 15 Minas (equivalent of mining leases) and 2 Demasias (mining lease extensions), an additional 8 Minas and 3 exploration licences (Cateos) under a farmin agreement and a further 4 Cateos directly held. This covers all of the currently defined mineralization and surrounding prospective ground. There are no royalties on the project. CEL is earning a 75% interest in the Project by funding exploration to a Definitive Feasibility Study (DFS).

Granted mining leases (Minas Otorgadas) at the Hualilan Project

Name	Number	Current Owner	Status	Grant Date	Area (ha)
Cerro Sur					
Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Cerro Norte					
La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Criteria	JORC Code explanation	Commentary					
		Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Mining Lease extensions (Demasias) at the Hualilan Project

Name	Number	Current Owner	Status	Grant date	Area (ha)
Cerro Sur					
North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	05/12/2014	1.9
Cerro Norte					
South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	05/12/2014	1.9

Mining Lease Farmin Agreements

Name	Number	Transfrred to CEL	Status	Grant Date	Area (ha)
Marta Alicia	2260-S-58	Yes	Current		23.54
Marta	339.154-R-92	Yes	Current		478.50
Marta 1	339.153-R-92	Yes	Current		163.42
AK4	1124.299-R-18	Yes	Current		1500.00
Solitario 1-5	545.604-C-94	Yes	Current		685.00
Solitario 1-4	545.605-C-94	Yes	Current		310.83
Solitario 1-1	545.608-C-94	Yes	Subject to Approval		TBA
Solitario 6-1	545.788-C-94	Yes	Subject to Approval		TBA

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Cuitania	IODC Code explanation	Commontowy									
Criteria	JORC Code explanation	Commentary									
		Exploration Licen	Exploration Licence Farmin Agreements								
		Name	Number	Transfrred to CEL	Status	Grant Date	Area (ha)				
			295.122-R-1989	Yes	Current		1882.56				
			228.441-R-1993	Yes	Subject to Approval		2800.00				
			545.880-O-1994	Yes	Current		149.99				
		Exploration Licent	ces Held (Direct Awar	d)							
		Name	Number	Transfrred to CEL	Status	Grant Date	Area (ha)				
		Ayen	1124.495-I-20	Yes	Current		2059.60				
			1124-248G-20	Yes	Current		933.20				
			1124-188-G-20	Yes	Current		267.40				
			1124-188-G-20	Yes	Current		600.00				
		There are no know	w impediments to ob	taining the exploration	license or opera	iting the Project	•				
Exploration do by other partic		geologic maps re property examina completed since 2	ports trenching data unitions and detailed students 2006.	r 500 years has produce Inderground workings o Indies by several geologi	drill hole results sts. Prior to the	geophysical sur e current explora	veys resource es ation no work ha				
		sampling have be	en compiled and digit	s that pass through min tised as are sample data ys exist but have largely	a geological map	oping trench dat	a adit exposures				
			alilan Project (Cerro S ng and sampling result	Sur and Cerro Norte con ts are listed below.	nbined) extends	s to over 150 dri	ll holes. The key				
			 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totalling 2040m 1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1500 samples 1998 – Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and chain sampling 1999 – Compania Mineral El Colorado SA ("CMEC") 59 core holes (DDH-20 to 79) plus 1700m RC program 								

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		- 2003 – 200	5 – La Mancha (T	SE Listed) undert	ook 7447m o	f DDH core dr	illing (HD-01 to	HD-48)	
		- Detailed resource estimation studies were undertaken by EPROM Ltda. (EPROM) in 1996 and CMEC (1999 revised							
		2000) both	of which were w	ritten to professi	onal standard	ls and La Man	cha 2003 and 2	2006.	
		- The collect	on of all explorat	ion data by the v	arious operat	ors was of a h	nigh standard a	nd had appropriate	
			chniques interva	•	•				
Geology	 Deposit type geological setting and style of mineralisation. 	Mineralisation occurs in all rock types where it preferentially replaces limestone, shale and sandstone and occurs in zones and in fracture networks within dacitic intrusions.							
		The mineralisation has previously been classified as a Zn-Cu distal skarn (or manto-style skarn) with veir mineralisation. It has been divided into three phases – prograde skarn retrograde skarn and a late quar the evolution of the hydrothermal system and mineral paragenesis is the subject of more detailed geom							
		Gold occurs in native form and as inclusions with sulphide and pyroxene. The mineralisation also commonly opyrite, chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.							
		Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matric within fractured contrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at angle. The faults have thicknesses of 1–4 m and contain abundant sulphides. The intersection between the bed parallel mineralisation and east-striking cross veins seems to be important in localising the mineralisation.							
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material 	has been used with	up to 2m of inter	nal diltion or a cu	ut-off grade o	f 0.2 g/t Au eo	quivalent and u	de of 1 g/t Au equivalent p to 4m of internal diltion rovided in the previous	
	drill holes:	Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)		
	 easting and northing of the drill hole 	AG16	38.6	1.2	0.1	28.6	1.7		
	collar	MG10	108.0	3.0	1.3	No assay	No assay		
	- elevation or RL (Reduced Level –	DDH36	24.7	9.3	1.6	46.3	1.2		
	elevation above sea level in metres) of	DDH53	17.3	1.4	1.0	1.7	0.00		
	the drill hole collar	DDH53	24.0	8.9	3.7	239.5	0.03		
	- dip and azimuth of the hole	DDH53	35.7	3.9	3.9	87.8	0.06		
	- down hole length and interception	DDH53	41.0	3.0	2.6	7.6	0.20		
	depth	DDH54	20.0	1.1	1.2	0.7	0.00		
	- hole length.	DDH54	31.1	8.3	3.9	32.1	0.80		
	 If the exclusion of this information is 	DDH65	62.0	8.2	11.0	60.6	1.2		

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights

justified on the basis that the

information is not Material and this

exclusion does not detract from the

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

82.0

83.1

87.9

DDH65

DDH66

DDH66

Contact T: +61 8 6380 9235 E: admin@challengerex.com

1.8

23.7

69.9

33.4

42.9

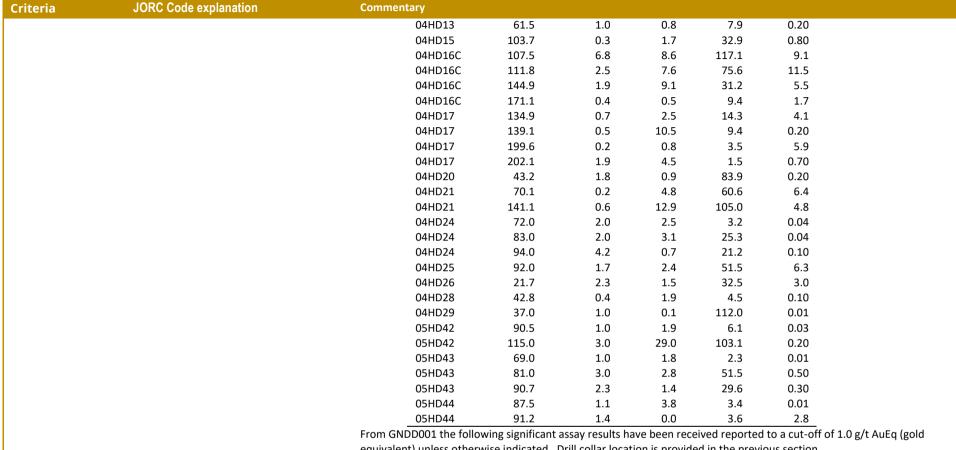
114.4

0.30

2.4

2.2

1.0


7.2

2.4

Criteria	JORC Code explanation	Commentary					
	understanding of the report the	DDH66	104.9	2.8	1.8	29.0	0.10
	Competent Person should clearly	DDH67	98.7	1.3	0.2	7.8	1.3
	explain why this is the case.	DDH68	4.0	17.9	2.2	6.3	0.20
		DDH68	73.7	0.5	0.8	9.0	1.2
		DDH69	4.0	16.1	2.3	1.6	0.10
		DDH69	76.9	0.3	0.1	7.0	28.0
		DDH69	79.7	0.8	1.3	120.0	4.5
		DDH70	84.0	7.0	5.2	13.5	0.70
		DDH71	11.0	2.0	0.5	218.0	0.06
		DDH71	39.9	1.0	1.3	6.0	0.03
		DDH71	45.5	1.1	0.4	22.8	0.60
		DDH71	104.0	10.0	33.5	126.7	7.9
		DDH72	26.0	11.7	3.8	14.1	1.3
		DDH72	52.7	6.3	1.5	30.4	0.04
		DDH73	62.5	3.5	0.5	15.6	0.60
		DDH74	119.9	0.5	7.3	98.5	2.6
		DDH76	61.3	0.7	4.0	11.1	0.50
		DDH76	74.4	4.0	0.8	8.8	0.30
		DDH76	84.8	1.2	1.4	10.9	2.0
		DDH78	109.1	0.7	1.1	13.4	1.9
		03HD01A	90.1	1.7	2.1	37.4	2.4
		03HD03	55.0	2.4	2.5	25.6	2.3
		04HD05	80.3	2.0	0.9	42.7	0.02
		04HD05	97.5	1.8	1.9	35.0	0.04
		04HD05	102.0	1.0	1.3	42.1	0.01
		04HD05	106.0	1.0	0.7	28.0	0.05
		04HD05	108.0	5.6	2.8	19.9	1.2
		04HD06	65.4	1.2	46.6	846.0	0.50
		04HD06	75.0	1.0	1.0	2.9	0.01
		04HD06	104.5	7.6	1.8	5.0	1.2
		04HD06	115.1	0.9	16.4	23.1	7.7
		04HD07	98.3	2.2	1.4	32.5	0.90
		04HD10	44.3	0.2	3.9	81.5	5.6
		04HD10	55.5	0.5	1.3	11.5	0.46
		04HD10	78.6	1.7	4.8	93.7	2.4
		04HD11	28.0	1.0	0.1	9.3	1.4
		04HD12	49.3	0.7	1.5	16.1	0.10

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.

