ASX ANNOUNCEMENT

UPDATED 26 NORTH RESOURCE AT MT EDWARDS INCREASES BY 51%

HIGHLIGHTS

- Re-estimation of the Mt Edwards 26 North Nickel Sulphide Mineral Resource results in updated estimate of 871,000 tonnes at 1.43% nickel for 12,400 contained nickel tonnes, a 51% increase in contained nickel; and
- Global Mineral Resources at the Mt Edwards Project now 10.215 million tonnes at 1.6% nickel for 162,510 contained nickel tonnes.

Neometals Ltd (ASX: NMT) ("Neometals" or "the Company") is pleased to announce an updated Inferred Mineral Resource estimate for the Mt Edwards 26 North deposit ("Mt Edwards 26N"). The Mt Edwards 26N Mineral Resource was re-estimated by Richard Maddocks from Auralia Mining Consultants and reviewed by Snowden Mining Industry Consultants. The update at Mt Edwards 26N brings the global Mt Edwards Project Mineral Resources to 10.215 million tonnes at 1.6% nickel for 162,510 tonnes of contained nickel (*refer to Table 2 on page 2 for the global Mt Edwards Project Mineral Resource Table*).

Mt Edwards 26N, often simply referred to as Mt Edwards, was mined for nickel sulphide between 1981 and 1994. Production records show 951,568 tonnes at 2.69% nickel grade for 25,632 tonnes of contained nickel were mined, initially by way of a shaft which remains in place today, and then through a box cut, portal and decline.

Table 1 – Mt Edwards 26 North Inferred Mineral Resource estimate. 1% nickel cut-off grade (Small discrepancies due to rounding)

Classification	Tonnes	Ni %	Ni tonnes
Inferred	871,000	1.43	12,400

Figure 1 – *The headframe over the Mt Edwards 26 North underground mine circa 1990. The headframe has been removed however the shaft remains in place over the residual Mineral Resource (Photo: Stephen Ireland).*

ACN 099 116 361 Level 1, 1292 Hay Street West Perth WA 6005 Locked Bag 8 West Perth WA 6872 T: +61 8 9322 1182 F: +61 8 9321 0556 Nm

Neometals

All the right elements

	Indic	ated	Infe	rred	то	TAL Mineral Res	ources
Deposit	Tonne (kt)	Nickel (%)	Tonne (kt)	Nickel (%)	Tonne (kt)	Nickel (%)	Nickel Tonnes
Widgie 3 ²			625	1.5	625	1.5	9,160
Gillett⁵			1,306	1.7	1,306	1.7	22,500
Widgie Townsite ⁹	1,183	1.7	1,293	1.5	2,476	1.6	39,300
Munda ³			320	2.2	320	2.2	7,140
Mt Edwards 26N			871	1.4	871	1.4	12,400
132N ⁶	34	2.9	426	1.9	460	2.0	9,050
Cooke ¹			150	1.3	150	1.3	1,950
Armstrong ⁴	526	2.1	107	2.0	633	2.1	13,200
McEwen ⁸			1,133	1.4	1,133	1.4	15,340
McEwen			1 016	1 /	1 016	1 /	26 110
Hangingwall ⁸			1,910	1.4	1,910	1.4	20,110
Zabel ^{7&8}	272	1.9	53	2.0	325	2.0	6,360
TOTAL	2,015	1.9	8,200	1.5	10,215	1.6	162,510

Table 2 – The Mt Edwards Project has 11 Nickel Sulphide Mineral Resources with a total of 162,510 contained nickel tonnes.

Mineral Resources quoted using a 1% Ni block cut-off grade, except Munda at 1.5% Ni. Small discrepancies may occur due to rounding Note 1. refer announcement on the ASX: NMT 19 April 2018 titled Mt Edwards JORC Code Mineral Resource 48,200 Nickel Tonnes Note 2. refer announcement on the ASX: NMT 25 June 2018 titled Mt Edwards Project Mineral Resource Over 120,000 Nickel Tonnes Note 3. refer announcement on the ASX: NMT 13 November 2019 titled Additional Nickel Mineral Resource at Mt Edwards Note 4. refer announcement on the ASX: NMT 16 April 2020 titled 60% Increase in Armstrong Mineral Resource Note 5. refer announcement on the ASX: NMT 26 May 2020 titled Increase in Mt Edwards Nickel Mineral Resource Note 6. refer announcement on the ASX: NMT 5 October 2020 titled 132N Nickel Mineral Resource and exploration update at Mt Edwards Note 7. refer announcement on the ASX: NMT 23 December 2020 Zabel Nickel Mineral Resource at Mt Edwards Note 8. refer announcement on the ASX: NMT 29 June 2021 Mt Edwards – McEwen Mineral Resources increase 45% Note 9. refer announcement on the ASX: NMT 29 June 2021 Mt Edwards – Widgie Townsite Mineral Resource Update

Figure 2 - Mt Edwards Project tenure relative to Kalgoorlie and the Kambalda Nickel Concentrator.

Location

The Mt Edwards 26N deposit is located on mining lease M15/102 and M15/103, approximately 5km northwest of the Widgiemooltha Roadhouse (55km from Kambalda). Access from the Coolgardie to Esperance Highway is via well-established roads used for previous mining and exploration in the area. Geological knowledge has been sought by review of records from previous underground mining, including mapping and production figures, and reconciliation reports. More typical methods of analysis for Mineral Resource estimation such as interpretation of drill sample assays and logging combined with interpretations of surface and down-hole geophysical surveys were also used. The Mt Edwards 26N Mineral Resource is located 800 metres north of the 14N Inco Boundary Nickel Prospect, along geological strike, with the zone at depth between these areas remaining for the most part untested by drilling and sampling.

Figure 3 - *Mt Edwards Project tenure over geology, showing the locations of the Mt Edwards 26N Mineral Resource on Mining Leases M15/102 & M15/103. Neometals holds 100% nickel rights for all live tenements shown above.*

Mineral Resource Estimation

The Mt Edwards 26N Mineral Resource was estimated by Richard Maddocks from Auralia Mining Consultants. The Mineral Resource estimate for the Mt Edwards 26N Deposit of 871,000 tonnes at 1.4% nickel for 12,400 nickel tonnes is reported in accordance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' prepared by the Joint Ore Reserves Committee of The Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia (JORC Code) and follows a detailed interrogation and review of the available data, including the earlier reported Mineral Resource estimates by the previous holders of the tenement.

A summary of information relevant to the Mt Edwards 26N Mineral Resource estimate at the Mt Edwards Project is provided in these appendices attached to this announcement:

Appendix 1. Table 1 as per the JORC Code Guidelines (2012) Appendix 2. Drill holes used in the Mt Edwards 26N block model estimate Appendix 3. Significant and Mineralised Drill Intersections at Mt Edwards 26N

Background and Future Work

Neometals acquired the Mt Edwards project in the first half of 2018 and immediately began exploring for nickel and lithium. The Company is targeting new nickel discoveries at Mt Edwards while reviewing and enhancing existing nickel Mineral Resources. The Company owns, or holds nickel rights to, 36 mining tenements with a large land holding of more than 300km² across the Widgiemooltha Dome, a well-recognised nickel sulphide mining province.

Since mid-2019 Neometals has undertaken a major review of the Mt Edwards project, with the reestimation of Mt Edwards 26N Mineral Resource a continuation of this process. A future work program planned for Mt Edwards 26N will include reverse circulation drilling ("RC") and diamond core drilling ("DD"), combined with Downhole Electromagnetic Surveys ("DHEM") to further assess the extents of mineralisation, and look to make a near mine discovery.

Geology and Geological Interpretation

The geology of the tenements for which Neometals hold nickel rights at the Mt Edwards Project is dominated by the Widgiemooltha Dome, a synkinematic granitoid diapir intruded into part of greenstone succession. Nickel sulphide the mineralisation in the region is predominantly associated with the basal contact of the komatiitic ultramafic with the underlying Mt Edwards Basalt. The mineralisation is found within embayments in the komatiite-basalt contact interpreted to be thermal erosion channels caused by the flow of hot ultramafic lava. Secondary and tertiary flows of nickel enriched lava flows occur in places, leading to stacking of komatiite ultramafic sequences. Sheet flow facies zones flanking and gradational to channel facies are thinner, texturally and chemically welldifferentiated and less magnesian than channel flow facies. А significant amount of sulphide remobilisation has resulted in discrete zones of massive sulphide and stringer/breccia type mineralisation.

Figure 4 – Plan of geology, drill traces, roads and mining tenure and underground workings at the Mt Edwards 26N deposit.

Nm

Deposit Geology

The Mt Edwards 26N deposit occurs on the western limb of the north plunging Mt Edwards anticline, at or near the base of a series of ultramafic flows which overlie a footwall basaltic sequence. The ultramafic rocks range from high MgO to low MgO peridotite and consist of a series of 40 to 50m thick flows with interflow sediments up to 5m thick. Some nickel mineralisation is associated with parasitic folding of the ultramafic-mafic contact; however, the majority of the nickel mineralisation occurs at the base of the second ultramafic flow (i.e., hanging wall mineralisation) some 10 to 40m above the basal contact, and is closely associated with graphitic and sulphidic sediments. The mineralised zone is sub-vertical to steep west dipping and plunges steeply to the north. Known mineralisation has a maximum strike length of 220 metres and extends to at least 550 metres below surface.

Figure 5 – Cross section of geology and drill traces at Mt Edwards 26N with historic mine workings and interpreted EM plates. Targets remain untested at depth, and to the north and south.

Nickel Mineralisation

The sulphide mineralogy is pyrrhotite, pentlandite, pyrite, and chalcopyrite. Three mineralisation types are recognised:

1. massive, on contact surfaces (up to 8.6% nickel) or hanging wall sediment associated surfaces (up to 10.8% nickel),

2. disseminated, on both hanging wall and contact surfaces, associated with high MgO peridotites (1 to 6% nickel), and

3. sedimentary, fine sulphide laminae in interflow sediments (1 to 7.5% nickel).

The contact mineralisation is associated with parasitic folding of the contact but is not confined to trough structures and passes laterally into sulphide rich sediments. Some structural thickening of the mineralisation surfaces is apparent.

The hanging wall mineralisation is developed at the base of and within the second ultramafic flow 10-40m above the basal contact. The base of this flow is defined by a sediment horizon. The main hanging wall surface is 55 to 140m in strike length, averages 4m thick and extends for a vertical distance of 470m. Best grades are developed in the northern half of this surface. Minor amounts of economic grade mineralisation are present stratigraphically higher in the sequence, within the second ultramafic flow and at the base of the third ultramafic flow.

Modelling

The mineralisation of Mt Edwards 26N conforms to a Kambalda style komatiite flow hosted deposit, with post depositional structural modification.