Drilling in 2019:

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	
GNDD001	10.00	27.00	0.94	4.9	0.33	1.1	(2)
inc	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	5.00	31.00	0.74	2.7	0.67	1.1	
and	3.00	81.50	3.1	8.6	5.8	5.7	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

riteria	JORC Code explanation	Commentary							
		GNDD004	20.50	5.50	1.1	5.3	0.45	1.4	(2)
		inc	8.47	6.03	2.0	7.8	0.68	2.4	
		and	3.43	18.67	1.2	3.2	0.26	1.3	
		GNDD005	19.00	29.00	1.3	8.1	0.62	1.6	(2)
		inc	2.00	29.00	0.79	18	3.3	2.5	
		and	4.00	43.00	5.1	22	0.49	5.6	
		and	7.00	59.00	7.8	72	1.4	9.3	
		inc	3.00	61.00	16.5	135	1.6	18.9	(1)
		and	10.00	75.00	0.75	38	0.27	1.4	(2)
		inc	3.00	77.00	1.7	39	0.43	2.3	
		inc	1.00	83.00	1.2	156	0.72	3.5	
		GNDD006	6.50	78.50	4.2	21	0.29	4.6	
		inc	3.80	78.50	6.8	34	0.41	7.4	
		and	1.45	90.00	2.1	41	0.92	3.1	
		GNDD007	45.92	13.00	0.43	7.8	0.12	0.58	(2)
		inc	3.00	45.00	1.9	5.2	0.26	2.0	
		inc	3.00	55.00	2.3	35	0.54	2.9	
		GNDD007A	27.00	25.00	0.43	7.2	0.09	0.56	(2)
		inc	1.80	46.00	2.4	3.1	0.12	2.5	
		and	0.70	60.30	0.8	25	0.21	1.2	
		and	6.70	149.00	14.3	140	7.3	19.3	
		inc	3.06	150.60	27.5	260	12.9	36.5	(1)
		and	0.60	176.40	1.9	6.7	0.99	2.4	
		GNDD008	35.50	16.50	0.33	8.1	0.10	0.47	(2)
		inc	1.00	36.00	1.7	6.2	0.08	1.9	
		inc	1.63	43.37	1.7	8.4	0.14	1.9	
		inc	1.15	47.85	1.2	16	0.56	1.7	
		and	5.70	91.00	12.3	182	0.67	15.0	(1)
		and	1.00	99.70	0.93	43	0.52	1.7	
		and	2.40	107.00	6.3	222	1.9	10.0	
		GNDD008A	35.50	17.50	0.24	13	0.08	0.43	(2)
		and	20.00	95.00	3.3	45	0.55	4.1	(2)
		inc	2.64	96.60	22.8	218	0.68	25.9	(1)
		inc	10.00	105.00	0.6	28.2	0.71	1.2	
		GNDD009	7.00	72.00	2.3	102	0.08	3.6	
		and	3.00	100.00	0.85	50	0.02	1.5	
		and	10.32	109.10	10.4	28	4.6	12.7	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1

1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		inc	4.22	115.20	21.9	58	8.7	26.4	(1)
		GNDD010	32.00	27.00	0.29	8.6	0.13	0.46	(2)
		inc	5.00	30.00	0.65	21	0.09	0.95	
		and	1.30	55.00	1.1	30	0.80	1.8	
		and	7.22	136.00	7.5	60	1.1	8.8	(2)
		inc	3.00	139.00	17.7	143	2.5	20.6	

- (1) cut-off of 10 g/t AuEq
- (2) cut-off of 0.2 g/t AuEq

Drilling in 2020-21:

Drilling in 2020 Hole id	from	interval	Au	Ag	Zn (%)	AuEq	Cu (%)	Pb (%)	Note
_	(m)	(m)	(g/t)	(g/t)	` '	(g/t)	` '	` '	
GNDD011	81.00	1.00	1.9	43	0.13	2.5	0.01	0.06	
and	139.80	4.80	1.4	5.7	2.6	2.6	0.02	0.02	
and	147.20	0.70	9.4	13	6.6	12.4	0.07	0.00	1
and	151.40	0.50	1.2	5.5	0.25	1.4	0.00	0.00	
GNDD012	40.70	1.00	6.3	290	0.12	10.1	0.18	1.2	
GNDD013	116.40	6.93	1.3	12	2.7	2.6	0.05	0.18	
inc	122.50	0.83	4.0	61	10.1	9.1	0.21	1.2	
GNDD014	118.50	7.55	2.4	15	3.6	4.2	0.05	0.16	
GNDD015	54.00	1.00	0.69	8.6	0.39	1.0	0.03	0.24	
and	156.00	1.90	1.0	31	2.8	2.6	0.02	0.79	
GNDD016	64.00	1.00	0.80	27	0	1.1	0.02	0.06	
and	109.50	5.00	1.8	27	8.3	5.8	0.16	0.01	
and	116.55	4.45	6.0	83	3.9	8.8	0.13	0.02	
GNDD017	34.30	1.7	0.31	24	2.0	1.5	0.06	1.0	
GNDD018	37.75	0.85	1.1	3.6	0.1	1.2	0.01	0.05	
and	63.20	3.75	7.1	78	3.6	9.6	0.28	3.6	
inc	64.40	2.55	10.3	114	4.9	13.9	0.41	5.2	1
GNDD019	24.00	1.90	1.0	5.3	5.3	3.4	0.12	0.03	
GNDD020	71.25	8.25	17.7	257	0.30	21.1	0.60	0.68	
inc	74.00	5.50	26.0	355	0.42	30.7	0.05	0.21	1
and	83.30	0.65	0.03	2.7	10.70	4.7	0.00	0.02	
GNDD021	14.80	1.20	11.0	9.0	0.39	11.3	0.01	0.08	1
and	31.50	0.35	28.1	104	5.8	31.9	0.35	0.12	1
and	98.20	19.80	0.29	2.2	3.4	1.8	0.01	0.04	2

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary									
		inc	98.20	9.80	0.40	4.4	6.8	3.4	0.01	0.07	
		inc	104.20	0.80	0.88	13	22.7	10.9	0.02	0.30	1
		GNDD022	NSI								
		GNDD023	58.00	5.00	0.32	3.7	0.1	0.41	0.01	0.09	
		GNDD024	85.00	6.00	2.5	19	0.15	2.8	0.40	1.4	
		inc	88.00	1.00	14.9	107	0.46	16.5	2.4	8.3	1
		GNDD025	53.00	88.00	0.94	2.3	0.10	1.0	0.00	0.08	2
		inc	61.00	14.00	3.1	5.3	0.19	3.2	0.01	0.11	
		inc	79.00	11.00	1.3	4.1	0.16	1.4	0.00	0.25	
		inc	93.00	1.00	1.1	2.5	0.09	1.1	0.00	0.37	
		inc	113.00	2.00	1.2	4.4	0.02	1.2	0.00	0.01	
		inc	139.00	2.00	0.99	0.50	0.01	1.0	0.00	0.00	
		GNDD026	NSI								
		GNDD027	NSI								
		GNDD028	41.40	18.60	0.21	3.2	2.0	1.1	0.08	0.01	2
		inc	52.00	8.00	0.42	6.0	3.8	2.2	0.18	0.02	
		GNDD029	36.00	12.00	0.17	2.1	0.39	0.36	0.01	0.16	2
		GNDD030	33.00	3.00	0.95	53	0.05	1.6	0.01	0.05	
		GNDD031	32.00	28.00	0.43	5.7	0.15	0.56	0.01	0.04	2
		inc	48.00	1.10	3.3	17	0.34	3.7	0.02	0.33	
		inc	53.00	1.00	4.2	54	0.92	5.3	0.12	0.22	
		GNDD032	9.00	20.00	0.16	6.7	0.09	0.29	0.00	0.02	2
		and	49.00	116.00	1.05	4.0	0.20	1.2	0.01	0.07	2
		inc	77.00	3.00	0.93	33.7	2.1	2.3	0.09	0.02	
		and	101.00	10.00	6.1	18.1	0.11	6.4	0.04	0.47	
		inc	101.00	6.00	9.6	18.7	0.15	9.9	0.05	0.61	1
		and	136.00	4.00	9.8	18.5	1.5	10.7	0.06	0.27	
		GNDD033	NSI								
		GNDD034	47.60	0.30	0.03	1.4	24.4	10.6	0.34	0.04	
		GNDD035	88.75	5.75	9.5	28.7	3.5	11.4	0.10	0.44	
		inc	88.75	3.15	17.1	28.8	5.6	19.9	0.14	0.56	1
		GNDD036	NSI								
		GNDD037	NSI								
		GNDD038	71.50	2.85	0.53	15.6	2.8	1.9	0.06	0.13	
		GNDD042	NSI								
		GNDD044	NSI								
		GNDD045	85.90	2.10	1.4	28.8	0.1	1.8	0.01	0.02	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GNDD046	82.90	0.45	4.1	27	0.06	4.5	0.01	0.03	
		and	124.15	2.85	29.5	522	10.8	40.8	0.41	0.25	1
		GNDD047	61.00	38.50	1.3	1.2	0.04	1.3	0.00	0.02	2
		inc	62.50	6.00	6.3	3.5	0.15	6.4	0.01	0.10	
		and	74.10	1.50	1.0	1.9	0.00	1.0	0.00	0.00	
		and	83.55	0.45	7.3	12.2	0.00	7.5	0.00	0.00	
		and	98.50	1.00	1.2	0.8	0.00	1.2	0.00	0.00	
		GNDD048	36.00	19.00	0.6	5.0	0.25	0.81	0.01	0.06	2
		inc	38.00	3.15	2.7	12.1	0.09	2.9	0.03	0.14	
		GNDD049	NSI								
		GNDD050	21.00	22.00	0.21	2.9	0.53	0.48	0.01	0.15	2
		inc	21.00	2.00	1.4	4.8	0.07	1.5	0.01	0.07	
		GNRC051	NSI								
		GNRC052	69	6	1.7	4.4	0.32	1.9	0.03	0.00	
		GNRC053	NSI								
		GNRC054	13	7	0.22	3.9	0.03	0.28	0.00	0.01	2
		and	66	15	0.53	4.0	0.66	0.87	0.01	0.13	2
		inc	77	3	1.3	8.5	1.9	2.3	0.02	0.31	
		GNRC055	18	7	0.28	6.9	0.04	0.38	0.00	0.01	2
		GNRC056	56	1	2.3	138	0.08	4.1	0.01	0.07	
		GNRC057	37	12	0.06	2.4	0.58	0.34	0.01	0.06	2
		GNRC058	NSI								
		GNRC059	NSI								
		GNDD060	NSI								
		GNRC061	NSI								
		GNRC062	17	3	3.8	7.9	2.7	5.0	0.24	0.17	
		GNRC063	19	1	0.01	0.46	2.8	1.2	0.04	0.01	
		GNRC064	22	1	0.01	4.2	3.8	1.7	0.00	0.00	
		and	27	1	0.69	27	1.2	1.6	0.35	0.23	
		GNRC065	33	6	0.00	2.1	4.9	2.1	0.05	0.01	
		GNRC066	NSI								
		GNRC067	NSI								
		GNRC068	9	69	3.4	8.3	2.8	4.7	0.23	0.08	2
		inc	9	27	7.9	16	7.0	11.2	0.59	0.16	
		and	51	1	1.0	40	0.93	1.9	0.08	0.12	
		and	59	1	1.3	4.9	0.09	1.4	0.00	0.02	
		and	66	2	1.6	1.2	0.02	1.7	0.01	0.00	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		and	72	4	1.9	3.0	0.06	1.9	0.01	0.04	
		GNRC069	18	7	0.62	3.0	0.11	0.71	0.01	0.16	2
		inc	19	1	2.2	8.6	0.15	2.4	0.03	0.59	
		and	53	10	0.65	5.7	0.37	0.88	0.01	0.03	2
		inc	59	3	1.7	11	0.84	2.3	0.03	0.07	
		and	84	15	0.54	2.4	0.13	0.63	0.01	0.00	2
		inc	84	4	0.90	5.2	0.36	1.1	0.02	0.01	
		and	96	1	1.0	1.4	0.06	1.0	0.03	0.00	
		GNRC070	41	1	6.6	3.1	0.36	6.8	0.02	0.21	
		GNRC071	48	2	0.45	5.4	2.1	1.4	0.01	0.12	
		GNRC072	43	19	0.16	4.9	0.13	0.28	0.00	0.09	2
		GNDD073	NSI								
		GNDD074	41	2	1.2	20.5	0.04	1.4	0.00	0.02	
		and	47	2	0.8	16.7	0.13	1.1	0.03	0.03	
		GNRC075	31	18	0.78	1.6	0.07	0.83	0.01	0.22	2
		inc	37	2	2.2	1.6	0.08	2.2	0.01	0.32	
		and	46	2	1.8	2.4	0.08	1.9	0.00	0.07	
		GNRC076	35	5	12.2	7.2	0.02	12.3	0.01	0.10	
		inc	35	1	53.1	18	0.00	53.3	0.00	0.02	1
		GNDD077	168.50	14.00	0.68	5.9	0.64	1.0	0.01	0.01	2
		inc	168.50	1.00	1.5	59.3	6.6	5.2	0.13	0.08	
		inc	180.60	1.90	1.8	4.9	0.78	2.2	0.02	0.01	
		and	192.90	1.10	0.70	5.5	0.61	1.0	0.02	0.00	
		GNRC078	11	17	0.13	1.7	0.43	0.34	0.01	0.09	2
		inc	12	1	0.74	4.8	0.91	1.2	0.03	0.33	
		GNDD079	21.00	61.00	1.1	1.1	0.11	1.1	0.00	0.02	2
		inc	21.00	9.00	1.9	1.9	0.09	2.0	0.00	0.02	
		inc	40.00	2.00	2.7	1.7	0.08	2.8	0.00	0.06	
		inc	46.00	6.00	5.0	1.2	0.07	5.1	0.00	0.01	
		inc	74.00	3.00	1.0	0.86	0.17	1.1	0.00	0.12	
		GNRC080	NSI								
		GNRC081	23	30	0.28	2.0	0.33	0.45	0.01	0.10	2
		inc	32	5	1.0	3.6	0.73	1.4	0.01	0.20	
		GNDD082	168.00	15.00	0.68	0.39	0.04	0.70	0.00	0.01	2
		inc	168.00	1.00	2.4	0.46	0.11	2.4	0.00	0.02	
		inc	175.00	0.50	10.0	5.6	0.44	10.2	0.01	0.20	
		and	193.40	34.10	1.45	1.0	0.25	1.6	0.02	0.13	2

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	193.40	1.00	2.2	7.9	1.6	3.0	0.14	1.7	
		inc	203.50	0.90	2.6	10.6	2.9	4.0	0.16	1.4	
		inc	209.80	2.20	0.59	4.5	0.74	1.0	0.03	0.25	
		and	235.00	31.00	0.4	0.6	0.08	0.43	0.00	0.00	
		inc	242.50	1.50	1.0	2.1	0.21	1.1	0.01	0.01	
		GNDD083	11.00	21.00	0.22	10.0	0.15	0.41	0.00	0.01	2
		inc	19.20	1.80	1.0	6.1	0.10	1.1	0.00	0.00	
		and	170.00	1.00	1.3	3.6	0.22	1.4	0.02	0.26	
		GNRC084	4	1	1.2	2.0	0.07	1.2	0.00	0.06	
		and	41	3	5.2	6.4	5.0	7.5	0.08	0.14	
		and	60	4	3.6	11.6	5.0	6.0	0.02	0.05	
		and	78	21	0.81	2.6	0.08	0.88	0.00	0.00	2
		inc	91	1	6.7	10.7	0.42	7.0	0.01	0.00	
		and	97	2	1.6	1.2	0.03	1.6	0.01	0.00	
		and	143	2	0.67	4.9	0.87	1.1	0.00	0.01	
		GNDD085	22.50	1.30	5.47	75.6	0.08	6.5	0.01	0.09	
		and	39.30	2.20	2.11	2.4	0.55	2.4	0.01	0.24	
		GNRC086	3	21	0.38	1.5	0.33	0.55	0.01	0.08	2
		inc	4	1	0.85	3.4	0.89	1.3	0.03	0.27	
		and	22	2	2.9	1.9	0.08	3.0	0.01	0.03	
		GNRC087	22	4	0.65	15.9	0.26	1.0	0.00	0.04	
		GNDD088A	45.05	23.45	0.07	0.23	0.53	0.31	0.00	0.01	2
		and	90.50	1.50	1.8	0.10	0.01	1.8	0.00	0.00	
		and	224.00	39.00	5.5	2.0	0.30	5.6	0.01	0.00	2
		incl	231.50	14.40	14.4	3.3	0.67	14.8	0.00	0.00	
		incl	238.50	7.40	23.4	5.7	1.27	24.1	0.01	0.01	1
		GNDD089	20.00	30.00	0.95	1.69	0.09	1.0	0.00	0.02	2
		inc	22.00	2.00	1.4	2.7	0.18	1.5	0.00	0.00	
		inc	30.50	1.70	2.9	2.3	0.12	3.0	0.00	0.01	
		inc	40.00	10.00	1.4	0.55	0.09	1.4	0.00	0.02	
		and	94.50	21.70	0.88	1.59	0.43	1.1	0.00	0.04	2
		inc	94.50	5.10	2.4	1.6	0.06	2.4	0.01	0.07	
		inc	102.50	1.50	1.9	1.5	0.15	2.0	0.01	0.03	
		inc	109.00	1.50	1.8	11.3	0.32	2.1	0.01	0.16	
		GNRC090	7	13	0.35	2.7	0.25	0.49	0.01	0.07	2
		inc	14	1	1.1	7.3	0.45	1.4	0.02	0.21	
		GNRC091	30	24	0.38	3.7	0.20	0.51	0.01	0.10	2

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1

1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	43	4	1.4	3.5	0.40	1.6	0.01	0.36	
		GNDD092	164.50	9.00	0.29	0.72	0.12	0.35	0.00	0.05	2
		and	213.00	17.00	0.23	0.63	0.06	0.26	0.00	0.04	2
		and	257.50	1.00	3.6	5.9	0.60	3.9	0.05	0.21	
		GNDD093	75.30	1.40	2.1	10.6	7.8	5.6	0.18	0.22	
		and	153.65	0.50	1.4	7.3	0.17	1.6	0.11	0.03	
		GNRC094	13	12	0.83	4.6	0.44	1.1	0.01	0.06	2
		inc	13	1	1.1	6.3	0.17	1.2	0.02	0.12	
		inc	17	1	8.3	20.6	0.27	8.7	0.06	0.52	
		inc	23	1	0.21	4.5	3.8	1.9	0.01	0.03	
		GNDD095	47.00	17.47	0.28	1.0	0.44	0.49	0.02	0.09	2
		inc	50.00	1.30	1.0	0.92	2.8	2.3	0.18	0.61	
		and	121.00	1.00	2.6	1.7	0.01	2.6	0.00	0.00	
		GNDD096	NSI								
		GNRC097	49	8	0.39	2.2	0.04	0.44	0.00	0.02	2
		inc	50	1	1.1	2.8	0.03	1.2	0.00	0.03	
		GNRC098	40	19	0.21	1.8	0.19	0.32	0.01	0.16	2
		and	88	8	4.9	4.5	0.76	5.3	0.02	0.07	2
		inc	88	2	15.6	15.9	2.8	17.0	0.07	0.20	2
		inc	94	2	2.6	1.2	0.13	2.7	0.00	0.03	
		GNDD099	53.00	2.80	0.42	19.8	2.0	1.5	0.09	0.33	
		and	64.00	0.90	3.1	9.7	0.22	3.3	0.01	0.01	
		and	101.00	1.00	2.9	64.4	0.04	3.7	0.01	0.04	
		GNDD100	NSI								
		GNDD101	NSI								
		GNDD102	36.00	11.00	0.59	3.2	0.18	0.71	0.01	0.11	2
		inc	36.00	2.00	1.5	5.9	0.13	1.6	0.01	0.14	
		and	77.40	8.90	0.10	2.5	0.82	0.49	0.01	0.06	2
		inc	84.30	0.90	-	1.3	3.3	1.4	0.02	0.03	
		GNDD103	NSI								
		GNRC104	141	1	45.6	40.0	2.6	47.2	0.25	3.4	1
		GNDD105	NSI								
		GNDD106	100.00	25.00	0.66	0.29	0.01	0.67	0.00	0.00	2
		inc	114.00	1.50	1.8	1.7	0.01	1.8	0.00	0.00	
		inc	121.00	4.00	2.6	0.34	0.01	2.6	0.00	0.00	
		and	141.35	1.05	1.2	2.8	0.84	1.6	0.01	0.01	
		and	205.00	8.00	0.48	1.0	0.02	0.50	0.00	0.00	2