Three mineralised domains were modelled based on elevated nickel grades and proximity to the basal surface at the mafic/ultramafic contact.

The survey of historic underground development and stoping was also used as a guide in modelling mineralisation. A single shape for the historic workings was constructed using underground survey wireframes that included all of the open voids and any pillars between levels that were deemed unrecoverable.

Figures 5, 6, and 10 illustrate the geological interpretation in long section and cross section.

There was no strict protocol in assigning a cut-off grade to model the mineralised shapes, rather it was based on the interpreted location of elevated nickel within the stratigraphic sequence.

While there was no defined cut-off grade used in modelling the domains the boundaries were generally based on a minimum of 0.5 to 0.8% nickel. There were however several lower grade intersections and samples that were included within the domains to maintain continuity of the mineralisation.

The drilling database contains surface and underground drilling. In addition, there are surveys of the underground workings and also string files of level geology. In many cases these different datasets do not exactly correspond in spatial location making accurate modelling of high-grade massive

Figure 6 – Schematic long-section looking west showing Mt Edwards 26N Modelled Domains, mined areas and development

sulphide lenses difficult, especially when the underground mining is depleted from the model. For uniformity the drill data has taken priority over underground survey and mapping when there is an unresolved inconsistency.

The interpretation of mineralisation was based predominantly on a nominal nickel grade. It was not possible to further define the interpretation into massive, matrix and disseminated sulphides. It is known that there are massive sulphides present but the survey control is inadequate to have confidence in their location.

A top of fresh rock surface was modelled from the logging codes in drillholes. Geological and grade modelling was done using Vulcan v2020.2

Mineral Resource Classification

The Mt Edwards 26N Mineral Resource has been classified as Inferred. The historic nature of the drilling and the lack of accuracy in the underground survey mean that a higher classification cannot be applied.

The shaft and decline infrastructure remains in place at Mt Edwards 26N. A cut-off grade of 1.0% Ni has been applied to the remaining in-situ Mineral Resource. The existing infrastructure does result, in the opinion of the Competent Person, reasonable prospects for eventual economic extraction of the Mt Edwards 26N Mineral Resource.

The reinterpreted Mineral Resource estimate for Mt Edwards 26N has been limited to fresh rock. Potential metallurgical issues with supergene nickel mineralisation mean that, without appropriate metallurgical and mineralogical test-work, these areas cannot be included in the reported Mineral Resource estimate.

Figure 6 shows a long section of the three domains interpreted at Mt Edwards 26N. Only a fraction of Domain 3 (799 tonnes at 1.33% nickel) is included in the Mineral Resource estimate due to its location almost entirely above the top of fresh rock surface.

able 3 - Mit Edwards 20 North Mineral Nesource tormes and grade by Domain								
Mt Edwards 26 North Mineral Resource by Domain								
Domain tonnes Ni % Contained Ni tonnes								
Domain 1	646,591	1.37	8,544					
Domain 2	223,399	1.84	3,879					
Domain 3	799	1.13	9					
TOTAL	870,788	1.43	12,432					

Table 3 - Mt Edwards 26 North Mineral Resource tonnes and grade by Domain

Data Analysis

Table 4 shows the composite statistics within each domain. The assaying of elements other than nickel has been erratic with only the main domain 1 having any significant numbers of assays for copper, cobalt, sulphur and arsenic. The assays other than nickel in domain 1 are somewhat clustered and are generally not representative of the entire domain. Domains 2 and 3 only have sufficient data for estimation of nickel and copper.

Table 4 - Composites Statistics for each domain of Mt Edwards 26N

Domain 1	Ni %	Co ppm	Cu ppm	S ppm	As ppm
Mean	1.19	314.78	1154.29	43106.19	130.35
Standard Deviation	1.86	405.65	2161.10	74163.71	680.74
Co-efficient of variation	1.56	1.29	1.87	1.72	5.22
Count	2704	678	1537	418	423
Min	0.001	6.006	0.439	221.094	0.250
Max	16.20	3089.04	35354.47	378550.05	10901.76
Domain 2	Ni %	Co ppm	Cu ppm	S ppm	As ppm
Mean	1.17	336.47	1415.99	49004.69	40.16
Standard Deviation	1.49	328.58	2772.16	56712.33	40.89
Co-efficient of variation	1.27	0.98	1.96	1.16	1.02
Count	854	79	364	26	37
Min	0.00	6.31	10.00	540.53	0.27
Max	11.35	1348.31	29400.00	182008.91	100.00
Domain 3	Ni %	Co ppm	Cu ppm	S ppm	As ppm
Mean	0.77	no	726.65	no	no
Standard Deviation	0.46	data	773.48	data	data
Co-efficient of variation	0.59		1.06		
Count	691		691		
Min	0.08		50.00		
Max	8.00		6300.00		

Histograms for the 1 metre nickel composites for domains 1 to 3 is presented in Figures 7 to 9. The histograms for domains 1 and 2 in fresh rock show a positively skewed log-normal distributed dataset for nickel. Domain 3 in the oxide/transitional zone displays a normally distributed dataset.

7

Figure 8 - Histogram of nickel composite grades used in grade estimation of domain 2

Figure 7 - Histogram of nickel composite grades used in grade estimation of domain 1

Figure 9 - Histogram of nickel composite grades used in grade estimation of domain 3

Figure 10 – Long section of Mt Edwards 26N with drill traces, underground workings and significant drill intercepts

Exploration History, Drilling Techniques and Details

Mt Edwards 26N was discovered by INAL in November 1967, following programs of airborne and ground EM and IP surveys, and soil sampling. Over the ensuing 2 years eight separate nickel sulphide occurrences were identified in the area, of which Mt Edwards 26N was the most significant.

An exploration shaft was sunk by INAL/BHP to 919 feet (~280 metres) in 1970, but no production was recorded. The "mine" was placed on care and maintenance in August 1972. In April 1981 WMC exercised their option to purchase the Widgiemooltha tenements off INAL/BHP, following 18 months of exploration work for both gold and nickel during the option period.

Table 5 shows the history of drilling in the Mt Edwards 26N area. Not all of these holes are mineralised nor were they all used in the Mineral Resource estimate for Mt Edwards 26N.

Company	Drill Type	Number	Metres
INCO	Diamond Core	160	25,964
	RC	5	1,009
	Unknown	26	311
WMC	Diamond Core	215	19,763
	RC	0	0
	Unknown	53	897
TOTAL	Diamond Core	375	45,726
	RC	5	1,009
	Unknown	79	1,208
TOTAL	All types	459	47,943

Table 5 -	Histon	of Drilling	Mt F	dwards	26N
iable J -	TIISLOIN	y or Drinning	IVILL	avvaius	2011

Nm

Drilling, Sampling, Assaying and QAQC

The drilling and sampling at Mt Edwards 26N is historical in nature with no drilling taking place since the mine was in production in the early 1990's. No data exists that describes the drilling and sampling procedures. The drill database does include a hole type descriptor, and these must be treated with caution as many short (<20m) holes with only one or two assays are listed as being diamond core. These are likely to be 'sludge' holes or open holes drilled with a mechanised jumbo drill using extension drill steels. These holes are distinguished with an 'A' prefix. All available holes and data have been used in this Mineral Resource estimation with the exception of the A-series holes.

Assaying techniques used for Mt Edwards 26N Mineral Resource estimate are unknown. It is assumed that the WMC samples were assayed at the internal WMC assay laboratory, but no details were provided to Auralia, nor could further information be located by the client.

QAQC procedures carried out on the Mt Edwards 26N drilling, sampling and assaying are not known, if any were ever undertaken.

Previous Production

WMC began production in April 1981 via the existing shaft (of which the head frame is shown on page 1) established by INCO and an internal incline/decline. Mining methods were a combination of cut and fill on the contact ore surfaces, and mechanised cut and fill on the main 01H hanging wall surface. A lower grade peridotite-hosted surface (B01H), at the south end of the 01H surface, was not mined and was left in the hanging wall.

The mine was closed in 1986 due to falling nickel prices, and re-opened in 1989, when a new decline was put in from surface to access two large ore blocks above the 4 level. The new decline intersected the internal decline at the 450 level, and was subsequently stripped down to the 10 level to accommodate larger mining equipment. The new decline was continued off the bottom of the old decline beyond the 10 level ultimately down to the 20 level.

Production continued mainly on the hanging wall (01H) surface using sub level open stoping until 1993. Ground conditions were generally good on the contact ore surfaces. Problems were encountered with the 01H long hole stope, due to jointing in the ultramafic hanging wall, and undermining of the hanging wall on higher levels. Since the pillars had been fired mullock up to the 4 level had been mobile. Mining on the 15 level caused mullock in the 401 stope to shrink. On 10 May 1993 the pillar on the 4 level failed leading to a collapse in the decline on the 5 level causing production to cease until a bypass was completed in August 1993. The decline was rebolted from surface to 9 level and three areas cable bolted and meshed.

Figure 11- Long-section of Mt Edwards 26N showing decline (blue), development (green) and stoping (red)

Further geotechnical assessment resulted in two other areas of the decline being cable bolted on the 700 and 750 levels, as it was found that the decline was in close proximity to the ultramafic-mafic contact between the 4 and 10 levels.

When mining re-commenced a raise bore was down-reamed from surface into the 2 level stope, and mullock used to backfill the stope. The failure in the decline forced a change in mining method to mechanised cut and fill, with substantial pillars (33,000t) left above the 15 through to 19 levels, which allowed a further 100,000t of the Ore Reserve to be mined safely.

Mining continued until September 1994, when production ceased on the 19 level (~470m below surface), by which time the mine had produced **951,568t @ 2.69% Ni for 25,632t** of nickel metal.

Bulk Density

There are no density measurements from the Mt Edwards 26N deposit. Based on measurement from nearby nickel sulphide deposits the following densities have been applied.

Primary Ultramafic Waste	2.9t/m³
Primary Mafic Waste	2.7t/m ³
Primary Mineralisation	3.0 t/m ³
Oxide waste and mineralisation	2.0 t/m ³

Variography

Variography was done for nickel only. For data in domains 1 and 2 a normal scores transformation was applied to the data before variography. The data was back transformed for the final variogram model estimation. For domain 3 the raw composite data was used. Variograms details are outlined in table 6 below.

Table 6 - Variography Details

Domain	Nugget Co	Sill C ₁	Sill C₂	Azimuth°	Plunge°	Dip°	Major₁ (m)	Semi₁ (m)	Minor₁ (m)	Major ₂ (m)	Semi₂ (m)	Minor₂ (m)
Domain 1	0.10	0.65	0.25	165	82.5	-90	9	20	5	60	80	15
Domain 2	0.10	0.68	0.3	157.5	37.5	-90	20	10	10	100	80	20
Domain 3	0.01	0.99	na	172.5	0	0	40	15	10	na	na	na

Grade Estimation

Nickel was estimated in 1 pass using ordinary kriging in all three domains. In domain 1 copper, cobalt, arsenic and sulphur were estimated using inverse distance squared as a validation tool. Domains 2 and 3 have copper estimated using inverse distance squared. The search extents were based on twice the range indicated in the variogram model, as shown in table 6. This ensured that all blocks were informed with grade. Details of the search dimensions are summarised in Table 7.