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	211.00	2.00	1.1	2.2	0.03	1.1	0.00	0.00	
		GNRC107	16	27	3.6	14.8	0.25	3.9	0.01	0.1	2
		inc	23	1	0.17	74.4	0.07	1.1	0.01	0.1	
		inc	29	2	1.2	12.2	0.06	1.3	0.01	0.1	
		inc	35	7	13.3	12.6	0.80	13.8	0.02	0.3	
		and	52	1	0.18	73.2	0.11	1.2	0.00	0.1	
		and	93	1	0.12	51.2	3.1	2.1	0.03	0.65	
		GNDD108	NSI								
		GNDD109	NSI								
		GNRC110	11	44	2.8	62.7	0.05	3.7	0.01	0.25	2
		inc	12	1	1.7	1.0	0.00	1.7	0.00	0.04	
		inc	20	11	1.8	37.2	0.02	2.3	0.01	0.37	
		inc	36	12	8.3	190	0.12	10.7	0.02	0.51	
		inc	41	3	27.3	613	0.05	35.1	0.03	0.87	1
		GNRC111	31	18	0.31	12.2	0.13	0.52	0.01	0.03	2
		inc	33	1	1.3	59.4	0.02	2.1	0.01	0.27	
		inc	41	1	2.1	82.7	0.01	3.2	0.01	0.10	
		GNDD112	95.00	0.40	0.5	26.6	6.0	3.5	0.10	1.9	
		GNDD113	149.50	37.50	0.59	17.0	0.12	0.86	0.01	0.08	2
		inc	151.00	9.00	1.3	56.2	0.17	2.1	0.05	0.11	
		inc	170.50	1.50	1.7	5.7	0.33	2.0	0.01	0.11	
		and	219.00	11.00	0.79	2.2	0.08	0.86	0.00	0.08	2
		inc	223.00	7.00	1.1	2.5	0.09	1.1	0.00	0.05	
		GNDD113A	61.00	2.00	0.59	2.6	0.74	0.95	0.03	0.07	
		and	139.00	107.00	0.30	3.0	0.09	0.37	0.00	0.04	2
		inc	185.00	1.40	1.6	2.5	0.07	1.7	0.00	0.05	
		inc	197.00	2.00	1.2	0.94	0.17	1.3	0.00	0.04	
		inc	202.00	1.50	3.2	2.4	0.90	3.6	0.02	0.16	
		inc	209.00	2.00	1.2	1.9	0.25	1.3	0.01	0.25	
		and	262.00	104.00	1.5	2.7	0.39	1.7	0.01	0.12	2
		inc	266.00	2.00	1.0	1.8	0.22	1.1	0.00	0.02	
		inc	274.00	2.00	1.3	1.4	0.06	1.3	0.00	0.01	
		inc	280.00	15.00	3.6	6.9	0.56	3.9	0.04	0.73	
		inc	289.45	3.65	6.7	20.2	1.5	7.6	0.15	2.6	1
		inc	298.65	7.45	2.9	3.7	0.63	3.2	0.02	0.01	
		inc	315.50	1.20	1.0	1.4	0.13	1.1	0.00	0.02	
		inc	333.80	4.20	11.3	22.8	5.3	13.9	0.12	0.04	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	333.80	0.70	60.8	133	31.4	76.1	0.70	0.22	1
		inc	354.00	4.00	1.4	0.8	0.02	1.4	0.00	0.00	
			274.00	84.00	1.7	3.3	0.48	2.0	0.02	0.14	4
		and	390.00	30.00	0.35	0.36	0.05	0.38	0.00	0.00	2
		inc	394.00	2.00	1.2	0.33	0.04	1.2	0.00	0.00	
			139.00	227.00	0.83	2.7	0.22	1.0	0.01	0.07	3
			139.00	281.00	0.71	2.2	0.19	0.82	0.01	0.06	3
			106.00	314.00	0.65	2.1	0.17	0.75	0.01	0.05	
		GNDD114	64.00	14.70	3.2	3.3	0.08	3.3	0.01	0.06	
		inc	77.80	0.90	50.3	27.2	0.18	50.7	0.03	0.65	
		GNDD115	68.70	1.10	0.62	9.2	2.0	1.6	0.04	0.36	
		and	144.00	2.00	0.30	16.2	1.2	1.0	0.07	0.38	
		and	176.50	34.50	0.28	0.68	0.01	0.29	0.00	0.03	2
		GNDD116	27.50	4.50	1.3	14.6	0.06	1.5	0.00	0.02	2
		inc	27.50	1.00	3.7	41.4	0.13	4.3	0.01	0.05	
		and	73.70	0.80	2.4	3.9	0.26	2.5	0.00	0.00	
		GNDD117	30.00	54.80	0.58	4.2	0.13	0.69	0.01	0.07	2
		inc	61.00	10.00	2.5	10.2	0.16	2.7	0.01	0.14	
		inc	84.20	0.60	1.4	4.1	0.11	1.5	0.01	0.02	
		and	106.70	0.40	8.5	43.4	3.3	10.5	0.25	2.92	1
		GNDD118	NSI								
		GNDD119	52.40	0.80	0.21	17.4	4.2	2.3	0.03	0.25	
		GNDD120	NSI								
		GNDD121	NSI								
		GNDD122	11.50	18.10	0.64	2.2	0.03	0.68	0.00	0.01	2
		inc	21.00	6.00	1.1	3.2	0.04	1.2	0.00	0.01	
		and	54.00	21.00	0.41	0.80	0.12	0.47	0.00	0.04	2
		inc	71.00	2.00	1.2	1.0	0.14	1.2	0.00	0.09	
		and	191.00	1.50	1.6	24.4	0.95	2.3	0.10	1.24	
		and	213.80	3.20	1.7	2.1	0.23	1.8	0.01	0.02	
		and	236.00	1.50	4.8	4.9	0.63	5.1	0.03	0.16	
		GNDD123	21.00	30.00	0.11	1.6	0.32	0.27	0.01	0.04	2
		GNDD124	44.00	7.00	0.08	3.6	0.65	0.40	0.02	0.13	2
		GNDD125	NSI								
		GNDD126	107.30	1.10	12.8	10.3	0.74	13.3	0.00	0.16	1
		and	120.00	2.00	3.2	3.6	0.16	3.4	0.01	0.00	
		and	157.30	0.50	1.0	22.1	2.2	2.2	0.11	2.3	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		and	179.00	2.00	1.7	0.62	0.01	1.7	0.00	0.00	
		GNDD127	NSI								
		GNDD128	63.00	20.00	0.49	0.42	0.02	0.50	0.00	0.00	2
		inc	77.50	1.50	4.1	0.36	0.04	4.1	0.00	0.00	
		GNDD129	15.00	21.00	0.72	1.8	0.10	0.79	0.00	0.05	2
		inc	24.00	10.00	1.0	2.1	0.13	1.1	0.00	0.04	
		and	132.50	0.70	6.7	14.1	0.15	7.0	0.01	0.12	
		GNDD130	NSI								
		GNDD131	NSI								
		GNDD132	14.50	18.10	0.12	2.5	0.18	0.23	0.01	0.04	2
		GNDD133	95.70	4.30	1.3	2.2	0.23	1.40	0.01	0.13	2
		inc	95.70	1.05	3.8	5.3	0.52	4.1	0.02	0.22	
		and	163.00	11.50	0.3	1.0	0.01	0.31	0.00	0.00	2
		GNDD134	17.70	15.30	0.80	7.5	0.07	0.92	0.00	0.11	2
		inc	19.00	10.00	1.04	9.9	0.08	1.2	0.01	0.12	
		and	47.00	39.75	0.26	0.5	0.10	0.31	0.00	0.04	2
		and	129.50	7.50	0.45	0.5	0.06	0.48	0.00	0.02	2
		and	161.00	20.00	0.29	3.6	0.23	0.44	0.01	0.03	2
		inc	177.50	0.50	3.79	29.8	5.23	6.4	0.16	0.10	
		and	196.00	4.00	5.3	86.2	10.60	11.0	0.24	0.57	
		and	240.00	2.00	6.2	1.3	0.02	6.2	0.00	0.00	
		and	272.00	50.00	0.22	0.5	0.14	0.28	0.00	0.00	2
		and	500.10	0.95	2.3	8.1	0.16	2.5	0.21	0.00	
		and	519.00	20.00	0.73	0.7	1.80	1.5	0.02	0.00	2
		inc	529.50	2.90	4.7	3.6	11.6	9.8	0.12	0.00	
		and	560.25	17.75	0.20	0.7	0.38	0.37	0.01	0.00	2
		inc	560.25	0.75	0.09	2.0	4.94	2.3	0.05	0.00	
		inc	570.20	0.50	1.22	9.6	2.36	2.4	0.17	0.02	
		and	630.30	0.70	0.9	1.6	0.21	1.0	0.18	0.00	
		GNDD135	31.00	22.55	0.44	1.1	0.07	0.48	0.01	0.07	2
		inc	41.00	2.00	1.6	0.70	0.07	1.7	0.00	0.02	
		and	78.00	27.20	0.52	2.6	0.37	0.72	0.01	0.07	2
		inc	79.60	3.40	1.4	3.9	0.29	1.6	0.00	0.05	_
		inc	95.00	2.00	1.9	2.0	0.16	2.0	0.01	0.09	
		inc	104.30	0.90	0.08	5.3	3.2	1.5	0.01	0.02	
		GNDD137	27.00	38.00	0.38	1.1	0.05	0.42	0.00	0.02	2
		inc	33.00	4.00	1.70	1.2	0.13	1.8	0.00	0.02	_

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1

1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary									
		and	186.25	1.35	8.12	29.5	7.3	11.6	0.12	0.03	
		GNDD138	43.00	54.00	0.36	2.4	0.21	0.48	0.01	0.10	2
		GNDD139	80.00	207.50	0.75	1.7	0.10	0.82	0.00	0.02	2
		inc	80.00	32.00	1.6	2.5	0.06	1.6	0.00	0.03	
		inc	148.00	4.25	1.2	3.8	0.15	1.3	0.00	0.09	
		inc	167.00	14.00	1.5	0.32	0.01	1.5	0.00	0.01	
		inc	243.00	9.00	2.4	3.7	0.62	2.8	0.00	0.01	
		inc	266.00	6.00	1.6	0.61	0.01	1.6	0.00	0.00	
			243.00	29.00	1.2	1.6	0.24	1.3	0.00	0.00	4
		GNDD141	101.50	6.50	14.3	43.6	3.4	16.3	0.15	1.6	2
		inc	101.50	2.50	36.8	111	8.6	41.9	0.30	4.2	1
		GNDD142	55.8	0.7	0.7	13.3	4.0	2.7	0.05	0.03	
		and	81.5	27.5	2.4	11.1	0.9	2.9	0.03	0.06	2
		inc	92.0	11.5	5.4	19.9	2.0	6.5	0.08	0.13	
		inc	107.0	2.0	0.9	5.3	0.2	1.0	0.00	0.03	
		and	125.0	11.0	0.3	3.2	0.1	0.39	0.00	0.01	2
		inc	132.9	1.1	1.6	4.6	0.1	1.7	0.01	0.08	
		and	152.0	40.0	5.1	11.7	1.9	6.1	0.05	0.12	2
		inc	153.1	1.0	23.4	40.1	13.5	29.8	0.34	0.00	1
		inc	160.0	10.7	10.7	28.4	4.9	13.2	0.13	0.15	
		inc	166.2	4.5	23.9	41.3	11.0	29.2	0.29	0.27	1
		inc	177.2	12.8	5.2	9.3	0.7	5.6	0.02	0.24	
		inc	187.1	1.0	44.0	53.8	6.5	47.5	0.15	2.1	1
		and	237.0	0.5	1.1	2.7	0.1	1.2	0.01	0.17	
			81.5	110.5	2.5	7.4	0.9	3.0	0.03	0.06	3
		GNDD143	NSI								
		GNDD145	NSI								
		GNDD148	16.00	7.00	0.14	1.7	0.43	0.35	0.01	0.18	2
		and	59.00	2.00	0.00	1.0	2.7	1.2	0.01	0.01	
		GNDD149	8.00	4.00	0.63	1.5	0.28	0.77	0.01	0.07	
		GNDD150	40.00	22.00	0.29	0.91	0.08	0.33	0.00	0.07	2
		and	76.00	35.90	0.24	2.6	0.44	0.46	0.00	0.10	2
		and	180.29	1.31	16.8	26.1	2.9	18.4	0.10	0.27	
		GNDD151	379.75	0.50	0.71	18.6	8.9	4.8	0.17	0.17	
		GNDD152	23.50	4.10	0.5	2.7	0.1	0.55	0.00	0.03	2
		GNDD154	125.90	2.60	4.6	34.6	3.0	6.3	0.11	0.24	
		and	146.00	22.00	0.21	1.0	0.04	0.24	0.00	0.00	2

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	146.00	1.00	1.8	12.6	0.12	2.0	0.00	0.01	
		GNDD155	59.00	209.00	1.0	1.4	0.09	1.1	0.00	0.02	2
		inc	59.00	34.00	3.8	4.6	0.20	3.9	0.02	0.03	
		inc	81.00	4.00	13.4	10.5	0.06	13.5	0.05	0.02	
		inc	102.00	6.00	1.2	1.1	0.10	1.2	0.00	0.03	
			59.00	49.00	2.8	3.6	0.16	3.0	0.01	0.02	4
		inc	151.55	0.45	7.7	2.9	4.5	9.6	0.00	0.10	
		inc	182.00	1.00	8.8	17.1	2.2	10.0	0.07	0.89	
		inc	224.00	2.00	2.0	0.29	0.01	2.0	0.00	0.00	
		inc	244.00	11.00	1.1	0.56	0.04	1.1	0.00	0.00	
		inc	266.00	0.55	1.8	1.2	0.02	1.8	0.00	0.00	
		and	338.00	9.00	0.41	0.33	0.05	0.43	0.00	0.00	2
		GNDD156	5.00	7.00	0.68	3.0	0.70	1.0	0.02	0.15	
		GNDD157	20.00	66.00	0.52	1.1	0.08	0.57	0.00	0.07	2
		inc	54.00	10.00	2.2	1.8	0.14	2.3	0.00	0.24	
		and	132.90	10.00	0.18	6.6	0.52	0.48	0.01	0.08	2
		inc	132.90	0.50	0.88	13.1	1.4	1.6	0.03	0.67	
		inc	142.30	0.60	1.0	29.1	6.6	4.2	0.11	0.33	
		and	237.20	130.80	2.3	1.6	0.37	2.5	0.00	0.01	2
		inc	237.20	0.80	1.7	59.1	5.6	4.9	0.18	1.2	
		inc	255.80	1.20	0.63	5.3	9.4	4.8	0.01	0.01	
		inc	289.00	12.00	20.4	4.8	1.0	20.9	0.00	0.00	
		inc	290.50	4.06	55.7	12.9	2.1	56.8	0.01	0.01	1
		inc	321.00	2.00	1.3	0.6	0.01	1.3	0.00	0.00	
		inc	331.00	6.00	2.5	1.9	0.61	2.8	0.01	0.01	
		inc	343.00	9.00	1.7	0.6	0.10	1.7	0.00	0.00	
		and	407.50	0.50	2.2	1.2	0.37	2.4	0.00	0.00	
		GNDD158	107.00	19.00	0.59	1.0	0.12	0.65	0.00	0.03	2
		inc	120.05	0.95	2.8	4.2	0.31	2.9	0.00	0.13	
		and	139.00	6.00	0.43	0.78	0.25	0.55	0.00	0.03	2
		GNDD159	NSI								
		GNDD162	98.00	14.80	2.0	3.5	0.29	2.2	0.01	0.09	
		inc	102.10	6.90	3.9	6.4	0.51	4.2	0.03	0.15	
		GNDD163	93.00	45.00	0.38	1.7	0.26	0.51	0.01	0.08	2
		inc	101.00	3.00	1.3	7.9	0.51	1.6	0.01	0.19	
		inc	125.20	1.65	1.7	3.7	0.88	2.2	0.02	0.13	
		GNDD164	136.00	22.00	0.38	0.8	0.14	0.45	0.00	0.03	2

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	141.50	0.50	1.1	1.1	0.29	1.2	0.00	0.03	
		inc	150.00	1.60	1.4	1.2	0.06	1.4	0.00	0.02	
		and	171.00	10.00	0.48	0.23	0.01	0.48	0.00	0.00	2
		inc	171.00	2.00	1.1	0.23	0.01	1.1	0.00	0.00	
		and	239.00	37.00	0.75	2.1	0.46	1.0	0.02	0.00	2
		inc	239.00	4.45	4.9	14.9	3.4	6.5	0.14	0.01	
		GNDD167	NSI								
		GNDD169	120.00	60.80	0.78	0.74	0.15	0.86	0.01	0.01	2
		inc	152.00	28.80	1.5	1.22	0.31	1.70	0.01	0.02	
		inc	152.00	1.50	1.8	3.8	0.91	2.3	0.02	0.02	
		inc	176.00	4.80	8.4	5.3	1.5	9.2	0.05	0.09	
		inc	180.05	0.75	52.5	33.2	9.6	57.1	0.32	0.60	
		and	208.00	125.50	1.1	3.6	0.09	1.1	0.00	0.03	2
		inc	208.00	71.00	1.7	6.0	0.15	1.8	0.01	0.05	2
		inc	228.80	29.00	3.7	12.5	0.26	4.0	0.02	0.11	
		inc	302.50	9.00	0.92	0.46	0.02	0.94	0.00	0.00	2
		inc	307.70	1.30	4.7	0.80	0.01	4.7	0.00	0.00	
		inc	321.00	12.50	0.26	0.92	0.02	0.28	0.00	0.00	2
		GNDD170A	13.00	10.00	0.57	5.2	0.29	0.76	0.01	0.07	
		and	174.00	6.00	0.67	0.28	0.02	0.68	0.00	0.00	
		GNDD171	126.00	10.75	0.37	1.9	0.15	0.46	0.00	0.08	2
		inc	134.00	1.40	1.1	5.9	0.76	1.5	0.01	0.39	
		and	193.00	3.90	0.32	0.42	0.01	0.33	0.00	0.00	2
		and	270.00	0.50	1.3	2.5	0.65	1.6	0.01	0.01	
		and	327.00	2.60	1.9	6.1	1.1	2.4	0.04	0.09	
		GNDD173	83.00	66.00	0.54	3.1	0.07	0.61	0.00	0.04	2
		inc	87.00	6.00	2.0	18.8	0.28	2.4	0.02	0.23	
		inc	116.00	6.00	1.4	2.8	0.13	1.5	0.01	0.05	
		inc	130.40	0.60	8.9	23.9	0.07	9.3	0.00	0.04	
		GNDD174	24.00	76.00	1.0	31.0	0.91	1.8	0.04	0.13	2
		inc	60.90	11.25	6.4	64.1	5.3	9.5	0.23	0.58	
		inc	60.90	5.95	10.7	109	7.9	15.5	0.38	0.95	1
		inc	96.00	4.00	0.20	359	0.26	4.9	0.02	0.22	•
		and	163.00	39.50	0.47	2.3	0.31	0.63	0.02	0.02	2
		inc	167.55	4.20	1.5	15.0	2.5	2.8	0.11	0.02	_
		inc	199.00	2.00	1.5	0.17	0.01	1.5	0.00	0.00	
		GNDD175	176.00	6.00	0.34	6.3	0.12	0.47	0.00	0.07	2

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1

1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GNDD176	73.90	2.95	0.86	3.3	0.16	1.0	0.00	0.15	2
		inc	76.10	0.75	2.5	1.7	0.18	2.6	0.00	0.04	
		and	247.20	1.25	0.29	98.9	0.06	1.6	0.00	0.04	
		GNDD177	41.50	63.35	0.58	1.8	0.24	0.70	0.01	0.07	2
		inc	55.00	1.30	1.3	3.5	0.08	1.4	0.02	0.15	
		inc	60.00	2.00	1.0	1.2	0.19	1.1	0.01	0.01	
		inc	71.80	0.50	1.3	7.3	0.19	1.5	0.01	0.06	
		inc	86.00	11.20	2.1	3.0	0.64	2.4	0.01	0.14	
		GNDD178	14.00	28.00	0.22	17.5	0.26	0.56	0.01	0.04	2
		inc	20.00	2.00	0.20	118	0.11	1.7	0.01	0.11	
		inc	39.00	1.30	0.80	4.8	3.9	2.6	0.04	0.04	
		and	53.00	2.00	0.05	81.0	0.04	1.1	0.00	0.03	
		and	65.15	1.85	1.1	3.3	0.81	1.5	0.01	0.12	
		and	89.15	0.85	4.9	302	0.40	8.9	0.11	0.67	
		GNDD181	7.70	3.60	0.66	22.2	1.0	1.4	0.03	0.19	2
		inc	7.70	1.45	1.1	45.3	1.5	2.3	0.07	0.36	
		and	180.60	7.40	0.46	0.54	0.03	0.48	0.00	0.00	2
		inc	180.60	0.55	1.2	0.83	0.07	1.2	0.00	0.00	
		GNDD182	92.00	34.00	0.28	1.1	0.09	0.33	0.00	0.01	2
		inc	92.00	19.00	0.37	1.0	0.07	0.41	0.00	0.01	2
		inc	96.00	2.00	2.0	1.9	0.01	2.0	0.01	0.01	
		and	148.70	4.30	31.8	96.5	8.1	36.6	0.55	5.3	
		inc	148.70	3.45	39.6	118	10.0	45.4	0.68	6.5	1
		GNDD183	35.00	55.50	1.0	1.5	0.43	1.2	0.01	0.10	2
		inc	37.00	2.00	1.1	1.0	0.09	1.1	0.00	0.11	
		inc	57.00	2.00	0.95	0.44	0.11	1.0	0.00	0.03	
		inc	72.00	15.00	3.2	3.5	0.88	3.6	0.02	0.21	
		and	112.00	24.00	0.16	6.8	1.1	0.71	0.02	0.01	2
		inc	119.00	1.20	2.6	95.1	17.1	11.3	0.34	0.20	
		GNDD184	NSI	55.50	1.0	1.5	0.43	1.2	0.01	0.10	
		GNDD185	59.00	60.00	0.59	1.5	0.27	0.73	0.01	0.08	2
		inc	67.00	4.45	1.8	3.3	0.37	2.0	0.02	0.08	
		inc	83.00	10.00	1.0	1.7	0.21	1.1	0.00	0.04	
		inc	114.00	5.00	1.4	2.0	1.09	1.9	0.01	0.12	
		and	138.00	7.10	1.0	8.9	1.08	1.6	0.02	0.12	
		GNDD187	145.00	16.00	0.40	0.61	0.14	0.47	0.00	0.06	2
		inc	149.00	2.00	1.6	2.5	0.64	1.9	0.02	0.29	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		and	192.00	15.00	0.46	0.93	0.16	0.54	0.01	0.03	2
		and	302.50	5.50	1.7	26.0	0.69	2.4	0.03	0.36	
		inc	302.50	2.50	3.7	55.9	1.2	5.0	0.07	0.72	
		GNDD188	198.00	66.00	0.29	6.6	0.13	0.43	0.00	0.05	2
		inc	212.00	4.00	0.89	21.9	0.19	1.3	0.00	0.08	
		inc	252.00	4.55	1.1	4.5	0.38	1.3	0.01	0.03	
		GNDD189	58.60	5.20	16.7	129	6.1	21.0	0.23	1.05	
		inc	60.00	3.80	21.1	148	6.6	25.8	0.21	0.06	1
		and	174.00	6.65	0.15	2.0	0.22	0.27	0.01	0.00	2
		and	191.00	6.00	0.21	2.1	0.30	0.37	0.02	0.24	2
		GNDD190	47.30	7.70	0.12	4.6	4.9	2.3	0.26	0.02	
		and	161.10	1.90	0.19	5.7	0.2	0.35	0.01	0.02	2
		and	186.00	5.00	0.22	0.1	0.0	0.23	0.00	0.00	2
		and	200.00	4.00	0.31	0.1	0.01	0.31	0.00	0.00	2
		GNDD191	188.35	21.15	0.52	3.2	0.43	0.74	0.02	0.02	
		and	217.35	0.50	2.5	16.8	2.5	3.8	0.09	0.05	
		and	238.00	2.00	0.36	3.5	0.81	0.75	0.02	0.01	2
		GNDD192	15.00	50.00	0.28	0.60	0.06	0.31	0.00	0.01	2
		inc	28.00	20.00	0.44	0.59	0.06	0.47	0.00	0.01	2
		and	107.45	1.75	0.53	8.2	0.09	0.68	0.04	0.01	2
		and	176.00	0.60	1.2	24.8	7.0	4.6	0.24	0.01	
		GNDD193	96.30	83.45	0.66	1.3	0.20	0.77	0.01	0.03	2
		inc	96.30	9.50	1.51	2.7	0.14	1.6	0.03	0.05	
		inc	121.35	13.85	1.34	1.7	0.48	1.6	0.01	0.04	
		inc	147.75	1.20	0.85	1.8	1.9	1.7	0.01	0.06	
		inc	160.50	11.10	0.99	2.1	0.35	1.2	0.01	0.06	
		and	191.00	7.50	1.30	9.3	0.47	1.6	0.01	0.01	2
		inc	194.70	3.80	2.08	16.6	0.88	2.7	0.02	0.01	
		and	218.00	1.50	0.05	72.3	0.06	1.0	0.01	0.07	
		and	251.00	1.90	1.1	7.6	0.18	1.3	0.04	0.01	
		GNDD195	29.00	2.55	1.3	1.1	0.02	1.4	0.00	0.01	2
		inc	30.00	1.55	1.6	1.4	0.02	1.7	0.00	0.01	
		and	60.00	3.85	5.3	48.6	8.0	9.4	0.14	0.15	
		inc	60.80	3.05	6.1	52.0	8.1	10.2	0.13	0.13	1
		and	346.30	3.70	0.89	0.75	0.04	0.92	0.02	0.00	2
		inc	346.30	0.50	5.2	1.3	0.01	5.2	0.08	0.00	
		GNDD196	9.00	69.20	3.3	4.8	0.10	3.4	0.01	0.07	2