The parent block size is 5m X 10m X 5m, with sub-blocks of 1.25m X 1.25m x 1.25m. Grades have been estimated into the parent block size.

Table 7 - Search dimensions used in grade estimation

	Domain	Major	Semi-major	Minor	Bearing	Plunge	Dip	Disc X	Disc Y	Disc Z	Min samps	Max samps
	Domain 1	120	160	30	170	80	-90	2	2	2	5	25
1	Domain 2	150	120	30	160	38	-90	2	2	2	5	25
Ļ	Domain 3	60	24	15	170	0	0	2	2	2	5	25

Top Cuts

No top cuts have been applied to the composite data. It is known that there were high grade massive sulphide lenses mined at Mt Edwards 26N, so all nickel grades have been left unchanged.

Model Validation

Table 8 compares the block model grades with the mean composite grades. The mean composite grade is the mean of all the drill composites within the domain and the block grade is the average block model grade within the domain with no cut-off grade applied. The block grade is for all blocks in the domain regardless of if they are in fresh, transitional or oxides areas. The model grades are about 15% lower in the largely fresh domains 1 and 2.

Table 8- Block model and composite grades

Domain 1	Comp count	2,704
	Comp grade	1.19
	Block Grade	1.00
	Blocks:comp ratio	84%
Domain 2	Comp count	854
	Comp grade	1.17
	Block Grade	0.94
	Blocks:comp ratio	80%
Domain 3	Comp count	691
	Comp grade	0.77
	Block Grade	0.75
	Blocks:comp ratio	97%

Includes oxide/transitional and mined areas

In addition to ordinary kriging, nickel was estimated with inverse distance squared (ID²) for all domains to be used as validation. A comparison between these two estimation methods reported at a cut-off of 1% and 0% nickel is shown in table 9. Results are shown with no rounding of numbers. There is generally a reasonable correlation between the different modelling techniques, with ID² having less tonnes at a slightly higher nickel grades at a 1% cut-off. For contained nickel tonnes the inverse distance squared estimation under-calls the Ordinary Kriged estimate by about 15%.

 Table 9 - Comparison between Ordinary kriged and Inverse distance Estimation

		Ordi	nary Kriged		Inverse d	istance squa	ared	
	1% Ni cut-off	Tonnes	Grade	Nit	Tonnes	Grade	Nit	
	Domain 1	646,591	1.32	8,544	581,640	1.36	7,913	
	Domain 2	223,399	1.74	3,879	140,073	1.84	2,578	
	Domain 3	799	1.13	9				
	TOTAL	870,788	1.43	12,432	721,714	1.45	10,491	
		Ordi	nary Kriged		Inverse distance squared			
	0% Ni cut-off	Tonnes	Grade	Nit	Tonnes	Grade	Nit	
))	Domain 1	2,299,509	0.85	19,445	2,299,509	0.77	17,771	
	Domain 2	539,502	1.07	5,788	539,502	0.76	4,121	
	Domain 3	4,543	0.64	29	4,543	0.59	27	
	TOTAL	2,843,554	0.89	25,262	2,843,554	0.77	21,919	

Excludes oxide and transitional zones and mined areas

Previous Mineral Resource Estimates

A summary of previous Mineral Resource estimations for Mt Edwards 26N is shown in Table 10 below. The latest 2021 estimate is larger than the previous estimate from 2018 mainly due to the latest model encompassing the previously mined areas. The 2018 model did not attempt to model the mined-out areas so the wireframed domains were significantly less extensive.

able 10 – Comparison to previous Miner	al Resource estimates of Mt Edwards 26N
--	---

Company	Year	Tonnes	Ni grade %	Contained Ni tonnes	Cut-off grade % Ni	Mineral Resource Category
Neometals	2018	574,000	1.43	8,210	1	Inferred
Neometals	2021	871,000	1.43	12,432	1	Inferred

Results include rounding.

Comparison of Mineral Resource Estimate vs Production

Table 11 compares the recorded production from Mt Edwards 26N and the estimated Mineral Resource within mined domains. The Mineral Resource is significantly lower in grade than the reported production. This is likely caused by the lack of a massive sulphide domain within the mined area. This would have the effect of lowering the grade in the previously mined areas as lower grade composites from outside the mined area will impact the estimation.

Mined	tonnes	Ni %	Nit
Domain 1	861,305	2.10	18,052
Domain 2	220,354	1.85	4,081
TOTAL	1,081,658	2.05	22,134
Reported Production	951,568	2.69	25,632

Table 11 - Mt Edwards 26N	I Mineral Resource vs	Productior
---------------------------	-----------------------	------------

Comparison of Nickel grades from Mineral Resource Estimate block vs Composite nickel grades

The swath plot analysis in Figure 12 makes a comparison of composite nickel grades with block model estimated grades for nickel for all domains at Mt Edwards 26N. It indicates that the model does represent the underlying composite data except for where there is limited composite data. In the swath plot in figure 12 the model grade is represented by the orange-brown line and the composite data by the blue line.

Figure 12 - Swath plots for Nickel at Mt Edwards 26N for All Domains

Mt Edwards 26N Mineral Resource estimate at various cut-off grades

Table 12 shows the Mt Edwards 26N Mineral Resource estimate at various block cut-off grades from 0.5 to 3.0% nickel.

Cut-off Grade Ni%	Ni Grade %	Tonnage	Ni tonnes
0.5	1	2,347,996	23,480
1.0	1.43	870,788	12,452
1.5	2.05	242,754	4,976
2.0	2.53	103,672	2,623
2.5	3.08	36,514	1,125
3.0	3.43	18,182	624

Table 12 - Mt Edwards 26N Mineral Resource at Different Ni Cut-off Grade	S
---	---

Audits or reviews

The Mt Edwards 26N Mineral Resource model, the drill database and other supporting information was supplied to Snowden Mining Industry Consultants for review. Snowden did not identify any fatal flaws and replicated the nickel tonnage and grade reported by Auralia to within acceptable limits. There was a significant level of communication between Auralia, Snowden and Neometals in the conduct of the review. Snowden made several observations and recommendations which have been incorporated into the final Mineral Resource estimate.

Mining and Metallurgical Considerations

Mining and metallurgical factors or assumptions were not explicitly used in estimating the Mineral Resource. It is assumed that underground mining methods would be used for any future mining operations, with the re-establishment of existing infrastructure including the use of the portal and decline.

A nickel cut-off grade of 1.0% is considered the most appropriate for the Mineral Resource estimate. The 1.0% nickel cut-off grade is considered to approximate economic mining cut-off grades for an underground mining scenario comparable to recently published updated underground nickel Ore Reserves and Mineral Resources in the area.

Site Visit

Mr Maddocks visited the Mt Edwards 26N deposit on 17 March 2020. The site visit included viewing and validating the location of historic RC and diamond core drill collars, as well as viewing the shaft, box cut and portal from the previous mining activities.

Future Work

Future work at Mt Edwards 26N may include additional infill RC and DD drilling and sampling so that a thorough structural, geotechnical and geometallurgical interpretation of the deposit can be incorporated into an upgraded Mineral Resource estimate. Diamond core drilling and sampling will improve the understanding of the structural orientation, geotechnical attributes, mineralogy, and metallurgical characteristics.

There is oxide/transitional nickel mineralisation above the primary fresh mineralisation. Infill drilling in this area and metallurgical test-work could enable an upgrading of this zone into a Mineral Resource.

Controls on economic nickel mineralisation appear to be complex. Closer spaced drilling, along with an increased understanding of the structural history of the deposit, should increase confidence in the distribution of high-grade nickel mineralisation.

Arsenic is an important element in nickel sulphide deposits due to its deleterious impact on processing. The drilling described above would increase the understanding of the distribution of arsenic mineralisation. Future drilling should also ensure sufficient sampling is undertaken to commence metallurgical test work to validate the assumptions on nickel recovery, and any by-products.

Nickel mineralisation remains open at depth and along strike (at depth) to the north and south. Further drilling is warranted test the extent of the Mineral Resource, however due to the depth of drilling the establishment of a platform to drill from underground may be considered.

DHEM surveys should be carried out where possible for all future drilling to aid in the delineation and discovery of conductive nickel sulphide mineralisation.

Competent Person Attribution

The information in this report that relates to the Mt Edwards 26N Mineral Resource is based on, and fairly represents, information and supporting documentation compiled by Richard Maddocks; MSc in Mineral Economics, BAppSc in Applied Geology and Grad Dip in Applied Finance and Investment. Mr. Maddocks is a consultant to Auralia Mining Consulting and is a Fellow of the Australasian Institute of Mining and Metallurgy (member no. 111714) with over 30 years of experience. Mr. Maddocks has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code. Mr. Maddocks consents to the inclusion in this report of the matters based on his information in the form and content in which it appears.

Compliance Statement

The information in this report that relates to Exploration Results and Mineral Resources for Neometals other than those discussed in this report relevant to Mt Edwards 26N are extracted from the ASX Announcements listed in the table below, which are also available on the Company's website at www.neometals.com.au

19/04/2018	Mt Edwards Nickel - Mineral Resource Estimate
25/06/2018	Mt Edwards - Mineral Resource Over 120,000 Nickel Tonnes
13/11/2019	Additional Nickel Mineral Resource At Mt Edwards
31/01/2020	Further Massive Nickel Sulphide Results from Mt Edwards
16/04/2020	60% Increase in Armstrong Mineral Resource
26/05/2020	Increase in Mt Edwards Nickel Mineral Resource
05/10/2020	132N Nickel Mineral Resource and exploration update at Mt Edwards
23/12/2020	Zabel Nickel Mineral Resource Update at Mt Edwards
29/06/2021	Mt Edwards – McEwen Mineral Resources increase 45%
29/06/2021	Mt Edwards – Widgie Townsite Mineral Resource Update

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Authorised on behalf of Neometals by Christopher Reed, Managing Director.

ENDS

For further information, please contact:

Chris Reed Managing Director Neometals Ltd T: +61 8 9322 1182 E: Info@neometals.com.au Jeremy Mcmanus General Manager - Commercial and IR Neometals Ltd T: +61 8 9322 1182 E: jmcmanus@neometals.com.au

About Neometals Ltd

Neometals innovatively develops opportunities in minerals and advanced materials essential for a sustainable future. With a focus on the energy storage megatrend, the strategy focuses on de-risking and developing long life projects with strong partners and integrating down the value chain to increase margins and return value to shareholders.

Neometals has three core projects that support the global transition to clean energy and span the battery value chain:

Recycling and Resource Recovery:

- Lithium-ion Battery Recycling a proprietary process for recovering nickel, cobalt and other valuable materials from spent and scrap lithium batteries. Completing construction of demonstration scale plant with 50:50 JV partner SMS group. Targeting a development decision in Mar Q 2022; and
- Vanadium Recovery sole funding evaluation studies to form a 50:50 joint venture with Critical Metals Ltd to recover high-purity vanadium pentoxide from processing by-products ("Slag") from leading Scandinavian steelmaker SSAB. Underpinned by a 10-year Slag supply agreement, Neometals is targeting an investment decision to develop a 200,000tpa processing plant in DecQ 2022.

Upstream Industrial Minerals:

Barrambie Titanium and Vanadium Project - one of the world's highest-grade hard-rock titanium-vanadium deposits, working towards a development decision in 2022 with potential operating JV partner IMUMR and potential cornerstone product off-taker, Jiuxing Titanium Materials Co.

☆ + Li + V

+ Ti = Nm

APPENDIX 1: Table 1 as per the JORC Code Guidelines (2012)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling techniques are not known.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling Techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The Mt Edwards 26N Mineral Resource based on diamond core and RC dri techniques. A total of 459 drill holes totalling 47,94 have been drilled into the deposit area. diamond core holes (45,726m) have be drilled. No RAB or aircore holes have been use the Mineral Resource estimation
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recovery of drilling was recorded.
)	Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	

L		
L	N	m
L		
L		

	Section 1 Sampling Techniques and I	Data
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All drill holes have been geologically logged for lithology and weathering has been logged for drill holes from surface.
Sub-sampling techniques and sampling preparation	<i>if core, whether cut or sawn and whether quarter, half or all core taken.</i>	Sub-sampling and sample preparation techniques were not recorded.
R R	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	
Ø		
Quality of assay data and laboratory tests	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is	Quality of assay data and laboratory tests was not recorded.
	representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	
	Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and laboratory tests cont.	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg	Quality of assay data was not recorded.
	standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes The verification of significant intersections by either independent or alternative company personnel.	No validation of assaying and sampling has been possible.

	Discuss any adjustment to assay data	
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral	MGA94_51S is the grid system used ir program. Historic survey methods are not know
	<i>Resource estimation.</i> <i>Specification of the grid system used</i>	data was originally recorded in in local that have been converted to current data. This conversion may have introd some small errors. Most holes have not been down
	Quality and adequacy of topographic control	surveyed.
Data spacing and distribution	Data spacing for reporting of Exploration Results	Drilling within the Mt Edwards 26N mi close spaced with average spacings than 20m. This spacing is sufficier
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral	establish geological and grade continuit compositing was applied to exploration however for Mineral Resource estim
D)	Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	data was composited to 1m intervals.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling has generally been orie perpendicular to strike at dips from -45 90 degrees. Intersections are generally true lengths but show some exagger due to the near vertical nature of mineralisation. There is no significant introduced due to drilling orientation.
Sample security	The measures taken to ensure sample security	Historic security measures are not kno

Nm

	Section 2 Reporting of Exploration Results				
	Criteria	JORC Code Explanation	Commentary		
	Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Neometals, either it its own right or through its 100% owned subsidiary Mt Edwards Lithium Pty Ltd, holds all mineral rights other than gold on Mining Lease M15/102, located within the state of Western Australia. Neometals holds the nickel rights on Mining Lease M15/103. Mincor Resources NL is the beneficial owner of M15/103.		
C	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Neometals has held an interest in M15/102 and M15/103 since April 2018, hence all prior work has been conducted by other parties.		
			The project area has a long history of exploration and mining and has been explored for nickel since the 1960s, initially by INCO in the 1960's and then Western Mining Corporation from the early 1980's. Numerous companies have taken varying interests in the project area since this time. Titan Resources held an interest in the tenements from 2001. Consolidated Minerals took ownership from Titan		
	Geology	Deposit type, geological setting and style of mineralisation.	Resources in 2006, and Salt Lake Mining in 2014. The Mt Edwards 26N deposit occurs on the western limb of the north plunging Mt Edwards anticline, at or		
			near the base of a series of ultramafic flows which overlie a footwall basaltic sequence. The ultramafics range from high MgO to low MgO peridotite, and consist of a series of 40-50m thick flows with interflow sediments up to 5m thick. Some nickel mineralisation is associated with parasitic folding of the ultramafic-mafic contact, however the majority of the nickel mineralisation occurs at the base of the second ultramafic flow (i.e. hanging wall mineralisation) some 10-40m above the basal contact, and is closely associated with graphitic and sulphidic sediments.		
	Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	Relevant drill hole information has been tabled in this report including hole ID, drill type, drill collar location, elevation, drilled depth, azimuth, and dip.		
		dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.			
	Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Reported intersections are length weighted average nickel grades within the modelled mineralised domains.		

	Section 2 Reporting of Exploration Results				
	The assumptions equivalent values	used for any reporting of metal s should be clearly stated.			
Relationship between	These relationshi reporting of Explo	nips are particularly important in the Nickel munit close		ineralisation is hosted in the ultramafic rock to the metabasalt contact zones.	
widths and intercept lengths	If the geometry of drill hole angle is	of the mineralisation with respect to the known, its nature should be reported.	All drilling contact z	g is angled to best intercept the favourable ones between ultramafic rock and metabasalt s to test for true widths of mineralisation	
	If it is not known reported, there s (eg `down hole le	and only the down hole lengths are hould be a clear statement to this effect ngth, true width not known').	Due to the there wintercepts	ne steep orientation of the mineralised zones Il be minor exaggeration of the width of s reported.	
Diagrams	Appropriate map tabulations of int significant discov but not be limited locations and app	s and sections (with scales) and ercepts should be included for any ery being reported These should include, d to a plan view of drill hole collar propriate sectional views.	and sections (with scales) and cepts should be included for any y being reported These should include, to a plan view of drill hole collar opriate sectional views.Appropriate maps, sections and tables are included the body of this report		
Balanced reporting	Where comprehe is not practicable high grades and/ misleading report	ensive reporting of all Exploration Results , representative reporting of both low and or widths should be practiced to avoid ting of Exploration Results.	ve reporting of all Exploration Results presentative reporting of both low and widths should be practiced to avoid a of Exploration Results.Current understanding is based on historical mapping, drilling and sampling conducted by owners of the tenement. The geology of Edwards 26N deposit is well known.		
Other substantive exploration data	Other exploration be reported inco observations; gu survey results; treatment; men groundwater, g potential deleteri	n data, if meaningful and material, should cluding (but not limited to): geological eophysical survey results; geochemical bulk samples – size and method of tallurgical test results; bulk density, geotechnical and rock characteristics ous or contaminating substances.	No further exploration data has been collected at this stage.		
Further work The nature and so lateral extensions Diagrams clearly extensions, include and future drilling commercially sen		cale of planned further work (eg tests for s or large scale step out drilling. highlighting the areas of possible ding the main geological interpretations g areas, provided this information is not nsitive.	Further c lateral ex particular	drilling is recommended to test the potential atents and infill areas for nickel mineralisation by to the north of the underground workings.	
	Section	R Estimation and Reporting of	Minor	al Resources	
Crite	Jection	IORC Code Explanation	commentary		
Database integrity	<i>а ка</i>	Measures taken to ensure that data has n corrupted by, for example, transcription o errors, between its initial collection and its Mineral Resource estimation purposes. Data validation procedures used.	ot been r keying s use for	The database is an accumulation of exploration results by several companies. Data was inspected for errors. No obvious errors were found. Drillhole locations, downhole surveys, geology and assays all corresponded to expected locations.	
Site visits		Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken		The competent person has visited the site. An inspection of the site was conducted on 17 March 2020.	

Section 3 Estimation and Reporting of Mineral Resources								
Criteria	JORC Code Explanation	Commentary						
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	The database is an accumulation of exploration results by several companies. Data was inspected for errors. No obvious errors were found. Drillhole locations, downhole surveys, geology and assays all corresponded to expected locations.						
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	The competent person has visited the site. An inspection of the site was conducted on 17 March 2020.						

Section	3 Estimation and Reporting of Minera	al Resources
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology.	There are sufficient drill intersections through the mineralisation and geology to be confident of the geological interpretation. These types of nickel deposits have been mined in the Kambalda/Widgiemooltha region for many years and the geology is well documented. The basal contact of the ultramafic overlying mafics has been accurately located through many drill hole intersections. The nickel enriched base of the ultramafics, and enriched zones in the hanging wall of the ultramafic, has been accurately determined through drill intersections. Higher grade zones of nickel mineralisation can be defined by areas of previous underground mining. The basal contact corresponds closely with the higher-grade nickel mineralisation.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The modelled deposit has a strike extent of 460m and a vertical down dip extent of about 650m. The deepest part of the mineralised domain is 680m below surface. The mineralised zone is from about 1m to 20m wide.

Section	B Estimation and Reporting of Minera	al Resources
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domains, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by- products. Estimation of deleterious elements or other non- grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables.	The estimation for nickel was done using ordinary kriging. Two mineralised domains were estimated representing the basal accumulation of nickel bearing sulphides. The third domain represented oxidised nickel mineralisation located above the primary mineralisation. Lower levels of nickel mineralisation were generally not included however sometimes for continuity of domain modelling lower grade intersections were included. The mineral resource was estimated using Vulcan 2020.4. Composites were modelled at 1m intervals to reflect the dominant sample intervals in the database. The block size was 5mX, 10mY, 5mZ. A sub-block size of 1.25mX, 1.25mY, 1.25mZ was used to accurately model the narrow ore horizon. The parent block size was used in grade estimation. The search directions were based on the orientation of the mineralised horizons. Search dimensions were based on the model variogram ranges. With dimension twice the model ranges to ensure all blocks within the domains were estimated. No assumptions were made on correlation of variables. No top cuts were applied.
	Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Estimates are on a dry tonne basis
Cut-off parameters	<i>The basis of the adopted cut-off grade(s) or quality parameters applied.</i>	The cut-off grade of 1% Ni used for reporting corresponds to a potential mining cut-off grade appropriate for underground mining methods.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported	While no mining factors have been implicitly used in the modelling the model was constructed with underground mining methods the most likely to be used.

r

	Section	3 Estimation and Reporting of Minera	Section 3 Estimation and Reporting of Mineral Resources								
		with an explanation of the basis of the mining assumptions made.									
\geq											
	Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous.	No metallurgical factors have been assumed however the oxide and transitional zones require additional mineralogical and metallurgical test-work to establish the nature and occurrence of nickel mineral species.								
	Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	No environmental factors or assumptions were used in the modelling.								
	Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Bulk density within the deposit was assumed based on other deposits in the Widgiemooltha region Transitional/oxide material was assigned a density of 2.0. Fresh Mafic waste 2.7 and ultramafic waste 2.9. Mineralised primary material was assigned 3.0t/m ³ .								
	Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data. Whether the result appropriately reflects the	The Mt Edwards Mineral Resource has been classified as Inferred. Oxide and transition material was not classified. The main criteria used for classifying indicated material was lack of data for drill type and QAQC data. Additionally the underground survey does not appear to be complete. This classification reflects the Competent Person's view of the deposit.								
	Audits or reviews	Competent Person's view of the deposit. The results of any audits or reviews of Mineral Resource estimates	Auralia Mining Consulting is independent of Neometals.								