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary										
		inc	17.00	12.00	1.7	0.69	0.06	1.8	0.00	0.03		
		inc	69.00	9.20	21.9	16.0	0.38	22.2	0.03	0.38		
		inc	69.00	1.30	137	47.6	0.21	137.2	0.01	1.2	1	
		and	279.50	0.60	2.0	0.22	0.00	2.0	0.00	0.00		
		GNDD199	26.00	146.00	0.40	1.1	0.23	0.51	0.01	0.07	2	
		inc	26.00	60.00	0.63	1.5	0.18	0.72	0.01	0.09	2	
		inc	36.00	2.00	1.6	1.3	0.06	1.6	0.01	0.06		
		inc	44.00	1.00	1.8	5.4	0.15	1.9	0.00	0.06		
		inc	58.00	10.00	1.4	1.2	0.23	1.5	0.00	0.10		
		inc	169.00	3.00	1.0	7.9	1.8	1.9	0.06	0.07		
		and	187.00	41.00	0.19	0.70	0.06	0.23	0.00	0.01	2	
		GNDD200	168.25	66.75	0.61	0.56	0.07	0.65	0.00	0.00	2	
		inc	176.45	7.15	1.0	0.59	0.03	1.1	0.00	0.00		
		inc	208.00	6.00	1.1	0.62	0.05	1.1	0.00	0.00		
		inc	232.00	1.00	4.7	5.6	1.3	5.3	0.05	0.00		
		GNDD202	33.00	110.00	0.26	3.1	0.12	0.36	0.00	0.01	2	
		inc	71.75	59.25	0.35	4.7	0.20	0.50	0.01	0.01	2	
		inc	98.00	10.00	1.0	21.7	0.70	1.6	0.03	0.02		
		inc	127.00	2.00	1.2	1.1	0.02	1.2	0.00	0.01		
		GNDD203	210.50	0.60	3.6	81.9	10.2	9.0	0.38	3.93		
		and	227.00	2.00	1.4	4.3	0.12	1.5	0.01	0.04		
		and	299.00	21.80	2.4	22.2	4.0	4.5	0.06	0.45	2	
		inc	300.25	20.55	2.6	23.1	4.2	4.7	0.07	0.48		
		inc	300.25	3.55	9.3	96.8	13.1	16.2	0.31	2.0	2	
		GNDD204	95.00	44.00	3.2	4.5	0.11	3.3	0.00	0.04	2	
		inc	97.38	20.62	6.4	6.4	0.11	6.6	0.00	0.06		
		and	183.00	1.00	1.2	6.7	0.44	1.5	0.01	0.33		
		GNDD207	114.00	0.90	2.0	1.9	0.09	2.1	0.02	0.06		
		and	122.55	2.45	8.5	15.5	1.0	9.1	0.04	0.90		
		and	169.50	3.50	0.16	68.2	0.13	1.1	0.01	0.12	2	
		inc	170.70	2.30	0.20	98.2	0.17	1.5	0.01	0.16		
		and	217.40	25.60	0.36	0.93	0.05	0.39	0.00	0.01	2	
		inc	233.00	4.00	1.4	0.64	0.01	1.4	0.00	0.01		
		and	269.35	1.95	1.7	3.4	0.35	1.9	0.01	0.11		
		GNDD208	170.00	73.65	0.51	1.4	0.21	0.62	0.01	0.04	2	
		inc	180.00	2.00	2.2	0.88	0.01	2.2	0.00	0.00		
		inc	208.00	35.65	0.85	2.6	0.41	1.1	0.01	0.07	2	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1

Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	212.00	13.00	1.9	5.0	0.78	2.3	0.03	0.20	
		GNDD211	168.80	23.20	0.51	0.82	0.12	0.57	0.00	0.02	2
		inc	177.10	4.35	1.5	2.0	0.27	1.6	0.00	0.00	
		GNDD215	126.20	14.60	1.4	2.4	0.35	1.6	0.01	0.03	2
		inc	132.50	8.30	2.1	2.1	0.40	2.3	0.01	0.01	
		and	159.00	41.00	0.15	3.1	0.08	0.23	0.01	0.04	2
		GNDD216	81.00	4.00	0.30	0.29	0.0	0.30	0.00	0.00	2
		and	204.00	2.00	0.61	3.5	0.2	0.75	0.03	0.07	2
		GNDD218	198.00	5.05	0.39	0.16	0.01	0.39	0.00	0.00	2
		GNDD220	86.00	108.00	0.38	1.6	0.05	0.42	0.01	0.00	2
		inc	88.00	2.00	1.1	10.5	0.50	1.4	0.01	0.03	
		inc	137.00	49.00	0.59	1.3	0.05	0.63	0.01	0.00	2
		inc	146.00	4.00	1.2	1.4	0.10	1.2	0.01	0.00	
		inc	158.30	3.70	1.8	1.9	0.02	1.8	0.01	0.01	
		inc	182.00	2.00	1.7	2.8	0.0	1.7	0.01	0.00	
		GNDD225	79.00	9.15	0.19	0.79	0.02	0.21	0.00	0.01	2
		and	207.00	2.00	4.3	1.1	0.0	4.3	0.01	0.00	
		and	235.00	9.20	0.93	0.63	0.0	1.0	0.00	0.04	
		GNDD226	109.00	16.00	0.49	2.4	0.33	0.67	0.02	0.27	2
		inc	116.00	7.35	0.71	4.0	0.54	1.0	0.03	0.45	
		and	146.00	44.00	0.46	0.68	0.10	0.51	0.00	0.04	2
		inc	170.00	2.00	1.3	0.84	0.06	1.4	0.00	0.04	
		inc	188.00	2.00	3.8	1.1	0.17	3.9	0.01	0.06	
		GNDD229	167.00	38.25	0.65	6.5	0.34	0.88	0.02	0.07	2
		inc	171.00	6.00	1.7	30.1	1.5	2.7	0.09	0.21	
		inc	204.50	0.75	4.8	5.9	0.34	5.0	0.02	0.05	
		GNDD230	211.00	6.00	0.18	2.5	0.04	0.23	0.00	0.00	2
		and	227.00	15.00	0.19	1.1	0.09	0.24	0.00	0.01	2
		and	256.00	4.00	0.48	0.72	0.05	0.51	0.00	0.02	2
		GNDD233	113.00	2.00	0.52	0.60	0.09	0.56	0.00	0.01	2
		and	180.10	2.35	0.39	0.46	0.04	0.42	0.00	0.01	2
		GNDD236	175.00	52.00	1.1	4.1	0.26	1.2	0.01	0.02	2
		inc	177.00	2.00	2.9	9.6	0.44	3.3	0.02	0.01	
		inc	201.00	2.00	1.0	5.6	1.9	1.9	0.02	0.29	
		inc	216.60	4.40	8.4	33.6	0.19	8.9	0.01	0.00	
		GNDD237	139.00	12.00	0.32	1.2	0.25	0.45	0.01	0.21	2
		and	201.55	155.45	0.61	2.1	0.10	0.68	0.00	0.01	2

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1

1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	201.55	72.45	0.55	3.8	0.16	0.66	0.01	0.01	2
		inc	234.00	9.00	1.2	14.2	0.24	1.5	0.01	0.02	
		inc	254.50	1.75	6.7	10.8	0.51	7.1	0.03	0.02	
		inc	298.00	59.00	0.91	1.0	0.05	0.95	0.01	0.01	2
		inc	302.00	2.00	3.3	0.32	0.00	3.3	0.00	0.00	
		inc	349.65	1.95	17.5	2.9	0.00	17.5	0.00	0.00	
		GNDD242	185.45	8.55	0.54	0.45	0.05	0.57	0.00	0.02	2
		inc	185.45	1.60	1.0	1.2	0.25	1.1	0.00	0.09	
		and	306.50	0.70	2.3	0.89	0.00	2.3	0.00	0.00	
		GNDD245	139.00	43.70	1.0	1.8	0.35	1.1	0.01	0.09	2
		inc	143.00	2.00	3.6	3.0	0.82	4.0	0.00	0.05	
		inc	181.27	1.43	18.7	38.0	6.8	22.1	0.18	1.8	1
		Holes specific	ally drilled fo	r metallur	gical tes	t sample	material:				
		GMDD039	18.00	8.00	0.15	1.9	0.60	0.43	0.01	0.07	2
		and	67.60	1.00	24.5	58	3.9	26.9	0.27	1.8	1
		GMDD040	116.72	8.68	5.5	12	2.2	6.7	0.06	0.00	
		inc	122.50	2.90	11.8	24	4.2	14.0	0.14	0.00	1
		GMDD041	31.00	16.0	2.6	4.9	0.27	2.8	0.01	0.25	2
		inc	41.70	2.0	20.0	29	1.2	20.8	0.06	1.7	
		and	63.50	5.1	7.9	83	7.9	12.3	0.47	0.21	
		GMDD043	18.00	10.00	0.09	1.7	0.48	0.32	0.01	0.10	2
		and	70.50	0.30	25.9	81	9.4	31.0	0.33	3.1	1
		(1) cut of	f 10 g/t Au ec	quivalent							<u></u>
		(2) cut of	f 0 2 a/+ Au a	auivalant							

- (2) cut off 0.2 g/t Au equivalent
- (3) combined zones with 0.2 g/t Au cut off (grades include internal dilution from between zones)
- (4) combined zones with 1.0 g/t Au cut-off (grades include internal dilation from between zones)

NSI: no significant intersection

Channel Sample Results:

Channel_id	from (m)	interval (m)	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	Cu (%)	Pb (%)	Note
RNNV10_01	NSI								
RNNV10_02	0.0	2.0	8.8	62.9	1.2	10.1	0.04	0.28	1
RNNV10_03	0.0	5.0	20.5	53.1	7.5	24.5	0.37	0.32	
inc	1.0	4.0	25.6	60.5	8.3	30.0	0.37	0.40	1
RNNV10_04	0.0	71.0	9.2	22.5	3.0	10.8	0.09	0.31	2
inc	0.0	26.0	21.2	28.4	7.2	24.7	0.14	0.10	
inc	5.0	6.0	89.3	88.5	3.4	91.9	0.20	0.11	1

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1

Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary										
		inc	24.0	1.0	0.78	4.5	22.4	10.6	0.02	0.12	1	
		inc	54.0	17.0	5.9	45.2	1.5	7.1	0.17	1.1		
		inc	55.0	1.0	21.4	37.5	1.5	22.5	0.40	0.47	1	
		inc	62.0	2.0	12.1	256	5.8	17.8	0.72	4.3	1	
		inc	68.0	2.0	17.5	53.8	2.4	19.2	0.17	1.9	1	
		and	173.0	4.0	0.05	2.5	2.9	1.4	0.06	0.03	2	
		inc	175.0	2.0	0.08	3.2	5.4	2.4	0.11	0.06		
		and	190.0	33.0	0.74	20.6	2.6	2.1	0.14	0.10	2	
		inc	191.0	29.0	0.83	22.7	2.9	2.4	0.16	0.12		
		inc	192.0	1.0	0.36	291	26.2	15.4	2.5	1.5	1	
		inc	215.0	1.0	14.8	27.6	1.0	15.6	0.04	0.95	1	
		and	241.0	1.0	0.85	14.6	0.48	1.2	0.02	0.41		
		and	291.0	6.0	0.27	5.8	0.69	0.64	0.02	0.17	2	
		inc	295.0	1.0	0.60	7.9	1.8	1.5	0.06	0.28		
		and	341.0	4.0	1.2	1.5	0.10	1.2	0.01	0.04	2	
		inc	343.0	2.0	1.7	2.5	0.11	1.8	0.01	0.05		
		RNNV10_05	0.0	2.0	0.12	9.1	0.16	0.30	0.00	0.03	2	
		RNNV10_06	0.0	10.0	1.4	90.9	7.2	5.7	0.83	0.23	2	
		inc	0.0	9.0	1.5	99.6	8.0	6.2	0.81	0.26		
		inc	7.0	1.0	0.05	36.5	30.0	13.5	0.17	0.18	1	
		RNNV10_07	0.0	4.0	0.16	4.4	1.1	0.68	0.06	0.05	2	
		inc	3.0	1.0	0.33	14.8	3.2	1.9	0.21	0.17		
		RNNV10_08	1.0	3.0	20.9	92.4	3.9	23.8	0.14	2.7	2	
		inc	1.0	2.0	31.2	137	5.6	35.4	0.21	4.04	1	
		RNNV10_09	NSI									
		RNNV10_10	0.0	2.0	0.20	3.3	0.31	0.38	0.00	0.04	2	
		RNNV11-01	0.0	96.5	9.8	81.8	10.6	15.4	0.62	0.99		
		MUNV10-01	0.00	15.28	0.19	9.0	0.12	0.35	0.02	0.16	2	
		MUNV10-02	4.16	24.91	2.0	12.1	2.4	3.2	0.11	0.30		
		MUNV10-03	0.00	3.81	3.1	55.2	8.0	7.3	0.43	1.1		
		MUNV10-04	0.00	4.28	2.1	109	2.8	4.7	2.8	1.6		
		MGNV10-01	2.00	44.34	0.33	5.2	0.19	0.48	0.01	0.04	2	
		inc	44.67	1.66	5.9	96.9	2.3	8.1	0.13	0.16		
		MGNV10-02	0.00	22.47	9.8	21.0	6.5	12.9	0.11	0.45		
		inc	0.00	4.21	34.7	29.4	22.1	44.7	0.32	1.9	1	
		inc	8.39	2.54	14.1	93.7	0.67	15.6	0.13	0.29	1	
		inc	15.92	2.77	8.2	18.1	0.15	8.5	0.03	0.25	1	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
	<u> </u>	MGNV10-03	0.00	35.04	2.5	41.0	0.72	3.3	0.04	0.16	2
		inc	0.00	20.49	4.2	67.7	1.1	5.5	0.07	0.26	
		MGNV10-04	0.00	4.79	0.14	1.7	0.26	0.28	0.05	0.05	2
		MGNV10-05	0.00	12.00	13.8	105	3.0	16.5	0.05	0.21	
		inc	0.00	3.70	33.2	298	4.2	38.9	0.06	0.09	
		MGNV10-06	0.00	9.91	4.2	25.3	4.5	6.5	0.07	0.20	
		MGNV10-07	0.00	9.59	3.6	57.3	6.4	7.1	0.35	4.8	
		MGNV10-07	19.80	2.02	0.23	5.1	3.0	1.6	0.03	0.04	
		MGNV10-08	0.00	4.21	3.0	17.6	2.5	4.2	0.04	0.20	
		MGNV10-09	0.00	6.48	5.5	44.3	6.4	8.9	0.14	0.07	
		MGNV10-10	0.00	1.00	1.1	3.3	0.94	1.6	0.01	0.14	
		SZNV10-01	2.0	30.4	1.2	8.8	1.9	2.2	0.06	0.01	2
		inc	23.6	8.7	3.9	28.8	6.3	7.0	0.19	0.02	
		SZNV10-02	0.0	52.0	1.3	7.9	4.5	3.4	0.40	0.06	2
		inc	0.0	6.3	2.6	27.5	1.9	3.7	0.33	0.08	
		inc	11.3	25.7	2.0	8.1	7.7	5.5	0.48	0.07	
		inc	18.7	6.2	7.0	17.0	3.0	8.5	0.14	0.13	1
		inc	41.5	1.8	0.03	0.34	3.2	1.4	0.12	0.02	
		SZNV10-03	0.0	4.4	8.2	63.2	0.8	9.4	0.05	0.09	
		SZNV10-04	0.0	3.5	9.1	27.4	3.7	11.1	0.20	0.08	
		SZNV11-01	0.0	14.9	0.34	2.3	4.0	2.1	0.19	0.01	2
		inc	0.0	11.2	0.43	2.3	5.0	2.6	0.25	0.01	
		SZNV11-02	0.0	3.4	4.0	27.5	2.5	5.4	0.37	0.04	
		SZNV11-03	0.0	9.3	2.1	34.1	2.4	3.6	0.53	0.07	2
		inc	1.0	8.3	2.3	37.6	2.5	3.9	0.56	0.07	
		SZNV11-04	0.0	6.1	0.08	2.0	7.6	3.4	0.33	0.04	2
		inc	0.0	4.3	0.06	1.4	10.3	4.6	0.24	0.02	
		SZNV11-05	0.0	3.3	0.53	20.1	4.0	2.5	0.68	0.15	2
		inc	2.0	1.3	1.2	44.9	8.6	5.5	0.89	0.22	
		SZNV11-06	0.0	17.2	0.06	5.0	11.4	5.1	0.68	0.12	
		SZNV11-07	0.0	3.8	0.03	1.2	8.9	3.9	0.46	0.06	
		SZNV11-08	0.0	7.1	3.8	18.7	9.6	8.1	0.62	1.2	
		SZNV11-09	0.0	30.7	0.91	70.2	13.5	7.7	0.74	0.74	
		SZNV11-10	0.0	3.1	0.38	55.8	14.8	7.5	0.47	0.16	
		SZNV11-11	0.0	4.6	0.26	9.1	12.6	5.8	1.0	0.16	
		inc	0.0	3.6	0.32	11.2	15.9	7.4	1.3	0.21	
		SZNV11-12	0.0	12.0	8.3	28.9	1.4	9.3	0.11	0.13	