) June 2021 – UPDATED 26 NORTH RESOURC	E AT MT EDWARDS INCREASES 51%	Nm
Section	3 Estimation and Reporting of Miner	al Resources
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	This Mineral Resource Estimate represents a global estimate of remaining resources at Mt Edwards. The stated tonnages and grade reflect the geological interpretation and the categorisation of the mineral resource estimate reflects the relative confidence and accuracy.

APPENDIX 2: Drill holes used in the Mt Edwards 26N block model estimate

These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.

Hole	Drill Type	East MGA94	North MGA94	RL	Depth	Azimuth	Dip	Company
ME10	DD	361191	6515418	374	99	89.53	-59	INCO
ME10737	DD	361216	6515526	377	143.86	80.53	-63	INCO
ME11	RC	361309	6515605	386	243	359.53	-90	INCO
ME14210	DD	361256	6515471	377	21.34	359.53	-90	INCO
ME14211	DD	361259	6515471	378	22.86	359.53	-90	INCO
ME14212	DD	361262	6515472	380	24.38	359.53	-90	INCO
ME14213	UNK	361265	6515472	381	15.24	359.53	-90	INCO
ME14214	DD	361271	6515473	383	21.34	359.53	-90	INCO
ME14215	DD	361274	6515474	383	21.34	359.53	-90	INCO
ME14216	DD	361277	6515474	382	21.34	359.53	-90	INCO
ME14217	UNK	361280	6515475	382	19.81	359.53	-90	INCO
ME2	RC	361306	6515556	386	250	359.53	-90	INCO
ME3	DD	361246	6515401	374	236.22	332.53	-85	INCO
ME3495	DD	361195	6515770	385	285.29	80.53	-45	INCO
ME3830	DD	360870	6515469	369	158.8	80.53	-45	INCO
ME4	RC	361200	6515544	375	231	359.53	-90	INCO
ME5	RC	361359	6515596	380	245	264.53	-82	INCO
ME5147	DD	361238	6515653	386	57.91	359.53	-90	INCO
ME5148	DD	361253	6515656	390	56.39	359.53	-90	INCO
ME5149	UNK	361268	6515658	391	15.24	359.53	-90	INCO
ME5150	DD	361223	6515651	384	60.96	359.53	-90	INCO
ME5498	DD	361196	6515461	373	77.05	80.53	-65	INCO
ME5499	DD	361191	6515491	373	83.82	80.53	-60	INCO
ME5500	DD	361198	6515430	373	92.96	80.53	-60	INCO
ME5649	RC	361153	6515516	373	39.62	359.53	-90	INCO
ME5650	DD	361183	6515521	375	48.77	359.53	-90	INCO
ME5651	DD	361213	6515526	375	48.77	359.53	-90	INCO
ME5652	DD	361243	6515531	376	51.82	359.53	-90	INCO
ME5653	DD	361273	6515536	385	48.77	359.53	-90	INCO
ME5654	DD	361303	6515541	383	45.72	359.53	-90	INCO

	Hole	Drill Type	East MGA94	North MGA94	RL	Depth	Azimuth	Dip	Company
ſ	ME5688	DD	361196	6515523	375	88.39	80.53	-60	INCO
	ME5689	DD	361188	6515398	372	211.84	80.53	-64	INCO
	ME5690	DD	361191	6515584	374	112.78	80.53	-60	INCO
	ME5694	DD	361258	6515533	377	47.24	359.53	-90	INCO
-	ME5695	DD	361228	6515528	375	64.01	359.53	-90	INCO
	ME5696	DD	361223	6515465	374	67.06	359.53	-90	INCO
	ME5697	DD	361238	6515468	374	60.96	359.53	-90	INCO
	ME5698	DD	361208	6515463	373	67.06	359.53	-90	INCO
	ME5699	DD	361248	6515408	376	59.44	359.53	-90	INCO
9	ME5700	DD	361233	6515405	375	64.01	359.53	-90	INCO
	ME5823	DD	361108	6515447	370	254.2	80.53	-50	INCO
1	ME5827	DD	361123	6515511	372	260.6	80.53	-45	INCO
J.	ME5829	DD	361106	6515384	368	337.11	80.53	-48	INCO
1	ME5834	DD	361034	6515496	369	430.99	80.53	-53	INCO
J	D ME5835	DD	361110	6515478	370	268.22	80.53	-47.5	INCO
	ME5836	DD	361112	6515571	373	273.1	80.53	-47	INCO
	ME5836W1	DD	361112	6515571	373	185.32	80.53	-47	INCO
	ME5840	DD	361051	6515437	368	376.12	80.53	-55	INCO
	ME5841	DD	361137	6515324	373	242.01	80.53	-45	INCO
-	ME5842	DD	361085	6515381	367	417.58	80.53	-57	INCO
	ME5844	DD	361095	6515631	376	243.84	80.53	-45	INCO
71	ME5845	DD	361079	6515687	377	275.23	80.53	-45	INCO
	ME5846	DD	360983	6515488	368	394.11	80.53	-55	INCO
	ME5847	DD	361072	6515564	372	349.91	80.53	-55	INCO
	ME5848	DD	361119	6515417	370	213.36	80.53	-45	INCO
9	ME5853	DD	361127	6515542	373	250.85	80.53	-45	INCO
1/	ME5854	DD	361107	6515601	375	232.26	80.53	-45	INCO
J	ME5855	DD	361118	6515355	369	302.36	80.53	-45	INCO
9	ME5856	DD	361018	6515431	367	481.58	80.53	-60	INCO
7	ME5857	DD	361078	6515751	377	261.21	80.53	-45	INCO
	ME5858	DD	361054	6515623	374	341.38	80.53	-55	INCO
	ME5865	DD	361089	6515320	367	72.87	80.53	-57	INCO
	ME5866	DD	360999	6515552	370	379.17	80.53	-60	INCO
	ME5868	DD	361086	6515319	371	361.19	80.53	-57	INCO
	ME5869	DD	361060	6515531	371	107.59	80.53	-45	INCO
	ME5872	DD	361059	6515531	371	290.47	80.53	-48	INCO
7	ME5873	DD	360994	6515613	371	443.18	80.53	-60	INCO
_	ME5874	DD	361073	6515410	368	372.47	80.53	-55	INCO
	ME5877	DD	360953	6515544	368	199.02	80.53	-70	INCO
Ц	ME5877W1	DD	360953	6515544	368	206.03	80.53	-70	INCO
	ME5878	DD	361042	6515467	369	378.56	80.53	-55	INCO
	ME5879	DD	361078	6515504	370	337.72	80.53	-50	INCO
	ME5880	DD	361198	6515523	376	206.35	80.53	-60	INCO
	ME5882	DD	360912	6515476	366	263.04	80.53	-65	INCO
ļ	ME5883	DD	361065	6515594	374	391.06	80.53	-55	INCO
	ME5886	DD	361093	6515815	382	244.14	80.53	-45	INCO
	ME5890	DD	360954	6515544	368	586.74	80.53	-63	INCO

L		
н		-
н	N	m
н		
н		

	Hole	Drill Type	East MGA94	North MGA94	RL	Depth	Azimuth	Dip	Company
	ME5892	DD	360997	6515521	368	398.68	80.53	-55	INCO
	ME5893	DD	360912	6515476	366	545.59	80.53	-57	INCO
Μ	1E5893W1	DD	360912	6515476	366	628.5	80.53	-57	INCO
\rightarrow	ME5896	DD	361093	6515875	381	210.92	80.53	-45	INCO
	ME5897	DD	360804	6515024	374	327.66	80.53	-55	INCO
М	1E5897W1	DD	360804	6515024	374	320.95	80.53	-55	INCO
М	1E5897W2	DD	360804	6515024	374	352.96	80.53	-55	INCO
	ME5898	DD	361290	6515578	389	381	359.53	-90	INCO
	ME5900	DD	361191	6515584	377	180.75	80.53	-60	INCO
Ľ	ME6	DD	361174	6515477	372	105	89.53	-48	INCO
	ME6001	DD	361263	6515410	374	30.48	359.53	-90	INCO
75	ME6002	DD	361183	6515397	372	67.06	359.53	-90	INCO
J.J.	ME6003	UNK	361203	6515586	376	15.24	359.53	-90	INCO
16	ME6004	UNK	361210	6515587	377	13.72	359.53	-90	INCO
J))	ME6005	UNK	361218	6515588	377	16.76	359.53	-90	INCO
	ME6006	UNK	361225	6515589	378	16.76	359.53	-90	INCO
	ME6007	UNK	361233	6515591	378	18.29	359.53	-90	INCO
	ME6008	UNK	361240	6515592	379	19.81	359.53	-90	INCO
	ME6009	UNK	361248	6515593	379	19.81	359.53	-90	INCO
	ME6010	DD	361255	6515594	380	21.34	359.53	-90	INCO
<u>(</u>]	ME6011	DD	361263	6515596	389	21.34	359.53	-90	INCO
	ME6012	DD	361270	6515597	389	21.34	359.53	-90	INCO
	ME6013	DD	361278	6515598	389	22.86	359.53	-90	INCO
	ME6014	UNK	361285	6515599	389	15.24	359.53	-90	INCO
	ME6024	DD	361193	6515646	381	67.06	359.53	-90	INCO
Ľ	ME6025	DD	361208	6515648	382	53.34	359.53	-90	INCO
16	ME6026	DD	361203	6515771	386	27.43	359.53	-90	INCO
ענ	ME6027	DD	361188	6515769	383	22.86	359.53	-90	INCO
	ME6028	UNK	361173	6515766	382	15.24	359.53	-90	INCO
20	ME6029	DD	361158	6515764	381	45.72	359.53	-90	INCO
JD)	ME6030	DD	361143	6515761	380	67.06	359.53	-90	INCO
X	ME6031	DD	361128	6515759	379	62.48	359.53	-90	INCO
	ME6032	DD	361203	6515400	373	54.86	359.53	-90	INCO
	ME6033	DD	361218	6515403	375	60.96	359.53	-90	INCO
	ME6034	DD	361268	6515473	383	62.48	359.53	-90	INCO
	ME6035	DD	361283	6515475	381	59.44	359.53	-90	INCO
	ME6036	DD	361298	6515478	378	48.77	359.53	-90	INCO
\mathcal{I}	ME6037	DD	361137	6515328	373	62.48	359.53	-90	INCO
	ME6038	DD	361152	6515330	370	59.44	359.53	-90	INCO
	ME6039	DD	361167	6515333	371	67.06	359.53	-90	INCO
	ME6040	DD	361122	6515325	368	67.06	359.53	-90	INCO
	ME6041	DD	361182	6515335	372	64.01	359.53	-90	INCO
	ME6042	DD	361198	6515338	373	57.91	359.53	-90	INCO
	ME6043	DD	361213	6515340	374	60.96	359.53	-90	INCO
	ME6044	UNK	361228	6515343	375	16.76	359.53	-90	INCO
	ME6045	UNK	361243	6515345	375	19.81	359.53	-90	INCO
	ME6051	DD	361194	6515553	370	112.78	80.53	-60	INCO
	ME6084	DD	361258	6515348	375	47.24	359.53	-90	INCO

	Hole	Drill Type	East MGA94	North MGA94	RL	Depth	Azimuth	Dip	Company
	ME6085	DD	361273	6515350	371	50.29	359.53	-90	INCO
	ME6086	DD	361183	6515706	382	62.48	359.53	-90	INCO
	ME6087	DD	361198	6515708	383	64.01	359.53	-90	INCO
\gg	ME6088	DD	361213	6515711	384	22.86	359.53	-90	INCO
	ME6089	DD	361228	6515713	384	64.01	359.53	-90	INCO
	ME6090	DD	361178	6515643	380	64.01	359.53	-90	INCO
	ME6091	DD	361163	6515641	379	64.01	359.53	-90	INCO
	ME6092	DD	361325	6515544	382	60.96	359.53	-90	INCO
	ME6093	DD	361288	6515538	385	60.96	359.53	-90	INCO
Ł	ME6094	DD	361253	6515470	375	60.96	359.53	-90	INCO
	ME6095	DD	361062	6515686	375	60.96	359.53	-90	INCO
75	ME6096	DD	361077	6515689	376	60.96	359.53	-90	INCO
	ME6097	DD	361092	6515691	376	60.96	359.53	-90	INCO
6	ME6098	DD	361047	6515684	374	57.91	359.53	-90	INCO
J	ME6099	DD	361105	6515848	380	60.96	359.53	-90	INCO
	RE6100	DD	361090	6515845	379	60.96	359.53	-90	INCO
\mathbb{P}	ME6201	DD	361075	6515843	377	60.96	359.53	-90	INCO
	ME6251	DD	361328	6515483	378	60.96	359.53	-90	INCO
	ME6252	DD	361358	6515488	378	60.96	359.53	-90	INCO
	ME6253	DD	361168	6515703	381	112.78	80.53	-60	INCO
JI.	ME6254	DD	361271	6515659	391	112.78	260.53	-60	INCO
	ME6255	DD	361216	6515773	389	112.78	260.53	-60	INCO
	ME6270	DD	361231	6515529	375	83.82	80.53	-60	INCO
	ME6271	DD	361238	6515468	374	105.16	80.53	-65	INCO
	ME6273	DD	361224	6515589	378	92.96	80.53	-60	INCO
Ľ	ME6274	DD	361237	6515406	375	82.3	80.53	-62	INCO
6	ME6275	DD	361267	6515535	385	64.01	80.53	-70	INCO
リビ	ME6276	DD	361209	6515401	374	57.91	80.53	-60	INCO
	ME6431	DD	361080	6515349	370	59.44	80.53	-80	INCO
75	ME7	DD	361180	6515458	373	85	89.53	-50	INCO
	ME8	DD	361187	6515436	373	92	89.53	-53	INCO
×	ME8103	DD	361084	6515474	370	284.38	80.53	-53	INCO
	ME8104	DD	361161	6515363	374	243.84	80.53	-50	INCO
	ME8106	DD	361095	6515413	368	262.13	80.53	-49	INCO
	ME8107	DD	361096	6515568	372	315.77	80.53	-51	INCO
	ME8110	DD	361121	6515325	368	40.23	80.53	-53	INCO
	ME8112	DD	361176	6515612	379	147.83	80.53	-50	INCO
Ľ	ME8113	DD	361123	6515326	368	301.75	80.53	-52	INCO
1	ME8119	DD	361031	6515526	370	92.05	80.53	-52	INCO
4	ME8120	DD	361016	6515678	373	445.92	80.53	-51	INCO
	ME8121	DD	361062	6515933	375	44.2	80.53	-45	INCO
	ME8123	DD	361029	6515526	369	325.53	80.53	-54	INCO
	ME8127	DD	361059	6515933	375	238.05	80.53	-45	INCO
	ME8136	DD	361089	6515598	374	271.58	80.53	-55	INCO
	ME8139	DD	360971	6515578	369	430.98	80.53	-56	INCO
	IVIE8141		361210	6515557	3/5	135.94	80.53	-50	INCO
	ME8145		361146	6515453	3/1	169.47	80.53	-45	INCO
I	ME8151	DD	361100	6515383	368	320.95	80.53	-54	INCO

	Hole	Drill Type	East MGA94	North MGA94	RL	Depth	Azimuth	Dip	Company
	ME8155	DD	361027	6515805	375	373.38	80.53	-55	INCO
	ME8157	DD	361069	6515347	367	387.7	80.53	-57	INCO
	ME9	DD	361160	6515437	372	119	89.53	-48	INCO
	ME9573	DD	361231	6515433	375	47.24	359.53	-90	INCO
~	ME9574	DD	361233	6515498	375	53.34	359.53	-90	INCO
	MED12-1	DD	361256	6515566	52	85	259.53	-39	WMC
	MED12-11	DD	361248	6515548	37	110.1	265.53	-68.85	WMC
	MED12-2	DD	361256	6515566	52	94	269.53	-49	WMC
7	MED12-3	DD	361256	6515566	52	110	264.53	-58.2	WMC
9	MED12-4	DD	361237	6515536	51	99	201.53	-53	WMC
	MED12-5	UNK	361210	6515525	34	15	269.53	-5	WMC
2	MED12-6	UNK	361210	6515517	34	16.6	269.53	-5	WMC
\Box) MED12-7	DD	361213	6515508	34	21.3	269.53	-5	WMC
	MED12-8	UNK	361213	6515498	34	20.4	269.53	-5	WMC
()	MED12-9	DD	361225	6515485	31	26.8	269.53	-5	WMC
	MED13-1	UNK	361213	6515497	16	14.5	269.53	-5	WMC
	MED13-2	UNK	361214	6515508	16	13.5	269.53	-5	WMC
	MED13-3	UNK	361207	6515518	16	14.1	269.53	-5	WMC
	MED13-4	UNK	361212	6515490	16	15.9	269.53	-5	WMC
	MED13-5	UNK	361206	6515537	16	15.8	269.53	-5	WMC
	MED13-6	UNK	361208	6515528	16	16.1	269.53	-5	WMC
YE	 MED13-7	DD	361271	6515496	21	139.9	264.03	-63	WMC
	MED13-8	DD	361250	6515518	16	125	269.53	-66	WMC
	MED16-1	DD	361290	6515631	-35	150.3	299.53	-3.5	WMC
7	MED16-14	UNK	361221	6515508	-47	15.2	246.53	-5	WMC
	MED16-16	UNK	361219	6515515	-47	16.2	269.53	-5	WMC
2/	MED16-17	DD	361221	6515508	-45	24.2	246.53	-45	WMC
9	MED16-18	UNK	361216	6515539	-47	16.2	269.53	-5	WMC
C	MED16-19	UNK	361214	6515551	-47	15.6	269.53	-5	WMC
2	MED16-2	DD	361290	6515632	-35	160.9	137.53	-3	WMC
	MED16-20	UNK	361212	6515563	-47	14	269.53	-5	WMC
\geq	MED16-22	DD	361221	6515508	-45	25	269.53	-45	WMC
	MED16-23	DD	361214	6515551	-45	24.5	269.53	-45	WMC
	MED16-24	DD	361212	6515563	-45	30.4	269.53	-45	WMC
7	MED16-4	DD	361291	6515633	-35	196.65	152.53	-2.25	WMC
9	MED17-1	UNK	361220	6515521	-66	17.8	249.53	0	WMC
7	MED17-2	UNK	361221	6515528	-66	16	269.53	0	WMC
	MED17-3	UNK	361218	6515538	-66	17.3	269.53	0	WMC
$\overline{\Box}$	MED17-4	UNK	361214	6515548	-66	17	269.53	0	WMC
	MED17-5	UNK	361213	6515558	-66	15.1	269.53	0	WMC
	MED17-6	DD	361217	6515568	-66	27.4	269.53	0	WMC
	MED17-7	DD	361218	6515578	-66	25.7	269.53	0	WMC
	MED17-8	DD	361223	6515588	-66	30.6	269.53	0	WMC
	MED18-1	DD	361221	6515603	-88	40.2	219.53	0	WMC
	MED18-10	UNK	361215	6515563	-87	20.05	89.53	0	WMC
	MED18-2	DD	361221	6515603	-88	41.4	241.53	0	WMC
	MED18-3	DD	361221	6515603	-88	39.2	253.53	0	WMC
	MED18-4	DD	361224	6515548	-87	49.4	204.53	0	WMC

	Hole	Drill Type	East MGA94	North MGA94	RL	Depth	Azimuth	Dip	Company
	MED18-5	DD	361224	6515548	-87	40.5	239.53	0	WMC
	MED18-6	DD	361223	6515548	-87	29.3	269.53	0	WMC
	MED18-7	UNK	361211	6515558	-87	20.65	269.53	0	WMC
1	MED18-8	UNK	361206	6515567	-87	21	269.53	0	WMC
1	MED18-9	UNK	361203	6515577	-87	21	269.53	0	WMC
	MED19-1	DD	361273	6515672	-93	130	329.53	-4	WMC
-	MED19-10	DD	361286	6515626	-99	147	257.53	-24.25	WMC
-	MED19-11	DD	361286	6515625	-99	131.5	233.53	-25.5	WMC
7	MFD19-12	סס	361287	6515626	-100	165.7	220.53	-45	WMC
_	MED19-13	DD	361286	6515626	-100	171.3	255.53	-47.75	WMC
	MFD19-14	סס	361271	6515666	-95	200.5	251.53	-55	WMC
-	MED19-15	סס	361271	6515668	-95	215.3	283.53	-54.25	WMC
	MFD19-16	סס	361287	6515586	-104	165.5	221.53	-42	WMC
	MFD19-17	סס	361287	6515586	-104	146.5	211.53	-28.5	WMC
	MFD19-18	סס	361287	6515586	-104	189.5	205.53	-58.75	WMC
	MED19-2	מס	361273	6515672	-93	204 3	333 53	-3	WMC
	MED19-3	סס	361271	6515668	-95	191.3	267.53	-50.75	WMC
	MED19-4	מס	361271	6515667	-95	156.2	276 53	-61	WMC
	MED19-5	סס	361271	6515666	-95	170.8	260 53	-43 25	WMC
	MED19-6	סס	361271	6515667	-94	142	258 53	-29 5	WMC
٦	MED19-7	סס	361286	6515626	-100	150.8	260.53	-39 25	WMC
1	MED19-8	םם	361286	6515627	-99	142.3	247.53	-28	WMC
-	MED19-9	מס	361286	6515627	-100	169.7	251 53	-51	WMC
_	MED20-1	םם	361222	6515612	-110	49.6	266.53	-55	WMC
7	MED20-2	מס	361222	6515610	-110	48 3	247 53	-51 75	WMC
	MED20-3	סס	361222	6515610	-110	46 5	205 53	-52 75	WMC
	MED20-4	DD	361222	6515609	-110	44.3	82.53	-89.75	WMC
J	MED2-801	DD	361281	6515566	324	91.44	260.53	0	WMC
	MED2-802	DD	361282	6515564	324	131.67	220.53	0	WMC
	MED2-803	DD	361281	6515567	324	101.2	295.53	0	WMC
1	MED4-1	DD	361213	6515557	266	31.5	31.53	-1	WMC
7	MED4-10	DD	361285	6515563	267	115	176.53	-22	WMC
	MED4-11	DD	361285	6515563	267	76.9	204.53	-33	WMC
-	MED4-12	DD	361285	6515563	267	126.2	179.53	-31	WMC
	MED4-13	DD	361285	6515563	267	74	235.53	-34	WMC
_	MED4-14	DD	361285	6515563	267	89	252.53	-38	WMC
-	MED4-15	DD	361285	6515563	267	102.5	200.53	-45	WMC
	MED4-2	UNK	361212	6515557	266	19.5	319.53	-1	WMC
	MED4-3	DD	361190	6515549	264	45	120.53	-45	WMC
	MED4-4	DD	361201	6515550	264	37.8	87.53	-62	WMC
-	MED4-5	DD	361201	6515550	268	40.8	84.53	-43	WMC
	MED4-6	DD	361190	6515549	268	59.1	113.53	-49	WMC
	MED4-7	DD	361191	6515553	267	84.7	49.53	-31	WMC
	MED4-8	DD	361285	6515563	267	86.8	189.53	-26	WMC
	MED4-804	DD	361280	6515568	266	46.02	260.53	0	WMC
	MED4-804W1	DD	361280	6515568	266	143.25	260.53	0	WMC
	MED4-805	DD	361281	6515566	266	51.51	223.53	0	WMC

П	1		
м	r	Y	٦.
<u> </u>			

	Hole	Drill Type	East MGA94	North MGA94	RL	Depth	Azimuth	Dip	Company
	MED4-805W1	DD	361281	6515566	266	183.79	223.53	0	WMC
	MED4-806	DD	361287	6515570	266	110.64	301.53	0	WMC
	MED4-806W1	DD	361287	6515570	266	195.37	301.53	0	WMC
	MED4-9	DD	361190	6515549	268	73.1	128.53	-45	WMC
-	MED6-1	DD	361238	6515573	204	80	262.53	0	WMC
	MED6-10	DD	361283	6515488	203	118.7	242.53	-39	WMC
	MED6-12	DD	361279	6515498	203	128	269.53	-50	WMC
	MED6-13	DD	361279	6515498	204	115.8	269.53	-25	WMC
-	MED6-14	DD	361279	6515498	205	91.5	274.53	-5	WMC
9	MED6-15	DD	361282	6515489	204	119	260.53	-51	WMC
	MED6-16	DD	361282	6515489	203	112	260.53	-26	WMC
7	MED6-17	DD	361282	6515489	204	96	237.53	-5	WMC
) MED6-18	DD	361282	6515488	204	89.6	223.53	-5.5	WMC
1/	MED6-19	DD	361282	6515488	204	90	223.53	-25.5	WMC
J	MED6-2	DD	361197	6515543	204	22.8	224.53	0	WMC
	MED6-20	DD	361282	6515488	204	95.3	239.53	-27	WMC
	MED6-21	DD	361283	6515487	204	96	221.53	-6.5	WMC
	MED6-22	DD	361283	6515487	203	109	215.53	-41.5	WMC
	MED6-23	DD	361283	6515487	204	116.6	205.53	-7.5	WMC
	MED6-24	DD	361287	6515519	205	107	284.53	-5	WMC
	MED6-25	DD	361278	6515599	204	123	224.53	-20	WMC
JV		DD	361278	6515599	204	124.3	236.53	-22	WMC
-	MED6-27	DD	361278	6515601	204	102.5	307.53	-6	WMC
	MED6-28	DD	361278	6515599	204	101.3	244.53	-21	WMC
7	MED6-29	DD	361279	6515599	204	66	222.53	-42	WMC
9	MED6-3	UNK	361197	6515543	204	20	254.53	-1	WMC
1/	MED6-30	DD	361278	6515602	204	106.8	307.53	-37	WMC
J	UMED6-31	DD	361227	6515521	206	58	74.53	-26.5	WMC
	MED6-32	DD	361227	6515521	206	67	54.53	-24	WMC
	MED6-33	DD	361225	6515518	206	88	49.53	-40	WMC
	MED6-34	DD	361226	6515525	206	29.3	34.53	-20	WMC
X	MED6-35	DD	361226	6515525	206	87.3	34.53	-25.5	WMC
	MED6-36	DD	361282	6515487	205	110.8	203.53	-20	WMC
	MED6-37	DD	361282	6515487	206	121.8	204.53	-37.75	WMC
	MED6-38	DD	361282	6515487	205	86.8	226.53	-20	WMC
9	MED6-39	DD	361282	6515487	206	99.3	226.53	-36.5	WMC
7	MED6-4	DD	361285	6515518	206	125	274.53	-36	WMC
	MED6-40	DD	361193	6515553	206	82	55.53	-46.5	WMC
	MED6-41	DD	361236	6515555	205	60	223.53	-28	WMC
	MED6-6	DD	361286	6515522	206	86	263.53	-21	WMC
	MED6-7	DD	361248	6515556	204	25.2	189.53	0	WMC
	MED6-8	UNK	361247	6515556	204	20	214.53	0	WMC
	MED6-807	DD	361273	6515565	205	70.1	260.53	0	WMC
	MED6-807A	DD	361246	6515561	205	83.82	260.53	0	WMC
	MED6-808	DD	361283	6515568	211	121.46	299.53	0	WMC
	MED6-809	DD	361283	6515565	204	133.5	224.53	0	WMC
	MED6-815	DD	361279	6515599	206	113.4	260.53	-42	WMC
	MED6-817	DD	361278	6515600	204	108.81	265.53	0	WMC

	Hole	Drill Type	East MGA94	North MGA94	RL	Depth	Azimuth	Dip	Company
	MED6-9	DD	361283	6515488	203	112.1	226.53	-39	WMC
	MED7-1	DD	361263	6515590	64	61.2	267.53	-20	WMC
	MED7-2	DD	361263	6515590	172	60.4	281.53	-18	WMC
	MED7-3	DD	361264	6515586	172	74.7	255.53	-29.5	WMC
7	MED7-4	DD	361264	6515586	172	65	278.53	-37	WMC
	MED7-6	DD	361206	6515628	169	55.8	70.53	0	WMC
	MED7-7	DD	361206	6515628	169	74	45.53	0	WMC
	MED8-1	DD	361250	6515551	143	90	216.53	-2.25	WMC
7	MED8-10	DD	361209	6515575	143	90.5	35.53	0	WMC
	MED8-11	DD	361209	6515575	142	81	35.53	-22	WMC
	MED8-2	DD	361250	6515551	143	91.2	229.53	-1.25	WMC
7	MED8-3	DD	361252	6515552	143	95	251.53	0	WMC
) MED8-31	DD	361207	6515564	142	80.7	40.53	-0.75	WMC
\downarrow	MED8-32	DD	361207	6515564	142	85.5	57.53	-1.5	WMC
\int	MED8-33	DD	361207	6515564	142	90.3	44.53	-22	WMC
	MED8-34	DD	361230	6515589	148	51.3	334.53	-41	WMC
	MED8-35	DD	361230	6515589	146	54	343.53	0	WMC
	MED8-36	DD	361231	6515590	146	70.7	10.53	-7	WMC
	MED8-37	DD	361237	6515593	146	108.5	54.53	-57	WMC
	MED8-38	DD	361237	6515593	146	90	24.53	-52	WMC
7	MED8-39	DD	361237	6515593	146	100.4	37.53	-52	WMC
J L	MED8-4	DD	361249	6515554	143	100	296.53	0	WMC
-	MED8-40	DD	361237	6515593	146	70	24.53	-9	WMC
-	MED8-42	DD	361286	6515612	143	74.4	312.53	0	WMC
7	MED8-43	DD	361286	6515612	143	82.6	322.53	0	WMC
4	MED8-5	סס	361249	6515554	143	105.5	310.53	0	WMC
	MED8-6		361207	6515564	143	83.2	40.53	-19.75	WMC
JJ	MED8-7	DD	361207	6515564	143	78.6	57.53	-21	WMC
	MED8-8	DD	361207	6515564	143	67	74.53	-26	WMC
-	MED8-810	DD	361313	6515569	141	286.21	263.53	-56	WMC
1	MED8-811	DD	361327	6515545	141	265.79	263.53	-48	WMC
4	MED8-812	DD	361322	6515606	141	281.94	265.53	-51	WMC
-	MED8-813	DD	361327	6515545	141	206.96	263.53	-28	WMC
-	MED8-814	DD	361324	6515638	141	333.76	258.53	-55	WMC
	MED8-816	DD	361315	6515569	142	344.88	259.53	-69	WMC
_	MED8-818	DD	361324	6515514	142	289.26	263.53	-57	WMC
	MED8-818W1	DD	361324	6515514	142	202.69	263.53	-57	WMC
	MED8-819	DD	361322	6515606	141	377.34	262.53	-69.25	WMC
	MED8-819W1	DD	361322	6515606	141	298.23	262.53	-69.25	WMC
	MED8-820	DD	361327	6515638	141	427.02	263.53	-70	WMC
	MED8-821	DD	361323	6515638	141	268.22	292.53	-56	WMC
	MED8-9	DD	361209	6515575	143	93.4	35.53	-22	WMC
	MED9-1	DD	361270	6515515	114	98.5	259.53	-42	WMC
	MED9-10	DD	361270	6515515	114	180.5	245.53	-69	WMC
	MED9-11	DD	361270	6515515	114	105.1	224.53	-42	WMC
	MED9-2	DD	361270	6515515	114	116.5	231.53	-35	WMC
	MED9-3	DD	361267	6515522	114	111	263.53	-55	WMC
	MED9-4	DD	361270	6515515	114	97.5	233.53	-49	WMC

[Hole	Drill Type	East MGA94	North MGA94	RL	Depth	Azimuth	Dip	Company
ľ	MED9-5	DD	361270	6515515	114	139.5	233.53	-67	WMC
	MED9-6	DD	361267	6515522	114	131.3	286.53	-48	WMC
	MED9-7	DD	361267	6515522	114	144	286.53	-59	WMC
	MED9-8	DD	361267	6515522	114	173.3	278.53	-71	WMC
	MED9-9	DD	361270	6515515	114	176.6	273.53	-72	WMC
	WD6160	DD	361090	6515845	378	60.96	359.53	-90	INCO
\square	WD9632	UNK	360887	6515348	364	3.66	359.53	-90	INCO
	WD9633	UNK	360917	6515353	365	4.57	359.53	-90	INCO
C	WD9634	UNK	360902	6515350	365	3.66	359.53	-90	INCO
9	WD9635	UNK	360887	6515348	364	9.14	359.53	-90	INCO
	WD9636	UNK	360872	6515345	364	3.66	359.53	-90	INCO
6	WD9637	UNK	360857	6515343	364	3.66	359.53	-90	INCO
U.	WD9638	UNK	360752	6515511	363	8.23	359.53	-90	INCO
al	WD9639	UNK	360744	6515510	364	7.32	359.53	-90	INCO
()	WD9640	UNK	360737	6515508	364	9.14	359.53	-90	INCO
	WD9641	UNK	360657	6515619	371	9.14	359.53	-90	INCO
) WD9642	UNK	360649	6515617	372	6.4	359.53	-90	INCO
	WD9643	UNK	360642	6515616	372	4.57	359.53	-90	INCO

All coordinates are in MGA9451S

APPENDIX 3: Significant and Mineralised Drill Intersections at Mt Edwards 26N

This is a table of all drilling intersections within the modelled domains. Due to the nature of the deposit not all drill holes have mineralisation. Low grade intersections have been included where continuity of the mineralised shape necessitated it.

Hole	Length	From	То	Domain	Ni %
DWT123	38.5	45.5	84.0	1	0.637
DWT2	4.8	184.2	189.0	1	1.103
DWT352	31.4	85.0	116.4	1	1.245
DWT353	8.6	89.9	98.5	1	0.707
WDC330	45.0	54.0	99.0	1	0.96
WDC332	22.7	55.6	78.3	1	0.949
WDC333	40.3	45.0	85.3	1	0.859
WDC334	1.7	84.5	86.2	1	0.649
WDD168	42.4	63.0	105.4	1	0.99
WDD172	8.5	114.0	122.5	1	0.792
WDD173	34.0	36.0	70.0	1	0.578
WND1	5.1	168.5	173.6	1	0.564
WND582	15.0	99.8	114.8	1	0.878
DWT1	8.7	103.8	112.5	2	1.021
DWT105	2.0	332.0	334.0	2	0.644
DWT106	15.7	107.3	123.0	2	2.305
DWT107	3.7	427.0	430.7	2	1.51
DWT108	16.6	310.2	326.8	2	1.42
DWT11	18.7	268.0	286.7	2	0.78
DWT110	15.2	354.0	369.2	2	1.211
DWT111	24.0	112.0	136.0	2	0.685
DWT112	6.7	236.0	242.7	2	1.515
DWT113	10.3	226.7	237.0	2	2.197
DWT114	2.4	195.8	198.2	2	2.386

Hole	Length	From	То	Domain	Ni %
DWT116	10.3	109.0	119.3	2	1.455
DWT117	1.4	268.0	269.4	2	1.26
DWT118	24.7	75.4	100.0	2	1.048
DWT119	17.1	162.9	180.0	2	0.681
DWT11W1	18.2	268.2	286.4	2	0.557
DWT12	20.2	161.5	181.7	2	2.402
DWT123	14.6	84.0	98.6	2	1.229
DWT127	3.1	96.0	99.1	2	1.096
DWT128	3.2	69.0	72.2	2	2.78
DWT129	8.0	149.0	157.0	2	1.873
DWT130	4.0	193.0	197.0	2	0.485
DWT135	8.2	215.0	223.2	2	1.055
DWT137	8.3	294.0	302.3	2	1.773
DWT140	6.0	322.0	328.0	2	0.672
DWT144	14.0	261.0	275.0	2	1.383
DWT147	23.1	356.2	379.3	2	1.88
DWT148	5.5	288.5	294.0	2	0.362
DWT175	12.0	67.0	79.0	2	1.078
DWT2	4.2	210.0	214.2	2	1.555
DWT213	6.6	101.9	108.5	2	1.697
DWT351	12.1	61.2	73.3	2	0.633
DWT352	24.3	116.5	140.8	2	1.159
DWT353	6.3	98.5	104.8	2	1.448
DWT354	12.6	63.8	76.4	2	0.767
DWT661	3.0	309.0	312.0	2	0.981
DWT664	3.0	543.0	546.0	2	0.952
DWT686	18.4	453.0	471.4	2	2.105
DWT714A	12.8	422.5	435.2	2	2.016
DWT715	11.4	482.6	494.0	2	1.464
DWT716	2.8	356.0	358.8	2	0.768
DWT717	12.3	498.7	511.0	2	2.595
DWT718	4.2	545.3	549.5	2	0.912
DWT8	20.3	323.2	343.5	2	1.665
DWT8W1	14.4	329.5	343.9	2	2.386
DWT9	11.0	396.0	407.0	2	1.545
DWT9W1	10.6	396.3	406.9	2	1.646
WDC320	18.0	72.0	90.0	2	0.924
WDC321	4.0	98.0	102.0	2	1.018
WDC322	20.0	81.0	101.0	2	1.24
WDC325	5.0	68.8	73.9	2	0.809
WDC329	20.0	47.0	67.0	2	0.738
WDC330	14.0	111.0	125.0	2	1.509
WDC331	15.1	76.9	92.0	2	1.028
WDC332	11.7	78.3	90.0	2	1.203
WDC333	12.7	85.3	98.0	2	1.133
WDC334	8.2	86.2	94.4	2	0.866
WDD096	13.0	124.0	137.0	2	2.624
WDD097	12.6	167.0	179.6	2	2.941
WDD098A	2.3	206.4	208.7	2	2.259
WDD108	19.0	115.0	134.0	2	2.777
WDD109	13.0	193.2	206.1	2	1.025

Hole	Length	From	То	Domain	Ni %
WDD111	18.8	230.0	248.8	2	2.296
WDD113	13.0	263.0	276.0	2	1.591
WDD114	14.6	208.0	222.6	2	2.964
WDD124	7.6	276.4	284.0	2	1.661
WDD125	15.0	183.0	198.0	2	2.69
WDD127W1	4.0	344.3	348.2	2	1.282
WDD128	14.4	364.1	378.4	2	1.833
WDD129	4.3	188.8	193.0	2	2.758
WDD130	1.6	240.0	241.6	2	1.337
WDD131	5.0	158.0	163.0	2	1.562
WDD136	11.0	408.0	419.0	2	1.685
WDD137	22.3	378.7	401.0	2	0.709
WDD138	15.0	324.0	339.0	2	1.595
WDD139	14.8	350.0	364.8	2	1.489
WDD168	15.3	105.4	120.7	2	0.774
WDD169	7.2	204.0	211.2	2	0.945
WDD170	13.1	123.0	136.1	2	1.491
WDD171	10.0	162.0	172.0	2	1.056
WDD172	4.1	171.7	175.8	2	1.627
WDD173	5.9	104.0	109.9	2	0.929
WDD176	2.0	120.0	122.0	2	0.465
WDD177	6.5	151.0	157.5	2	1.939
WDD178	11.0	76.0	87.0	2	0.792
WDD179	12.0	117.0	129.0	2	1.657
WDD180	9.0	161.0	170.0	2	1.143
WDD181	13.9	136.1	150.0	2	1.772
WDD182	5.0	155.0	160.0	2	1.042
WDD185	3.0	211.5	214.5	2	0.452
WDD187	10.0	243.0	253.0	2	1.758
WDD188	8.8	246.2	255.0	2	0.442
WDD190	8.0	278.0	286.0	2	1.067
WDD194	22.1	227.0	249.1	2	2.806
WDD231	14.6	119.0	133.6	2	0.742
WDD231	7.9	163.1	171.0	2	0.678
WND582	5.4	194.5	199.9	2	1.927
DWT106	2.3	128.4	130.7	3	2.056
DWT113	1.9	243.0	244.9	3	1.454
DWT12	1.5	184.0	185.5	3	0.261
DWT129	2.1	165.0	167.1	3	0.977
WDD096	2.9	140.8	143.6	3	1.236
WDD097	4.4	184.0	188.4	3	3.011
WDD108	3.6	140.7	144.3	3	3.299
WDD114	1.5	225.3	226.8	3	3.196
WDD124	4.7	291.0	295.7	3	1.533
WDD125	1.4	204.0	205.4	3	3.401
WDD181	3.2	156.5	159.7	3	3.56
WDD194	5.4	215.8	221.3	3	2.599
DWT114	9.7	103.8	113.5	4	2.077
DWT144	2.8	193.0	195.8	4	2.35
DWT661	3.5	248.5	252.0	4	2.15
DWT662	2.0	190.0	192.0	4	0.816

Hole	Length	From	То	Domain	Ni %		
WDD098	7.1	72.0	79.1	4	1.163		
WDD098A	13.8	97.5	111.2	4	0.633		
WDD111	4.0	164.0	168.0	4	0.844		
WDD112	4.0	84.0	88.0	4	0.831		
WDD183	2.7	89.0	91.7	4	0.663		
WDD184	3.1	106.0	109.1	4	1.854		
WDD185	7.0	140.0	147.0	4	2.246		
WDD186	4.0	116.0	120.0	4	0.668		
WDD187	10.9	157.0	167.9	4	1.566		
WDD188	4.0	171.0	175.0	4	0.795		
WDD189	3.0	147.0	150.0	4	0.952		
WDD190	4.0	218.0	222.0	4	2.158		
WDD191	7.0	145.0	152.0	4	0.532		
WDD192	7.0	158.0	165.0	4	0.746		
WDD193	5.0	226.0	231.0	4	1.005		
WND576	5.8	185.8	191.5	4	1.042		