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		L5NV10-01	8.55	9.40	0.26	5.5	0.10	0.38	0.01	0.04	2
		L5NV10-02	0.00	6.30	1.7	32.8	0.48	2.3	0.01	0.08	2
		inc	2.00	4.30	2.4	42.7	0.28	3.1	0.01	0.11	
		L5NV10-03	0.00	1.44	1.2	11.3	0.11	1.3	0.01	0.48	2
		L5NV10-04	0.00	9.04	26.0	50.8	0.10	26.7	0.03	1.1	
		inc	2.20	6.85	33.1	60.9	0.13	34.0	0.03	1.2	1
		L5NV10-05	0.00	2.69	20.1	268	0.08	23.5	0.02	1.0	1
		L6NV10-01	0.00	5.21	10.4	19.1	0.18	10.7	0.02	0.48	2
		inc	2.00	1.79	27.3	39.3	0.22	27.9	0.01	0.84	
		L6NV10-02	0.00	3.77	0.70	4.5	0.41	0.93	0.01	0.07	2
		and	14.44	10.46	11.2	215	0.31	14.0	0.03	0.98	2
		inc	18.10	6.81	17.0	329	0.16	21.3	0.03	1.5	
		BCNV10-02	2.82	1.92	0.32	2.2	0.43	0.54	0.01	0.00	2
		FHNV10-01A	6.40	1.78	0.09	2.9	0.35	0.28	0.01	0.01	2
		FHNV10-01B	0.00	9.21	3.0	89.6	2.2	5.1	0.13	3.5	2
		inc	1.92	4.63	5.6	175	3.8	9.5	0.23	6.8	
		FHNV10-02	0.00	13.01	12.0	80.2	5.6	15.5	0.40	4.8	
		inc	0.00	8.49	17.8	114	6.2	21.9	0.53	6.9	1
		FHNV10-03	0.00	12.71	2.1	64.2	3.5	4.4	0.28	1.6	
		FHNV10-04	0.00	4.24	3.1	136	7.7	8.1	0.57	7.0	
		FHNV10-05	0.00	1.67	6.4	360	12.7	16.4	0.69	9.7	
		FHNV10-06	0.00	3.83	3.8	156	20.2	14.6	0.61	4.2	
		FHNV10-07	3.45	1.03	0.08	1.3	0.50	0.31	0.01	0.02	2
		GN24-539	0.00	1.00	0.24	4.7	0.51	0.52	0.05	0.34	2
		CIINV10-01A	1.80	6.96	0.90	17.9	0.26	1.24	0.02	0.18	2
		CIINV10-01B	0.00	7.02	1.45	79.3	0.23	2.55	0.02	0.34	2
		CIINV10-03	0.00	26.89	0.80	43.2	0.21	1.44	0.02	0.17	2
		inc	8.22	13.53	1.11	76.6	0.33	2.23	0.03	0.29	
		CIIIVN10-01	0.00	81.00	NSI						
		(1) cut of	f 10 g/t Au eq	ıuivalent		·					
		(2) cut of	f 0.2 g/t Au e	quivalent							
		NSI: no sigr	nificant inters	ection							
Data aggregatio	on - In reporting Exploration Results v	veighting averaging	Weighted ave	rage signif	ficant in	tercepts	are report	ed to a gol	d grade ed	uivalent (A	AuEq). Results are
methods	techniques maximum and/or mir										ving for up to 2m o
	truncations (eg cutting of high gi	•									ent allowing up to 8
	grades are usually Material and	, ,,									and metal prices ha
	 Where aggregate intercepts inco 		peen used to	report gol	d grade	واديزيرو	n++ A I ICC	1790 / 07	Λα LIC¢ 2.4	107 and 7n	115¢ 2800 /+

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	of high-grade results and longer lengt results the procedure used for such ag be stated and some typical examples aggregations should be shown in deta - The assumptions used for any reportin equivalent values should be clearly sto	regation should SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation of a combined metallurgical sample from 5 drill holes. Using data from the test results, and for the purposes of the AuEq calculation gold recovery is estimated at 89%, silver at 84% and zinc at 79%. Accordingly, the formula used is AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1780) x (0.84/0.89)] + [Zn (%) x (28.00*31.1/1780) x (0.72/0.89)] + [Zn (%) x (28.00*31.1/1780) x (0.72/0.89)]
		No top cuts have been applied to the reported grades.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known its nature should be reported. If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (eg 'down hole length true width not known'). 	The mineralisation is moderately or steeply dipping and strikes NNE and ENE. For some drill holes, there is insufficient information to confidently establish the true width of the mineralized intersections at this stage of the exploration program. Apparent widths may be thicker in the case where bedding-parallel mineralisation may intersect ENE-striking cross faults and veins. Representative cross section interpretations have been provided with release of significant intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative maps and sections are provided in the body of reports released to the ASX.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available data have been reported.

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
Other substantive	 Other exploration data if meaningful and material should be reported including (but not limited to): 	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report.
exploration data	geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method	229 specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates.
	of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating	Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing.
	substances.	A ground magnetic survey and drone magnetic survey have been completed. The results of these data are being processed and interpreted with the geological information provided from surface and in the drilling and will be used to guide future exploration.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive. 	 CEL Plans to undertake the following over the next 12 months Additional data precision validation and drilling as required; Detailed interpretation of known mineralized zones; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation. Investigate further drilling requirements to upgrade both the unclassified mineralisation and mineralisation in the existing historical resources to meet JORC 2012 requirements; Further metallurgical test work on lower grade mineralisation in the intrusions and oxidised mineralisation.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	e preceding section also apply to this section.) JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and 	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs.
	its use for Mineral Resource estimation purposes.	Assay data is received in digital format. Backup copies are kept and the data is copied into the drill hole database.
	 Data validation procedures used. 	The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any 	The interpretation is considered appropriate given the stage of the project and the nature of activities that have been conducted. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities.
	 assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for the application of these tonnage reduction factors was not outlined in the resource report. It is noted that at the time of this report La Mancha was in a legal dispute concerning the project with its joint venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project was likely no longer a core asset for La Mancha at that time. Additionally, under the original acquisition agreement La Mancha had to issue additional acquisition shares based on resource targets.
		The effect of removing the assumptions relating to application of the arbitrary tonnage reduction factors applied increases the overall resource tonnage by in excess of 50%. Removing these correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it. The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	For the historic resource no reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between 	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamond drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections. Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate. It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a saleable zinc concentrate. Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variables of economic significance was not required. The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade. No assumptions were made regarding correlation between variables. The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plan maps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins and skarn were taken and sampling was plotted and the blocks outlined considering this.

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary				
	 Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	Grade cutting was not used in the calculation of the resource and no discussion was given as to why it was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied No data is available on the process of validation.				
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	No data is available.				
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.				
Mining factors or assumptions	- Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made.	 The Mineral Resource Estimate considered the assumptions outlined below which are considered appropriate; Metal prices: Au U\$\$550 Oz Ag U\$\$10 Oz Metallurgical Recovery; Au – 80% Ag – 70% Zn - nil Operating cost: U\$\$55t based on underground cut and fill mining and flotation and cyanidation combined The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade. 				
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where	 Historical metallurgical test-work assumptions were 80% recovery for Au, Ag and Zn. The most recent historic test work was conducted in 1999 by Lakefield Research (cyanidation) and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals and so can be considered primary, partial oxide or fracture oxide samples. The test work was conducted using a 150 micron grind which would appear to coarse based on petrography conducted by CEL which shows that the gold particles average 30-40 microns. Rougher flotation tests were performed with a 20 minute and 30 minute floatation time. Generally, the longer residence time improved recovery. Recoveries to concentrate for gold range from 59.6% - 80.6% and for silver from 63.1% – 87.2%. 				

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Knelson concentrate tests with floatation of tailings were also completed. Applying a joint process Knelson concentrator and floatation of the tailings of the concentrator it is found that the global recovery is approximately 80% for gold. While the testwork was focused predominantly on gold recovery some rougher flotation testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades in excess of 50% Zn in concentrate expected with additional floatation stages. The report concluded that it was possible to produce a commercial Au-Ag concentrate and a Zn concentrate. Extraction of gold and silver by cyanidation was tested on 3/8 and % inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle roll of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanide consumption. No tests have been done on material at a finer grind size. More recently, CEL has completed initial metallurgical test work on a 147 kg composite sample of mineralised limestone drill core from GMDD039, GMDD040, GMDD041, GNDD043, GNDD003 and GNDD018 and a 55 kg composite sample of mineralised intrusion (dacite) drill core from GNDD113, GNDD113A, GNDD155 and GNDD157. The of skarn mineralisation in limestone that has a weighted average grade of 10.4 g/t Au, 31.7 g/t Ag, 3.2 % Zn, 0.15 % Cu and 0.46 % Pb. The sample of mineralised dacite has a weighted average grade of 1.1 g/t Au, 7.0 g/t Ag and 0.1 % Zn. Separate tests on 2 kg sub-samples were done with differing grinding times, Knelson and Mosley table gravity separation techniques and floatation techniques to provide a series of gravity and floatation concentrates. Key results are: Combined gravity and floatation concentration process resulted in recoveries 85-95% for Au, 82-87% for silver and 77-80% for zinc. Cu had similar recoveries to Ag and Pb had similar recov

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
Environmental factors or assumptions	- Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	It is considered that there are no significant environmental factors which would prevent the eventual extraction of gold from the project. Environmental surveys and assessments will form a part of future pre-feasibility.
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different 	Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock. No data of how densities were determined is available. The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project. CEL is collecting specific gravity measurements from drill core, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates. For RC drilling, the weights of material recovered from the drill hole is able to be used as a measure of the bulk density.
Classification	 materials. The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data). 	The Mineral Resource Estimate has both Indicated and Inferred Mineral Resource classifications under the National Instrument 43-101 code and is considered foreign. These classifications are considered appropriate given the confidence that can be gained from the existing data and results from drilling. The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in continuity of geology and metal values quality quantity and distribution of the data. Appropriate account has been taken of all relevant factors with the exception of studies into the appropriateness of the application of a top cut.

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
	- Whether the result appropriately reflects the Competent Person's view of the deposit.	eflects the The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated)					ver and 2.5% zinc pluser and 2.6% zinc pluser and 2.3% zinc. (Sour e Table 1. vn mineralisation in ode compliant) ta Vein. The 2006 of for inferred category in have not been a measured resource tonnes averaging 14 nne gold representing	
		The 2003 Mineral Resource classification and results appropriately reflect the Competent Person deposit and the current level of risk associated with the project to date.						
		Historic 2003 NI43-101 (non-JORC Code compliant):						
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%		
		Measured	299,578	14.2				
		Indicated	145,001	14.6				
		Inferred	976,539	13.4				
		Historic 2006 NI43-101 (non-JORC Code compliant)						
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%		

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		Measured	164,294	12.5	52.1	2.5		
		Indicated	51,022	12.4	36.2	2.6		
		Inferred	213,952	11.7	46.6	2.3		
Audits or reviews	- The results of any audits or reviews of Mineral Resource estimates.	The historic resource estimate has not been audited.						
		independent report was	s done to NI-43-101 stand	lard and the resul	ts of this repo	ated in a 2003 resource report. This rt were released to the TSX. This roups are seen to be realistic.		
Discussion of relative accuracy/confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application 	There is sufficient confidence in the data quality drilling methods and analytical results that they can be relied upon. The available geology and assay data correlate well. The approach or procedure are deemed appropriate given the confidence limits. The main two factors which could affect relative accuracy is grade continuity and top cut.						
	of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a qualitative discussion of the factors that could	Grade continuity is variable in nature in this style of deposit and has not been demonstrated to date and closer spaced drilling is required to improve the understanding of the grade continuity in both strike and dip directions. It is noted that the results from the twinning of three holes by La Mancha are encouraging in terms of grade repeatability.						
	affect the relative accuracy and confidence of the estimate. - The statement should specify whether it relates	The deposit contains very high grades and there is a potential need for the use of a top cut. It is noted that an arbitrary grade reduction factor of 10% has already been applied to the resource as reported.						
	to global or local estimates and if local state the relevant tonnages which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	No production data is a	vailable for comparison					
	 These statements of relative accuracy and confidence of the estimate should be compared with production data where available. 							

Issued Capital 808.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman