ASX ANNOUNCEMENT

30 July 2021

Mr Otakar Demis

Mr Anton Billis

A.B.N. 11 009 341 539

Quarterly Report for June 2021

Highlights

- During the quarter Rand and Tribune toll processed 140,986 tonnes of • ore at 3.71 g/t from the EKJV operations at two process plants in the district, with Tribune's share equating to 105,739 tonnes.
- From that processing 15,863 ounces of Gold was produced by Rand • and Tribune, with Tribune's 75% share equating to 11,897 oz of Gold.
- Mine production at the EKJV mines was lower than forecast due to • lower stoping production as a result of seismicity and damage in Pegasus in the previous quarter. A transverse mining method was implemented to limit the impact of mining in seismic areas.
- Resource definition and exploration drilling continued at the Japa ٠ Project in Ghana with 15,617 metres completed in 104 holes.
- Diamond core drilling continued at the Diwalwal Gold Project in the Philippines with 3,150 metres completed in 11 holes.

	STOCK	PILES		
ROM Pad Ore Source		Ore tonnes	Grade	Tribune's Entitlement
	EKJV Sto		g/t	Entitiement
Rubicon ROM	RHP Low Grade	10,774	1.65	36.75%
Rubicon ROM	RHP High Grade	28,788	4.03	36.75%
Rubicon ROM	RHP Low Grade	1,500	2.50	36.75%
	bune Share of EKJV Stockpiles	15,090	3.35	100%
	Rand and Trib	una Stacknilas		
Rubicon ROM	RHP High Grade	29,605	4.53	75.00%
Rubicon LG ROM	RHP Low Grade	33,444	1.84	75.00%
Rubicon ROM	RHP Low Grade	12,262	1.60	75.00%
Lakewood	RHP High Grade	23,608	4.00	75.00%
Lakewood	RHP Low Grade	22,477	1.74	75.00%
Tri	bune Share of R&T Stockpiles	91,046	2.87	100%
		10110-	2.2.1	
Т	ribune Share of All Stockpiles	106,137	2.94	

EKJV Geology and Mining

Raleigh Underground Mine Production

Raleigh remained on care and maintenance throughout the quarter.

Raleigh Underground Mine Development

At the end of the quarter, the bottom of the Raleigh Decline is at 5602 m RL, 743 m from the surface, the top of the Sadler Incline remains at 5989 m RL, 356 m from the surface and the bottom of the Sadler Decline remains at 5944 m RL, 401 m from the surface.

Rubicon-Hornet-Pegasus Underground Mine Production

Contained gold in stope and development ore mined during the quarter is tabulated below:

ORE BODY	Rubicon, Hornet & Pegasus						
Month	Tonnes	Tonnes Grade Ounces					
April	60,420	4.05	7,862				
Мау	54,263	3.88	6,777				
June	57,323	4.46	8,220				
June 21Q	172,006	4.13	22,859				
March 21Q	225,960	3.58	26,028				

Quarterly mine production was 15,576 oz below the production forecast by NST. Production was reforecast after seismic issues in September and November removed Pegasus South from the mine schedule.

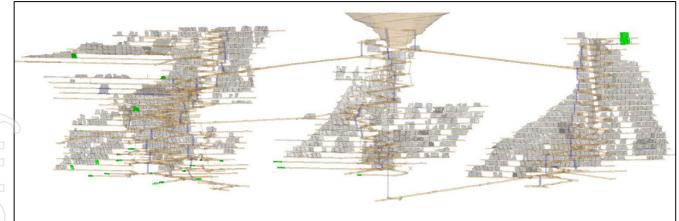
Mine planning assessed a transverse mining method as an alternative to limit the impact of mining in seismic areas in the previous quarter. This method was continued during the June quarter with bypass hanging-wall drives in Pegasus ongoing at quarter end.

Stoping production was significantly affected in the quarter as a result of the previous seismicity and damage in Pegasus, transverse stoping development and poor ground conditions. Production grades were improved with stoping from Hornet positively impacting grades.

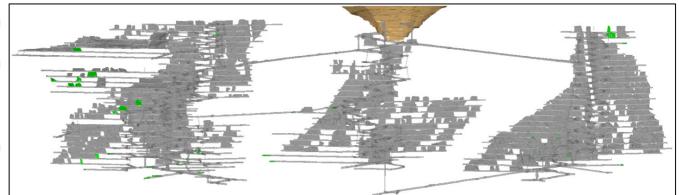
The outlook for the next quarter is similar production to the June quarter.

Tribune's Mine Production Entitlement (36.75%)

	Rubicon, Hornet & Pegasus				
Quarter	Tonnes Grade Oun				
	t	g/t	troy oz		
June 21Q	63,212	4.13	8,401		
March 21Q	83,040	3.58	9,565		
December 20Q	91,808	3.49	10,306		


Rubicon-Hornet-Pegasus Underground Mine Development

Development performance for the quarter is summarised in the following table.


ORE BODY	F	Rubicon, Hornet & Pegasus				
Month	Cap	ital	Operating			
	Decline	Other	Waste	Ore	Pas	
	(m)	(m)	(m)	(m)	(m)	
April	27	75	65	175	31	
Мау	21	159	48	149	55	
June	3	103	47	188	47	
June 21Q	51	337	161	513	133	
March 21Q	39	279	5	1500	137	

Slow development in the Pegasus Decline due to Geotechnical concerns and ground support requirements.

The EOM long sections below show the status of the mine at the end of each month of the quarter. Green indicates new development. Development and stoping areas within the month are highlighted in green.

May 21

June 21

98 - B

Total mining costs for Rubicon, Hornet & Pegasus incurred by the EKJV during June 21 Quarter were \$154 per tonne mined or \$1165 per ounce mined compared with the April 21 Quarter costs of \$153 and \$1331 respectively.

Toll Processing

During the quarter a total of 140,986 tonnes of Rand and Tribune ore at 3.71g/t was processed under toll Milling contracts to recover 15,863oz of gold at 94.38% gold recovery. Of this total, 17,568tonnes were processed at Kanowna Belle and 123,417 tonnes were processed at Lakewood Mill.

Rand and Tribune gold production for the June 2021, along with Tribune's share is tabulated below.

Quarter	Gold (oz)	Tribune's share Au (oz)
June 21	15,863	11,897
March 21	16,474	12,355

EKJV UG Exploration

Exploration activities within the EKJV tenements during the June 2021 quarter across the East Kundana Joint Venture primarily focused on the underground drilling at the Pode, Hera and Nugget prospects. Additional programs also targeted southern extensions of Startrek and Hornet Alt prospects

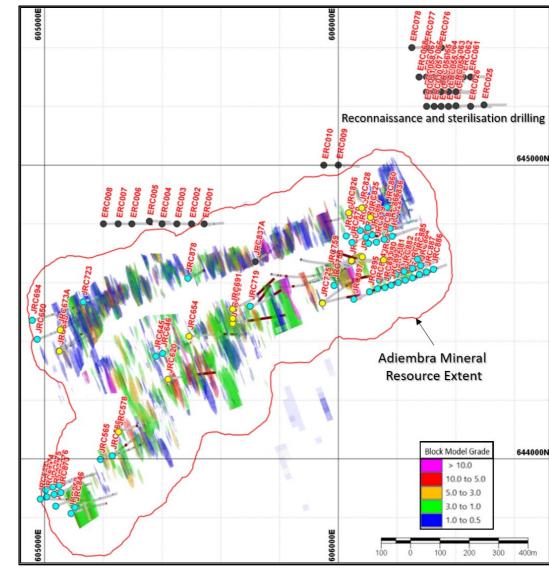
A total of 36 diamond drill holes for 6,729 metres were completed during the June quarter (Table 2). Underground exploration drilling focused on Hera, Pode, Startrek and Nugget prospects, with a small amount of drilling targeting Hornet hanging-wall positions from the Hornet Decline

Full details of all EKJV exploration activities including significant intersections from results received are contained in the June 2021 Quarterly EKJV Exploration Report, released to the ASX on 27 July 2021.

Exploration Projects

Tribune Resources (Ghana) Limited (Tribune's Interest 100%)

The Company continued the major reverse circulation (RC) and diamond core (DC) drilling campaign at the 1.81 million ounce Adiembra Resource during the quarter. The focus of this program is infill and extensional drilling of the defined Resource to elevate the classification of Inferred and unclassified mineralisation to a minimum Indicated category for future Reserve estimation. In addition to drilling at Adiembra, reconnaissance traverses across proposed infrastructure areas within the Mining Lease have commenced, with other conceptual targets and extensions to the Japa-Dadieso trend also scheduled in this phase of work.


A total of 15,617 metres combined RC and DC were drilled in 104 holes during the June Quarter. The drilling was accomplished utilising one RC rig and two DC rigs. The second DC rig commenced in April to complete diamond tails of prematurely suspended RC holes. Details of all holes drilled during the quarter are presented with the JORC Code Table 1 appended to this report.

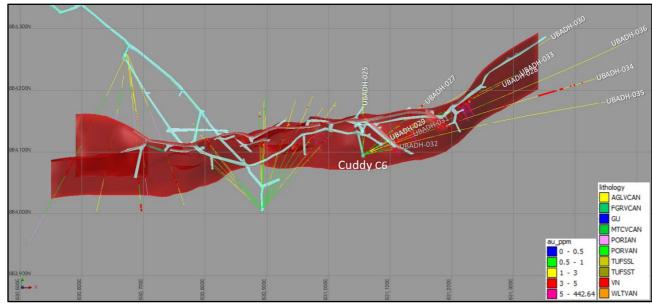
Results received to date are consistent with expectations in terms of mineralisation orientation, thickness and grade and have also yielded robust intersections for both the infill and extensional components of the campaign, especially at the eastern end of the deposit and also at depth both on the Central and Western lodes. Selected significant intersections are shown in the following table with a more comprehensive list of intersections accompanying the JORC Code Table 1 appended to this report.

Hole Number	Depth From	Depth To	Interval Length (m)	Grade ppm Au
ERC028	12	25	13	1.57
JRC578	146	156	10	2.61
JRC637	81	92	11	2.43
JRC647	257	283.3	26.3	2.42
JRC647	287	291	4	5.05
JRC811	255	276.4	21.4	6.73
JRC811	370	372	2	16.65
JRC821	98	106	8	2.73
JRC834	90	115	25	0.83
JRC860	17	22	5	4.07
JRC863	151	176	25	2.19
JRC865	126	150	24	0.97
JRC871	163	172	9	3.05
JRC872	121	126	5	9.43
JRC872	215	222	7	4.33
JRC873	186	195	9	2.76
JRC873	199	208	9	4.09
JRC878	10	12	2	12.3
JRC878	111	143	32	1.23
JRC878	147	151	4	6.32
JRC888	9	15	6	3.77
JRC894	63	67	4	8.91

Significant intersection parameters for Adiembra \geq 0.4ppm average gold grade with maximum 3 metres internal dilution of <0.4ppm gold. Table only presents intersections of greater than 20 interval length in metres multiplied by grade in ppm Au.

Drilling will continue through the September Quarter to complete the diamond drilling component of the Adiembra Resource definition program and continue the reconnaissance program testing conceptual targets within the Mining Lease. An updated Resource estimation for Adiembra will be completed in the September quarter.

Plan of Adiembra infill and sterilisation drilling conducted during June 2021 Quarter showing Resource model pit shell limit with Indicated and Inferred Resource blocks and unclassified mineralisation blocks colured by block grade.


Diwalwal Gold Project (Philippines) (Tribune's Interest 60%)

Resource definition drilling of the Balite Vein continued during the June Quarter.

A total of 3,149.85 metres of diamond core was drilled in 11 holes during the period (UBADH-025, UBADH-027 to UBADH-036). Drilling was conducted from the easternmost cuddy within the Victory Tunnel and all holes intersected Balite main and spur or split veins at or close to the modelled positions and anticipated down hole depths. To date the campaign has tested a strike length of 800 metres and totals 9,890.75m in 36 holes.

Details of holes completed during the June Quarter are provided in the following table.

Hole Number	Collar Northing (PRS92 Zone 5)	Collar Easting (PRS92 Zone	Collar RL (PRS92)	Azimuth at Collar (True North)	Dip at Collar	Final Depth (metres)
UBADH-025	864094.86	631055.37	651.51	360	-35	This period 53.1 to 125.9
UBADH-027	864094.86	631055.37	651.51	50	-21	141.1
UBADH-028	864094.86	631055.37	651.51	62	-12	257.6
UBADH-029	864094.86	631055.37	651.51	59	-11	53.45
UBADH-030	864094.86	631055.37	651.51	59	-14	370.1
UBADH-031	864094.86	631055.37	651.51	66	-65	224.9
UBADH-032	864094.86	631055.37	651.51	76	-72	259.8
UBADH-033	864094.86	631055.37	651.51	60.5	-14	291.1
UBADH-034	864094.86	631055.37	651.51	68	-38	469.7
UBADH-035	864094.86	631055.37	651.51	73	-37	478.6
UBADH-036	864094.86	631055.37	651.51	69.5	-26	530.7

Plan View of Victory Tunnel infrastructure showing Balite Vein model, completed holes UBADH-025 to UBADH-036 and mineralised intersections.

	1 1 1 1	summarised in the following table.
Significant inforeactions received	during the guarter are	cummaricad in the following table
-31211111111111111111131111111111111111	uuling the uualtel ale	Summariseu in the junuwing lable.

Hole Number	Depth From	Depth To	Interval Length (m)	Estimated True Width	Grade ppm Au	Remarks	Vein
UBADH-022						No significant intersections	
UBADH-023	121.7	126.7	5	2.6	2.12	Inc 1m @ 5.39ppm from 123.7m	Balite Main
UBADH-023	146.6	147.7	1.1	0.6	1.16		Balite Main
UBADH-024	78.55	91.55	13	9.6	1.16		Balite Main
UBADH-024	98.5	116.9	18.4	13.6	1.35	Inc 0.4m @ 4ppm from 100.5m, 1.55m @ 4.25ppm from 105.05m	Balite Main
UBADH-024	121.2	126	4.8	3.6	1.78	Inc 0.7m @ 6.33ppm from 123.9m	Balite Main
UBADH-024	160.15	161.9	1.75	1.3	2.42		Balite Main
UBADH-025	66.4	76.25	9.85	9.4	1.36	Inc 2.1m @ 3.58ppm from 74.15m	Balite Main
UBADH-026	76.6	78.3	1.7	1.1	1.37		SE Split
UBADH-026	127.9	132	4.1	1.6	1.02		Balite Main
UBADH-027	59.8	67.6	5.05	2.7	1.35	Inc 0.7m @ 3.35ppm from 65.6m	HW Spur Vein
UBADH-027	73.7	82.6	8.9	4.8	1.54	Inc 3.8m @ 2.42ppm from 78.75m	HW Spur Vein
UBADH-027	94.7	109.6	14.9	8.1	1.19	Inc 2m @ 2.04ppm from 102.2m, 0.7m @ 3.15ppm from 105.5m	Balite Main
UBADH-028	52.3	52.75	0.45	0.4	28	1.8m void margin	SE Split
UBADH-028	54.55	54.85	0.3	0.3	20.3	1.8m void margin	SE Split
UBADH-028	79.05	95.25	16.2	15.6	1.76	Inc 4.8m @2.48ppm from 84.8m	SE Split "Zone"
UBADH-028	110.05	111.2	1.15	1.1	1.12		SE Split
UBADH-028	153.5	164.2	10.7	2.3	1.63		Balite Main
UBADH-028	170	200.8	31.25	6.6	6.04	Inc 2.35m @ 11.23ppm from 9m @ 14.35ppm from 181.4m	Balite Main
UBADH-030	47.6	53.75	6.15	5.2	3.27	Inc 2.35m @6.73ppm from 50.4m	SE Split
UBADH-030	69.05	75.3	6.25	5.3	1.9	Inc 1.35m @7.42ppm from 71.75m	SE Split "Zone"

TRIBUNE RESOURCES LTD (ASX:TBR) | ASX ANNOUNCEMENT Quarterly Report for June 2021

	UBADH-030	80
	UBADH-030	94
	UBADH-030	13
	UBADH-031	128
	UBADH-031	14
	UBADH-031	20
	UBADH-033	51.
	UBADH-033	57.
	UBADH-033	64
	UBADH-033	83.
	UBADH-033	89.
-	UBADH-033	154
	UBADH-033	18
	7002 gg	
10	600Z	
	TUFSSL 0. TUFSST 1	m - 0.5 5 - 1 - 3 - 5 - 442.6
	Long projectic UBADH-025 to mineralised ir) UBA
	Seven Mile H	ill Jo
	No work was	cond
	Competent P	erso

UBADH-030	80.1	83.45	3.35	2.8	4.47	Inc 0.95m @11.6ppm from 82.5m	SE Split "Zone"
UBADH-030	94.3	103.1	8.8	2.6	2.38		SE Split "Zone"
UBADH-030	136.8	138.75	1.95	0.6	3.46		Balite Main
UBADH-031	128.25	129.8	1.55	0.6	1.07		SE Split
UBADH-031	149.5	155.85	6.35	1.9	2.56	Inc 3m @4.06ppm from 152.85m	Balite Main
UBADH-031	205.5	207.3	1.8	0.5	2.79	Inc 1m @3.73ppm from 206.3m	FW Spur Vein
UBADH-033	51.75	54.6	2.85	2.6	61	Inc 0.35m @422ppm from 53.65m	SE Split
UBADH-033	57.25	59.4	2.15	2	3.22		SE Split
UBADH-033	64.6	65.85	1.25	1.1	2.13		SE Split "Zone"
UBADH-033	83.75	84.75	1	0.5	4.59		SE Split "Zone"
UBADH-033	89.35	94.85	5.5	2.75	6.7	Inc 2.4m @12.1ppm from 89.35m	SE Split "Zone"
UBADH-033	154.15	156.85	2.7	1.8	1.95		Balite Main
UBADH-033	181	215.1	33.85	8.9	5.55	Inc 1m @ 6.15ppm from 183.05m, 3.25m @ 39.3ppm from 193.4m 1m @ 5.28ppm from 199.6m 0.8m @ 4.79ppm from 212.6m	Balite Main

Significant intersection parameters for Balite drilling are minimum 1 metre interval length ≥1ppm gold with maximum 3 metres internal dilution of <0.5ppm gold.

Long projection view of Victory Tunnel looking north showing all holes completed to date and highlighting holes UBADH-025 to UBADH-036 completed during the June Quarter. Drill hole traces are coloured by geology and mineralised intersections.

Seven Mile Hill Joint Venture (Tribune's Interest 50%)

No work was conducted on the Seven Mile Hill Project during the June Quarter.

Competent Persons Statement

Information in this report relating to exploration results has been compiled by Gregory Bennett Barnes in accordance with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Gregory Bennett Barnes is a member of AUSIMM and a consultant to Tribune Resources and has sufficient relevant experience in the activities undertaken and styles of mineralisation being reported to qualify as a Competent Person under the JORC Code. Gregory Barnes consents to the inclusion in this report of the information compiled by him in the form and context in which it appears.

Corporate

Summary of Cashflows

The attached Appendix 5B is prepared on a consolidated basis and includes the cash inflows and cash outflows of its subsidiaries including Rand Mining Limited. Cash and cash equivalents were \$4.163m as at 30 June 2021 compared to \$6.674m as at 31 March 2021. Receipts from customers was down by \$850k to \$36.56m for the quarter ending 31 March 2021. Production costs were down from \$22.8m for the March quarter to \$20.5m in the June quarter. Directly related to the lower receipts, income tax was down from \$5.2m in the March quarter to \$3.7m in the June quarter. The result being that there was a net positive cash flow in operating activities of \$1.03m for the June quarter compared to the net cash positive cash flow in operating activities of \$6.83m in the March quarter.

Exploration expenditure for the Japa Project was steady at \$2.88m the June quarter compared to \$2.9m in the December quarter. Exploration expenditure on the Diwalwal Gold Project for the June quarter was up by \$250k to \$777k June quarter.

Share Buy-Back

The Company operated a buyback during the quarter but no shares were bought back during the period. The current buyback expires on 21 February 2022 unless it is extended by the Company.

Payments to related parties of the entity and their associates

In item 6 of the attached Appendix 5B cash flow report for the quarter, payments to related parties of \$134,224 comprised director fees and superannuation for Anthony Billis of \$46,338, director fees for Gordon Sklenka of \$15,000, rental and outgoings paid to a related party of Anthony Billis of \$1,013 and re- imbursement of operating expenses to a related party of Anthony Billis of \$71,873.

This report and the attached Appendix 5B have been authorised by the Board of Tribune Resources Limited.

For Shareholder Enquiries	For Media and Broker Enquiries
Stephen Buckley	Peter Klinger
Joint Company Secretary	Cannings Purple
E: stephen.buckley@tribune.com.au	E: pklinger@canningspurple.com.au
Ph: + 61 8 9474 2113	Ph: + 61 411 251 540

Interests in Mining Tenements

Project/Tenements	Location	Held at end of quarter*	Acquired during the quarter	Disposed during th quarter
Kundana	WA, Australia			
M15/1413		49%		
M15/993		49%		
M16/181		49%		
M16/182		49%		
M16/308		49%		
M16/309		49%		
M16/325		49%		
M16/326		49%		
M16/421		49%		
M16/428		49%		
M24/924		49%		
West Kundana	WA, Australia			
M16/213	· · ·	24.5%		
M16/214		24.5%		
M16/218		24.5%		
M16/310		24.5%		
Seven Mile Hill	WA, Australia			
E15/1664		100%		
M15/1233		100%		
M15/1234		100%		
M15/1291		100%		
M15/1291 M15/1388		100%		
M15/1394		100%		
M15/1394 M15/1409		100%		
M15/1409 M15/1743		100%		
M26/563 P15/6370		100%		
		100%		
P15/6398		100%		
P15/6399		100%		
P15/6400		100%		
P15/6401		100%		
P15/6433		100%		
P15/6434		100%		
P26/4173	VAVA A	100%		
Unallocated	WA, Australia			
P26/4476		100%		
P26/4477		100%		
Japa Project	Ghana, West Africa	1000		
Japa Concession		100%		
Diwalwal Gold Project	Mindanao, Philippines			
		Up to 40%		
		legal interest		
729 Area ¹		and 80%		
		economic interest		
		Up to 40%		
452 Area ¹		legal interest		1

Upper Ulip Area ¹	economic interest Up to 40% legal interest and 80% economic	
	economic interest	

Leases under

 Application				
Project/Tenements	Location	Interest at end of quarter	Acquired during the quarter	Disposed during the quarter
West Kimberly	WA, Australia			
E04/2548		100%		

* Note, includes Rand Mining Ltd's, Rand Exploration NL's and Prometheus Developments where applicable.

1 Prometheus has entered an Investment Agreement with Paraiso Consolidated Mining Corporation ("Pacominco") and a Joint Venture agreement with JB Management Mining Corporation ("JB Management" or "JBMMC"). These agreements allow Prometheus to acquire an 80% economic interest and 40% legal interest in three mining tenements covering the Diwalwal Gold Project. Through the JB Management Joint Venture Agreement, Tribune Resources Ltd (via its 100% owned subsidiary Prometheus Developments Pte Ltd) is earning a 40% legal interest and 80% economic interest in the 452 Area. To date Prometheus Developments is yet to earn any legal or economic interest in this JV as the JV company is yet to be incorporated.

Japa Gold Project, Ghana

JORC Code, 2012 Edition – Table 1

	Section 1 Sampling Techn	iques and Data
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) percussion and Diamond Core Drilling techniques were employed. RC samples were collected from a cone splitter mounted on the rig cyclone at predominantly one and three metre composite intervals. Samples submitted to the laboratory, whether single metre or composite samples, were nominally 3 kilograms in weight. Diamond core was sampled over intervals ranging from 0.3 metres to 1.2 metres length by electric core saw cut, or trowel cut in heavily oxidized material. All samples submitted for analysis were pulverised to nominally minus 75 microns and a 50-gram subsample was split off for fire assay determination of gold.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Face sampling RC Hammer and Diamond Core drilling methods were employed. RC hole diameter either 133mm or 140mm. Diamond core size is either NQ2 or HQ. This period all core was NQ2 size. NQ2 core was collected with 3 metre standard barrel. Diamond core holes were drilled as tails from RC holes and are up to 258 metres in length. NQ2 core was orientated using Reflex ACT II or ACT III orientation tools.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential 	 Visual measure of RC chip sample recoveries was made and recorded where significantly less than expected volume. Monitoring of sample quantity and quality was maintained by geologists and technicians attending the rigs during drilling operations. Sample recovery maximized through use of auxiliary and booster compressors to manage sample return and ground water inflow. Sample system hygiene checked and

Criteria	JORC Code explanation	Commentary
	loss/gain of fine/coarse material.	 maintained at rod changes. Sample systems were purged of groundwater and associated contaminants prior to drilling the next rod. No relationship between RC sample recovery and assay grade has been determined. Sample bias has not been detected. RC Drilling was discontinued when dry sampling was no longer achievable. Diamond core recovery is measured and recorded every run. Due to the mineralisation being hosted in quartz veins and interpreted post- mineralisation fracturing of zones within the overall lode, most core loss instances were in heavily veined intervals where veins had been naturally shattered and it is expected that this has downgraded many of these affected intervals although this has not been quantified.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All RC chip samples were geologically logged on an individual metre basis. Logging is qualitative and captures details of lithology, oxidation, texture, mineralisation, alteration, veining, sample quality and recovery. Representative samples of all individual RC samples were retained in chip trays. Diamond Core logging is both qualitative and quantitative. All core was logged for lithology, oxidation, texture, mineralisation, alteration, veining, sample quality and recovery. In addition, dip and dip direction details of structures, contacts, fabric and veins were captured from definitively orientated core using a Reflex IQ Logger tool. Core was photographed prior to sampling. Core samples of all oxidation and weathering stages are subject to specific gravity determination. The data captured from geological logging is of appropriate standard, focus and detail to support future Mineral Resource estimations, mining studies and metallurgical studies.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC samples were collected by cone splitter in one and three metre composites. Where required, samples were riffle split to achieve appropriate weight of sample for laboratory submission. Excessively wet samples were subsampled by grab or tube spear methods where complete drying was not practicable. Diamond core was cut using an electric Clipper saw. Where necessary due to extreme weathering or friability, core is cut using a trowel, paint scraper or bolster chisel. Half core was submitted for analysis and half core was retained. Original and the corresponding duplicate core samples are submitted as quarter core samples. Field duplicates are collected and submitted for analysis at regular intervals throughout the drilling campaigns. Approximately 5% of RC samples and 5% of core samples are duplicated and submitted for analysis. Sample weights are such that the entire sample submitted to the laboratory is dried, crushed

	Criteria	JORC Code explanation	Commentary
)		 and pulverised to nominally minus 75 microns in an LM3 or LM5 pulveriser. From this pulp a nominally 200 gram subsample is split and retained. From the 200 gram pulp a 50 gram subsample is taken for fire assay charge. Subsampling methods employed throughout the laboratory process are appropriate for the material and deposit type. Grind checks are conducted at a frequency of 2% of samples from every batch processed.
	uality of assay nta and boratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Drill samples were subject to fire assay of a 50 gram pulverised subsample giving total gold analysis of a representative sample of the insitu material determined by atomic absorption spectrometry to a lower detection limit of 0.01 parts per million gold. Approximately 12% of all samples submitted are for quality control purposes. Field duplicates are collected at regular intervals throughout the drilling and sampling process and analysed with the primary samples. Approximately 5% of RC samples and 5% of core samples are duplicated. Commercially prepared Standard Reference Materials, including coarse blank material, are submitted with each batch of samples to monitor potential contamination in the preparation process and accuracy and consistency of the analysis process. Standards and blanks constitute approximately 8% of all samples analysed. No geophysical methods were used for elemental determinations.
sa	erification of impling and ssaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All drilling data including significant intersections is verified and validated by other geologists or Competent Persons within the organisation. Dedicated twinning of holes has previously been employed in a limited capacity to verify mineralisation intersected in historic drilling campaigns. The natural sub-surface ground conditions and the extensive recent surface disturbance precludes close spaced duplication of previously drilled holes. Current drilling is infilling the drill spacing for additional Resource evaluation and verifies historic RC and diamond drilling intersections with respect to location, nature and tenor of mineralisation. Drilling data is manually and digitally captured according to written procedures and a library of standard logging codes appropriate to this project and purpose. Manually captured data is transferred to digital templates where it is validated and then loaded to an externally managed and maintained database, again with validation protocols. Original data and reports are stored at the Company's Headquarters. No adjustments to assay data have been made. Raw assay data is provided to the external database managers where it is loaded to the database, securely stored and quarantined.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All planned drill holes and drilled hole collars are surveyed using Trimble R8 RTK DGPS. Drill hole trajectories are measured using Reflex EZ- Trac or Reflex EZ-Gyro down hole survey tools. Drill rigs are aligned using Reflex TN14 Gyro Compass. Grid is WGS84 Zone 30N and Vertical Datum is referenced to mean sea level. RTK DGPS positioning is calibrated against pre-established primary planimetric survey control with tie-in to the Geodetic Reference Network. Topographic control is a combination of physical survey traverses and unmanned aerial vehicle surveys which is adequate for the purpose.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes are designed at an irregular spacing in this campaign principally to infill drill coverage for Resource definition and estimation purposes. Earlier work has established the required parameters for Mineral Resource classification. The drilling data will be used in a Mineral Resource estimation. Sample compositing for RC drilling is predominantly over either one or three metre intervals. Drill hole intersections reported are length weighted averages of raw assay data. Where results for three metre composites are reported this is stated.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• The primary controls on the gold mineralisation are presently well understood. Drill holes in this campaign were designed to intersect the mineralisation as normal to the primary control orientation as possible to reduce or eliminate any possible sampling bias.
Sample security	• The measures taken to ensure sample security.	• Chain of custody for samples is managed by Tribune personnel and contractors on site. Samples are stored on site until collection by Intertek Laboratory personnel for transport to the Tarkwa laboratory facility.
Audits or review.	<i>s</i> • The results of any audits or reviews of sampling techniques and data.	• Data and data collection methods are continuously reviewed for accuracy and adherence to procedures by Tribune and Principal Contractor personnel. No material issues have been noted. No official audits have been undertaken at this stage.

Section 2 Reporting of Exploration Results

	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Work was conducted within Mining Lease P.L.2/310 owned by Tribune Resources (Ghana) Limited. The lease covers an area of 26.2km² and is situated in the Wassa Amenfi East District of the Western Region of Ghana approximately 270km west of Accra and 50km north of Tarkwa. The Ghana Government holds a 10% free carried interest in the project. All tenure is secure and in good standing with no known impediments.
	Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• Exploration has been conducted within and adjacent to the tenement over an extended period. Particularly relevant is the work done by Cluff/Anglogold during the 1990's and the information from that work was integral in the target generation and evaluation that resulted in Tribune acquiring its interest in the Project.
C	Geology	 Deposit type, geological setting and style of mineralisation. 	• Target is orogenic lode and vein hosted gold mineralisation. The project area straddles the Akropong Belt, a sequence of Proterozoic Birimian volcano-sedimentary rocks that parallels the highly endowed Ashanti Belt.
	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Details of the location, orientation, and depth of drill holes completed together with significant gold assay results are provided in the body of the report to which this table refers and/or are appended to this table.
	Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure 	 Significant intersections are reported as length weighted averages of all samples within the composite interval. Criteria used to calculate significant intersections can vary and are presented with each table of results. No top cut of grades has been applied to the results reported. Significant intersections are reported in the context of any likely mining extraction scenario. In the case of the Adiembra deposit, and notwithstanding the outcomes of any

Criteria	JORC Code explanation	Commentary
	 used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	future Mineral Resource update or Reserve estimation, the likely mining scenario would be by open pit only and the significant intersections are presented with appropriate grade cutoff and internal dilution criteria to reflect that method of extraction.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Primary gold mineralisation occurs within steeply dipping quartz veins. Holes are drilled normal to the dominant mineralised quartz vein orientation, and hence normal to the mineralised zones, at nominally -55° dip. Intersection widths reported are down hole aggregate widths and vary between 120% to 170% of the true width of the mineralised intervals.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• This document is not reporting a significant discovery. The exploration results reported are from infill drilling designed to enable an update to the Adiembra Mineral Resource Estimate to be undertaken.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• All significant intersections from the relevant drilling campaign and the interpretation of those results is reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Geological observations are reported. Specific gravity determinations from core samples have been completed. Metallurgical test work is ongoing from samples collected during the previous campaign.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A Mineral Resource estimation for the Adiembra deposit has been published. The outcomes of this infill drill campaign are anticipated to allow an update to the Mineral Resource and subsequent Reserve estimation to be undertaken. Further metallurgical and geotechnical studies and sterilisation drilling for future infrastructure is anticipated. Exploration drilling at other prospects within the Japa Mining Lease has been planned.

Quarterly Report for June 2021

Table of Japa Project drilling completed during the June 2021 quarter.

Hole Number	Collar Easting (WGS84 Zone 30N)	Collar Northing (WGS84 Zone 30N)	Collar RL	Dip at Collar	Azimuth at Collar (True North)	Metres drilled during quarter	Hole Depth	Hole Status
ERC001	605543.4	644800.1	149.4	-60	90	150	150	Complete
ERC002	605500.3	644800.1	150.3	-60	90	150	150	Complete
ERC003	605450.4	644800.1	150.1	-60	90	150	150	Complete
ERC004	605400.3	644800.0	146.0	-60	90	150	150	Complete
ERC005	605356.7	644809.2	145.6	-60	90	150	150	Complete
ERC006	605297.1	644800.1	132.5	-60	90	150	150	Complete
ERC007	605250.4	644800.2	130.8	-60	90	150	150	Complete
ERC008	605200.2	644800.2	128.4	-60	90	120	120	Complete
ERC009	606000.1	645000.1	142.9	-60	90	150	150	Complete
ERC010	605950.6	645000.0	138.8	-60	90	150	150	Complete
ERC025	606496.1	645205.1	147.5	-60	90	150	150	Complet
ERC026	606450.5	645200.2	150.5	-60	90	150	150	Complete
ERC027	606400.7	645202.1	153.5	-60	90	150	150	Complet
ERC028	606375.2	645200.0	156.3	-60	90	150	150	Complete
ERC029	606350.2	645200.1	159.8	-60	90	150	150	Complet
ERC030	606326.4	645200.0	164.4	-60	90	150	150	Complete
ERC031	606300.5	645200.1	173.6	-60	90	150	150	Complete
ERC054	606400.8	645250.1	157.1	-60	90	150	150	Complete
ERC055	606375.8	645250.1	158.7	-60	90	150	150	Complet
ERC056	606350.3	645250.1	162.2	-60	90	150	150	Complete
ERC057	606325.2	645250.2	163.4	-60	90	150	150	Complete
ERC058	606300.0	645249.2	162.8	-60	90	150	150	Complete
ERC061	606450.5	645300.0	146.0	-60	90	150	150	Complete
ERC062	606425.4	645300.1	148.5	-60	90	150	150	Complete
ERC063	606400.0	645300.1	153.0	-60	90	150	150	Complete
ERC064 ERC065	606375.0 606355.0	645300.2 645288.3	157.3 159.8	-60 -60	90 90	150 150	150 150	Complete Complete
ERC065 ERC066	606324.8	645288.5	139.8	-60	90 90	150	150	Complete
ERC067	606300.1	645300.2	149.8	-60	90	150	150	Complete
ERC068	606275.1	645300.1	147.7	-60	90	150	150	Complete
ERC076	606350.9	645400.1	144.3	-60	90	150	150	Complete
ERC070	606300.4	645400.1	137.9	-60	90	150	150	Complete
ERC078	606250.4	645400.2	137.2	-60	90	120	120	Complete
JRC534	604985.6	643863.1	137.8	-55	90	231	334	Complete
JRC565	605190.2	643998.2	128.8	-60	70	216	318	Complet
JRC566	605230.5	644010.2	126.9	-60	70	147	261	Complet
JRC578	605251.8	644091.9	128.2	-53	68	84	186	Complet
JRC645	605379.2	644349.5	135.3	-55	70	85	210	Complete
JRC646	605401.9	644359.2	137.6	-55	70	63	201	Complete
JRC647	605049.1	644367.3	125.2	-57	55	186.2	306.2	Complete
JRC648	605050.1	644366.7	125.2	-63	65	207	303	Complet
JRC650	604974.7	644407.0	143.8	-60	70	216	342	Complet
JRC654	605491.8	644417.4	138.5	-50	84	126	294	Complet
JRC673A	605053.6	644439.3	125.9	-70	50	168	276	Complet
JRC676	605640.4	644461.0	139.2	-51	81	249	339	Complete
JRC690	605640.4	644478.2	139.7	-53	63	135	333	Complete
JRC691	605640.1	644510.1	143.1	-56	65	153.2	333.2	Complete
JRC694	604958.0	644471.8	143.2	-55	75	222	342	Complete
JRC719	605699.7	644519.9	144.8	-55	70	54	222	Complete
JRC723	605131.4	644534.4	143.4	-60	70	84	204	Complete
JRC724	605945.4	644531.2	147.3	-51	53	105.1	261.1	Complet
JRC725	605946.1	644529.9	147.3	-57	74	93.3	255.3	Complete
JRC753	605985.5	644590.2	140.5	-60	70	141	273	Complet
JRC759	605971.4	644638.5	137.4	-50	253	162.3	330.3	Complete
JRC761	605973.0	644641.0	137.2	-51	236	153.2	351.2	Complete
JRC801	605974.3	644641.4	137.1	-70	75	87	309	Complete

TRIBUNE RESOURCES LTD (ASX:TBR) | ASX ANNOUNCEMENT Quarterly Report for June 2021

Hole Number	Collar Easting (WGS84 Zone 30N)	Collar Northing (WGS84 Zone 30N)	Collar RL	Dip at Collar	Azimuth at Collar (True North)	Metres drilled during quarter	Hole Depth	Hole Status
JRC811	606045.7	644673.6	135.1	-52	232	161.5	378.5	Complete
JRC812	606045.0	644674.4	135.2	-53	257	204	312	Complete
JRC813	606047.0	644674.1	135.1	-53	84	177.1	297.1	Complete
JRC815	606154.2	644677.0	138.0	-54	261	153.3	279.3	Complete
JRC816	606081.8	644687.7	137.7	-52	233	36.4	156.4	Complete
JRC818	606102.9	644733.5	158.5	-55	70	180	180	Complete
JRC819	606129.7	644737.6	164.6	-55	70	204	204	Complete
JRC821	606156.8	644747.2	162.6	-55	70	204	204	Complete
JRC822	606183.6	644758.0	156.5	-55	70	180	180	Complete
JRC825	606109.2	644822.1	167.1	-65	79	97.9	223.9	Complete
JRC826	606035.7	644837.7	139.5	-50	71	105.5	276.5	Complete
JRC828	606079.9	644854.2	151.9	-53	240	102	270	Complete
JRC832	606075.0	644777.1	150.9	-60	70	67.5	199.5	Complete
JRC833	606100.9	644787.3	161.6	-60	70	126.8	246.8	Complete
JRC836	606191.7	644827.6	156.4	-60	70	150	150	Complete
JRC837A	605717.3	644671.4	153.6	-65	57	120.3	270.3	Complete
JRC846	605103.1	643835.0	146.4	-55	70	188.2	302.2	Complete
JRC850	605090.2	643814.1	143.3	-60	70	66.2	258.2	Complete
JRC860	606166.0	644857.0	162.8	-57	70	39	177	Complete
JRC863	606026.9	644758.9	137.5	-60	70	104.9	200.9	Complete
JRC866	606176.7	644784.3	160.7	-60	70	39	201	Complete
JRC867	606115.8	644762.3	166.4	-60	70	33.2	201.2	Complete
JRC868	606094.1	644754.5	159.8	-60	70	54	210	Complete
JRC870	606046.7	644736.6	139.4	-60	70	168	168	In Progress
JRC871	605007.2	643870.8	146.0	-60	70	258	258	Complete
JRC872	605032.5	643878.9	159.4	-60	70	240	230	Complete
JRC873	605055.2	643885.2	164.7	-60	70	243	243	Complete
JRC874	605003.1	643894.0	145.9	-57	70	243	243	Complete
JRC875	605027.8	643904.1	156.8	-57	70	261.9	261.9	Complete
JRC876	605050.0	643910.1	161.2	-57	70	201.7	201.7	Complete
IRC877	605038.1	643839.1	156.6	-61	70	282	282	Complete
JRC878	605487.8	644615.0	136.2	-70	66	168	168	In Progress
JRC879	606140.4	644608.2	133.2	-55	70	162	162	In Progress
JRC880	606167.7	644617.8	133.2	-55	70	156	156	In Progress
JRC881	606196.2	644628.2	133.1	-55	70	192	192	Complete
JRC882	606224.2	644638.1	133.1	-55	70	172	172	Complete
JRC882 JRC883	606252.6	644648.3	132.7	-55	70	174	174	Complete
JRC884	606280.2	644658.1	132.7	-55	70	132	144	Complete
JRC885	606269.8	644679.8	132.3	-55	70	132	132	Complete
JRC886	606269.8	644679.8	133.9	-55	70	120	120	Complete
JRC887	606324.2	644645.2	131.8	-60	70	102	102	Complete
JRC888	606276.2	644627.1	131.3	-60	70	98	98	Complete
JRC890	606228.4	644627.1	131.7	-60	70	98 174	98 174	Complete
JRC890 JRC891	606228.4	644608.2	132.2	-60	70	174	174	Complete
JRC891 JRC892	606204.5				70	132	132	Complete
-		644591.2 644592.2	133.8	-60	70	200	-	-
JRC893	606159.1	644583.2	134.8 127 E	-60	70	200 152	200	Complete
JRC894 JRC897	606133.6 606053.0	644579.1 644543.5	137.5 133.7	-60 -60	70	152	152 156	Complete Complete

Table of Japa Project drilling intersections received during the June 2021 quarter. Intervals calculated at \geq 0.3 metre down hole length, \geq 0.4ppm Au, \leq 3 metres internal dilution of <0.4ppm Au. Table presents only those intersections of greater than 1 interval length in metres multiplied by grade in ppm Au.

Grade

ppm Au 2.22

1.09

2.46

1.55

3.58 1.17

1 1.01

5

1.49

1.17

0.7

1.47

1.39

3.24

0.89

6.8

2.61

0.72

1.86

0.51

1.02 0.88

1.81

0.49

2.42

5.05

1.36

1.72

3.14 1.26

0.7

3.85

12.61

1.7

0.65

5.14 2.49

0.56

0.41

1.53

0.89

0.87

2.18

0.65

0.52

1.96 2.22

1.09

2.46

1.55

3.58

1.17

1

1.01

5

1.49

Interval

Length (m)

1

5

1

2

1

2

3

4

2

4

3

5 1

9

1

10

5

4

3

1

3

7

26.3

4

1

1

2

1

2

1

0.7

5

0.7

1

4

1

4

5

0.8

2

2

3

1

4

5

1

2

1

1

2

1

3

	Hole Number	Depth From	Depth To
	JRC534	103	104
	JRC534	183	187
\geq	JRC534	200	205
	JRC534	211	212
	JRC534	220	222
	JRC534	231	232
	JRC534	244	245
	JRC534	281	283
())	JRC534	292	293
	JRC565	119	122
	JRC565	142	146
20	JRC565	158	160
())	JRC565	169	173
JP	JRC565	252	255
20	JRC565	279	284
99	JRC565	294	295
	JRC566	117	126
	JRC578	141	142
	JRC578	146	156
	JRC645	137	142
	JRC647	125	129
	JRC647	134	137
<u>an</u> í	JRC647	170	171
90	JRC647	189	192
	JRC647	218	219
	JRC647	224	231
	JRC647	257	283.3
\bigcirc	JRC647	287	291
	JRC647	301	302
10	JRC648	161	162
(//)	JRC648	207	209
\overline{D}	JRC648	214	215
	JRC650	191	193
20	JRC650	233.4	234
())	JRC654	208	209
JP	JRC654	226	226.7
\square	JRC654	279	284
\bigcirc	JRC654	290	290.7
	JRC673A	134	135
	JRC673A	142	150
	JRC694	166	170
	JRC694	207	208
\bigcirc	JRC694	215	219
\bigcirc	JRC723	136	141
	JRC723	154.2	155
	JRC723	172	174
	JRC753	241	243
	JRC759	321	324
	JRC534	103	104
	JRC534	183	187
	JRC534	200	205
	JRC534	211	212
	IDCE24	220	222

JRC534

JRC534

JRC534

JRC534

JRC534

JRC565

220

231

244

281

292

119

Hole Number	Depth From	Depth To	Interval Length (m)	Grade ppm Au
JRC801	218	227	9	1.59
JRC801	231	232	1	1.21
JRC801	267	269	2	1.13
JRC801	284	291	7	1.57
JRC801	302	306	4	0.52
JRC811	222	227	5	2.09
JRC811	233	235	2	3.07
JRC811	239	240	1	4.1
JRC811	255	276.4	21.4	6.73
JRC811	291	298	7	2.34
JRC811	316	335	19	0.67
JRC811	363.3	364	0.7	10.45
JRC811	370	372	2	16.65
JRC812	292	294	2	1.5
JRC813	146	147	1	1.34
JRC813	164	173	9	0.56
JRC813	190	194	4	2.65
JRC813	201	203	2	0.92
JRC813 JRC813	201	203	7	0.92
JRC813	207	230	3	0.78
JRC813	260	264	4	0.94
JRC813 JRC813	273	204	1	1.16
÷	273	274	1	1.10
JRC813				
JRC813	290	291	1 7	7.02
JRC818	49	56	7	0.6
JRC819	69	70		5.51
JRC819	93	97	4	0.47
JRC819	118	119	1	1.34
JRC819	142	143	1	1.57
JRC819	162	164	2	1.45
JRC821	66	67	1	1.78
JRC821	98	106	8	2.73
JRC826	237	238	1	2.37
JRC832	138	140	2	1.15
JRC832	156	157	1	1.47
JRC832	177	178	1	1.98
JRC832	185	186	1	1.97
JRC833	155	158	3	0.86
JRC833	169	170	1	2.63
JRC833	180	181	1	1.02
JRC833	185	186	1	2.94
JRC833	196	203	7	0.57
JRC833	239	245	6	1.19
JRC836	2	19	17	0.42
JRC836	23	38	15	0.65
JRC836	42	51	9	0.43
JRC836	58	61	3	0.64
JRC836	88	90	2	1.15
JRC801	218	227	9	1.59
JRC801	231	232	1	1.21
JRC801	267	269	2	1.13
JRC801	284	291	7	1.57
JRC801	302	306	4	0.52
JRC811	222	227	5	2.09
JRC811	233	235	2	3.07
JRC811	239	233	1	4.1
JRC811	255	276.4	21.4	6.73
JRC811	291	298	7	2.34

TRIBUNE RESOURCES LTD (ASX:TBR) | ASX ANNOUNCEMENT Quarterly Report for June 2021

222

232

245

283

293

122

Hole Number	Depth From	Depth To	Interval Length (m)	Grade ppm Au
JRC836	115	118	3	1.49
JRC836	123	124	1	1.18
JRC836	132	135	3	0.69
JRC846	134	135	1	1.24
JRC853	111	113	2	0.96
JRC853	118	120	2	0.69
JRC855	117	120	3	1.22
JRC856	14	28	14	0.79
JRC856	57	69	12	0.65
JRC856	79	84	5	0.52
JRC856	104	107	3	1.6
JRC856	116	118	2	0.53
JRC857	193	198	5	0.59
JRC863	151	176	25	2.19
JRC863	180	181	1	3.03
JRC865	16	17	1	1.4
JRC865	70	72	2	1.04
JRC865	99	120	21	0.64
JRC865	126	150	24	0.97
JRC866	166	167	1	18.66
JRC868	174	178	4	0.96
JRC868	193	205	12	0.43
JRC870	142	144	2	2.67
JRC870	153	156	3	0.75
JRC870	165	168	3	0.71
JRC871	35	36	1	3.96
JRC871	78	80	2	0.62
JRC871	145	150	5	0.64
JRC871	163	172	9	3.05
JRC871	214	216	2	0.56
JRC871	226	228	2	2.16
JRC872	121	126	5	9.43
JRC872	142	144	2	1.5
JRC872	215	222	7	4.33
JRC873	36	41	5	0.95
JRC873	72	75	3	0.89
JRC873	105	108	3	1.38
JRC873	186	195	9	2.76
JRC873	199	208	9	4.09
JRC873	228.3	229	0.7	19.32
JRC873	233	234	1	3.45
JRC874	3	7	4	1.04
JRC874	23	25	2	0.8
JRC874	92	93	1	2.04
JRC874	122	123	1	2.39
JRC874	161	170	9	0.49
JRC874	213	217	4	1.34
JRC875	21	22	1	1.05
JRC875	97	98	1	2.95
JRC875	159	167	8	0.62
JRC875	181	183	2	0.53
JRC876	11	15	4	0.57
JRC876	40	41	1	2.61
JRC876	65	75	10	0.4
JRC876	112	117	5	1.12
JRC876	209	214	5	0.62
JRC876	231	241	10	1.38
JRC876	248	257	9	1.32

Hole	Depth	Depth	Interval	Grade
Number	From	То	Length (m)	ppm Au
JRC876	262	264	2	2.04
JRC877	107	112	5	1.14
JRC877	207	214	7	0.9
JRC877	227	231	4	1.49
JRC877	240	241	1	4.67
JRC877	265	269	4	1.87
JRC878	10	12	2	12.3
JRC878	55	56	1	2.17
JRC878	65	68	3	0.45
JRC878	74	81	7	1.03
IRC878	87	95	8	0.85
JRC878	102	104	2	7.44
JRC878	111	143	32	1.23
JRC878	147	151	4	6.32
JRC879	65	67	2	0.72
JRC879	85	89	4	0.43
JRC879	102	107	5	1.47
JRC879 JRC879	102	107	2	2.96
JRC880	46	49	3	0.94
JRC880 JRC880	68	49 74	6	0.94
	83	84	1	1.11
JRC880 JRC880	95	84 104	9	1.11
			9	
JRC880	116	117		3.98
JRC880	121	132	11	0.63
JRC881	36	41	5	1.49
JRC881	54	55	1	6.08
JRC881	59	61	2	3.26
JRC881	69	70	1	11.12
JRC881	115	122	7	0.53
JRC881	136	138	2	4.59
JRC881	142	147	5	0.5
JRC882	104	108	4	1.93
JRC883	25	31	6	0.76
JRC883	47	55	8	1.17
JRC883	62	64	2	1.35
JRC884	6	18	12	0.65
JRC884	48	50	2	0.56
JRC884	91	95	4	0.52
JRC885	18	22	4	0.62
JRC888	9	15	6	3.77
JRC888	50	60	10	0.67
JRC890	67	72	5	0.65
JRC890	76	78	2	2.9
JRC890	169	171	2	0.61
JRC893	12	15	3	0.54
JRC893	30	33	3	1.82
JRC893	53	55	2	1.39
JRC893	75	81	6	2.03
JRC893	86	98	12	0.74
JRC893	123	126	3	0.99
JRC893	183	186	3	0.42
JRC894	21	27	6	2.93
JRC894 JRC894	63	67	4	8.91
JRC894 JRC894	108	114	6	1.02
JRC894 JRC894	108	114	3	3.02
		123	3	
JRC894 JRC897	141 145	144	3 10	3.16 0.65
	14.)	1 1 2 2	10	0.00

Hole Number	Depth From	Depth To	Interval Length (m)	Grade ppm Au
ERC003	108	110	2	0.82
ERC008	3	5	2	1.09
ERC008	113	114	1	3.44
ERC028	12	25	13	1.57
ERC029	65	66	1	1.05
ERC029	81	84	3	0.8
ERC054	18	19	1	15.73
ERC055	12	17	5	0.47
ERC056	9	11	2	0.85
ERC056	80	88	8	1.49
ERC057	59	63	4	1.5
ERC057	99	100	1	4.77
ERC057	109	111	2	0.55

Hole Number	Depth From	Depth To	Interval Length (m)	Grade ppm Au
ERC058	76	85	9	0.5
ERC061	26	27	1	19.88
ERC065	51	53	2	0.55
ERC065	69	70	1	2.94
ERC065	139	148	9	1.06
ERC066	12	13	1	3.08
ERC066	40	41	1	1.76
ERC067	21	22	1	2.35
ERC067	83	84	1	3.78
ERC067	129	130	1	7.04
ERC068	65	66	1	1.43
ERC076	36	39	3	0.58

Diwalwal Gold Project, Philippines

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond Core Drilling techniques were employed. Diamond core was sampled over intervals ranging from 0.2 metres to 2.4 metres length by electric core saw cut. Half core or quarter core samples are submitted for analysis. All samples submitted for analysis are pulverised to nominally minus 75 microns and a 50-gram subsample is split off for fire assay AAS determination of gold. Samples are also analysed for a multielement suite by four acid digest optical emission spectrometry.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond Core drilling methods were employed. Diamond core size is NQ2. NQ2 core was collected with 1.5 metre or 3 metre standard barrel. Diamond core holes were drilled from underground platforms up to 336 metres in length. NQ2 core is orientated using Reflex ACT II orientation tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias 	 Diamond core recovery is physically measured and recorded every run. No sample bias is suspected nor determined.

Criteria	JORC Code explanation	Commentary
	may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Diamond Core logging is both qualitative and quantitative. All core is logged for lithology, oxidation, texture, mineralisation, alteration, veining, sample quality and recovery. In addition, dip and dip direction details of structures, contacts, fabric and veins are captured from definitively orientated core using a Reflex IQ Logger tool. Core is photographed prior to sampling. Core samples of all oxidation and weathering stages are also subject to specific gravity determination. The data captured from geological logging is of appropriate standard, focus and detail to support future Mineral Resource estimations, mining studies and metallurgical studies.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Diamond core is cut using an electric Clipper saw. Where necessary due to extreme fracturing or friability, core is sampled by parting and grab. Half or quarter core is submitted for analysis and half core is retained. Field duplicates are collected and submitted for analysis at regular intervals throughout the drilling campaigns. Approximately 2% of core samples are duplicated and quarter core submitted for analysis. Sample weights are such that the entire sample submitted to the laboratory is dried, crushed and pulverised to nominally minus 75 microns in an LM3 or LM5 pulveriser. From this pulp a nominally 200 gram subsample is split and retained. From the 200 gram pulp a 50 gram subsample is taken for fire assay charge and AAS determination of gold content. Samples have an additional subsample analysed for a suite of elements by four acid digest with ICP-OES elemental determination. Subsampling methods employed throughout the laboratory process are appropriate for the material and deposit type. Grind checks are conducted at a frequency of 2% of samples from every batch processed.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of 	 Drill samples are subject to fire assay of a 50 gram pulverised subsample giving total gold analysis of a representative sample of the in-situ material determined by atomic absorption spectrometry to a lower detection limit of 0.005 parts per million gold. Selected samples have an additional subsample analysed for a suite of elements by four acid digest with ICP-OES elemental determination to various detection limits. Approximately 15% of all samples submitted are for quality control purposes. Field duplicates are collected at regular intervals throughout the sampling process and analysed with the primary samples. Approximately 2% of core samples are duplicated. Commercially prepared Standard Reference Materials, including coarse blank material, are submitted with each batch of samples to monitor potential contamination in the

Criteria	JORC Code explanation	Commentary
	accuracy (ie lack of bias) and precision have been established.	preparation process and accuracy and consistency of the analysis process.No geophysical methods were used for elemental determinations.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All drilling data including significant intersections is verified and validated by other geologists or Competent Persons within the organisation. Dedicated twinning of holes is being employed in a limited capacity, where possible, to verify mineralisation intersected in previous drilling campaigns. Current drilling is designed to verify and confirm diamond drilling intersections with respect to location, nature and tenor of mineralisation. Drilling data is manually and digitally captured according to written procedures and a library of standard logging codes appropriate to this project and purpose. Manually captured data is transferred to digital templates where it is validated and then loaded to an externally managed and maintained database, again with validation protocols. Original data and reports are stored at the Company's Headquarters. Raw assay data is provided to the external database managers where it is loaded to the database, securely stored and quarantined.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All planned drill holes and drilled hole collars are surveyed using Electronic Total Station (ETS) instrument. Drill hole trajectories are measured using Reflex EZ-Trac or Reflex EZ-Gyro down hole survey tools. Drill rig alignment is controlled using Reflex TN14 Gyro Compass. Grid is Philippine Reference System of 1992 (PRS92) and Vertical Datum is referenced to mean sea level. Surface topographic and location surveys are by GNSS-RTK. Positioning is calibrated against preestablished primary planimetric survey control with tie-in to the PRS92. Underground surveys are conducted using ETS.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes are designed to provide nominally 40 metre to 80 metre spaced pierce points of the target horizon to both infill drill coverage and confirm mineralisation evident from existing drilling. The spacing, depth and orientation of drill holes is designed to intersect the mineralisation controls and to allow continuity of the mineralisation to be confidently modelled, notwithstanding the limitations on drilling positions and drill hole orientations as a function of operating in an underground mine. The drilling data is intended to be used in a Mineral Resource estimation. Drill hole intersections are calculated and reported as length weighted averages of raw assay data. Parameters for calculation are detailed with the tables of results included in the body of the report.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The primary controls on the gold mineralisation are presently reasonably well understood and are being confirmed in the initial stages of this drilling campaign. Drill holes in this campaign are designed to intersect the mineralisation with intersection lengths less than twice the true width of the lode, where possible, again notwithstanding the limitations on drilling positions and drill hole orientations as a function of operating in an underground mine.
Sample security	• The measures taken to ensure sample security.	• Chain of custody for samples is managed by Tribune personnel and contractors on site. Samples are securely stored on site and transported to the Intertek Surigao Laboratory.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• Data and data collection methods are continuously reviewed for accuracy and adherence to procedures by Tribune and Principal Contractor personnel. No material issues have been noted. No official audits have been undertaken at this stage.

		 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	intersect the mineralisation with intersection lengths less than twice the true width of the lode, where possible, again notwithstanding the limitations on drilling positions and drill hole orientations as a function of operating in an underground mine.
	Sample security	• The measures taken to ensure sample security.	• Chain of custody for samples is managed by Tribune personnel and contractors on site. Samples are securely stored on site and transported to the Intertek Surigao Laboratory.
	Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• Data and data collection methods are continuously reviewed for accuracy and adherence to procedures by Tribune and Principal Contractor personnel. No material issues have been noted. No official audits have been undertaken at this stage.
	7	Section 2 Reporting of 1	-
GU	Criteria	JORC Code explanation	Commentary
	Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Work was conducted within the 729 Area of the Diwalwal Mineral Reservation, located approximately 120km northeast of Davao City on Mindanao Island in the Republic of the Philippines. Tribune has a relevant interest in the 729 Area. All tenure is secure and in good standing with no known impediments.
	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• Exploration, prospecting and small scale mining has been conducted within and adjacent to the tenement over a period of several decades since significant gold was discovered in 1983. Drilling of the Balite Vein was undertaken by the Philippine Mining Development Corporation during 2005 to 2007.
	Geology	• Deposit type, geological setting and style of mineralisation.	• Target is epithermal vein gold-silver mineralisation. Known veins are of low sulphidation epithermal type.
	Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the 	• Details of the location, orientation, depth and significant intersections of drill holes are provided in the body of the report to which this table is appended.

Criteria	JORC Code explanation	Commentary
	 drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut- off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Significant intersections are reported as length weighted averages of all samples within the composite interval. Criteria used to calculate significant intersections can vary and are presented with each table of results. No top cut of grades has been applied to the results reported. Significant intersections are reported in the context of any likely mining extraction scenario. In this case any future mining would be by underground methods and as such significant intersections are reported above relevant cutoff grades with limited internal dilution included.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Significant intersections are reported as down hole length together with an estimation of true width where that estimate is possible.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Where comprehensive 	 Significant intersections and appropriate sectional views of drill holes and intersections are presented in the body of the report to which this table refers. All significant intersections from the relevant
reporting	reporting of all Exploration Results is not practicable,	drilling campaign and the interpretation of those results are reported.

Criteria	JORC Code explanation	Commentary
	representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Geological logging and geochemical analysis of completed drill holes has demonstrated that the quartz vein intervals are generally consistent in location, width and tenor relative to historic drilling. Further analysis and modelling is required as results are received and the exploration program progresses.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Step out drilling will be undertaken to test for down dip and lateral extensions to the Balite Vein system upon completion of this confirmatory drilling phase.

Appendix 5B

Mining exploration entity or oil and gas exploration entity quarterly cash flow report

Name of entity		
Tribune Resources Ltd (ASX:TBR)		
ABN Quarter ended ("current quarter")		
11 009 341 539	30 June 2021	

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (12 months) \$A'000
1.	Cash flows from operating activities		
1.1	Receipts from customers	36,560	177,694
1.2	Payments for		
	(a) exploration & evaluation (if expensed)	(7,552)	(13,542)
	(b) development	(2,536)	(8,835)
	(c) production	(20,545)	(102,548)
	(d) staff costs	(430)	(1,981)
	(e) administration and corporate costs	(703)	(4,256)
1.3	Dividends received (see note 3)	-	-
1.4	Interest received	6	31
1.5	Interest and other costs of finance paid	(27)	(163)
1.6	Income taxes paid	(3,741)	(24,410)
1.7	Government grants and tax incentives	-	-
1.8	Other (provide details if material)	-	-
1.9	Net cash from / (used in) operating activities	1,032	21,990

2.	Ca	sh flows from investing activities		
2.1	Pa	yments to acquire:		
	(a)	entities	-	-
	(b)	tenements	-	-
	(c)	property, plant and equipment	(1,118)	(5,196)
	(d)	exploration & evaluation (if capitalised)	3,239	(3,978)
	(e)	investments	-	-
	(f)	other non-current assets	-	-

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (12 months) \$A'000
2.2	Proceeds from the disposal of:		
	(a) entities	-	-
	(b) tenements	-	-
	(c) property, plant and equipment	110	615
	(d) investments	-	-
	(e) other non-current assets	-	-
2.3	Cash flows from loans to other entities	-	-
2.4	Dividends received (see note 3)	-	2,658
2.5	Other (provide details if material)	-	-
2.6	Net cash from / (used in) investing activities	2,231	(5,901)

3.	Cash flows from financing activities		
3.1	Proceeds from issues of equity securities (excluding convertible debt securities)	-	-
3.2	Proceeds from issue of convertible debt securities	-	-
3.3	Proceeds from exercise of options	-	-
3.4	Transaction costs related to issues of equity securities or convertible debt securities	-	-
3.5	Proceeds from borrowings	-	-
3.6	Repayment of borrowings	(832)	(4,454)
3.7	Transaction costs related to loans and borrowings	-	-
3.8	Dividends paid	-	(16,508)
3.9	Other (provide details if material)	(4,945)	(4,987)
3.10	Net cash from / (used in) financing activities	(5,777)	(25,949)

The cash outflow in Item 3.9 relates to the payment associated with the buyback announced by Rand Mining Limited on 29 April 2021.

4.	Net increase / (decrease) in cash and cash equivalents for the period		
4.1	Cash and cash equivalents at beginning of period	6,674	14,023
4.2	Net cash from / (used in) operating activities (item 1.9 above)	1,032	21,990
4.3	Net cash from / (used in) investing activities (item 2.6 above)	2,231	(5,901)

ASX Listing Rules Appendix 5B (01/12/19)

⁺ See chapter 19 of the ASX Listing Rules for defined terms.

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (12 months) \$A'000
4.4	Net cash from / (used in) financing activities (item 3.10 above)	(5,777)	(25,949)
4.5	Effect of movement in exchange rates on cash held	3	-
4.6	Cash and cash equivalents at end of period	4,163	4,163

5.	Reconciliation of cash and cash equivalents at the end of the quarter (as shown in the consolidated statement of cash flows) to the related items in the accounts	Current quarter \$A'000	Previous quarter \$A'000
5.1	Bank balances	4,113	6,624
5.2	Call deposits	50	50
5.3	Bank overdrafts	-	-
5.4	Other (provide details)	-	-
5.5	Cash and cash equivalents at end of quarter (should equal item 4.6 above)	4,163	6,674

6.	Payments to related parties of the entity and their associates	Current quarter \$A'000
6.1	Aggregate amount of payments to related parties and their associates included in item 1	134
6.2	Aggregate amount of payments to related parties and their associates included in item 2	-

7.	Financing facilities Note: the term "facility' includes all forms of financing arrangements available to the entity. Add notes as necessary for an understanding of the sources of finance available to the entity.	Total facility amount at quarter end \$A'000	Amount drawn at quarter end \$A'000
7.1	Loan facilities	-	-
7.2	Credit standby arrangements	-	-
7.3	Other (please specify)	3,315	3,315
7.4	Total financing facilities	3,315	3,315
7.5	Unused financing facilities available at qu	uarter end	-
7.6	Include in the box below a description of eac	h facility above including	the lender interest

7.6 Include in the box below a description of each facility above, including the lender, interest rate, maturity date and whether it is secured or unsecured. If any additional financing facilities have been entered into or are proposed to be entered into after quarter end, include a note providing details of those facilities as well.

Item 7.3 - Various finance leases (EKJV Leases) cover underground mining equipment. The terms range between 30-36months. Details relating to lease providers and rates is considered commercially sensitive.

8.	Estimated cash available for future operating activities	\$A'000
8.1	Net cash from / (used in) operating activities (Item 1.9)	1,032
8.2	Capitalised exploration & evaluation (Item 2.1(d))	3,239
8.3	Total relevant outgoings (Item 8.1 + Item 8.2)	4,271
8.4	Cash and cash equivalents at quarter end (Item 4.6)	4,163
8.5	Unused finance facilities available at quarter end (Item 7.5)	-
8.6	Total available funding (Item 8.4 + Item 8.5)	4,163
8.7	Estimated quarters of funding available (Item 8.6 divided by Item 8.3)	N/A

Note: if the entity has reported positive relevant outgoings (ie a net cash inflow) in item 8.3, answer item 8.7 as "N/A". Otherwise, a figure for the estimated quarters of funding available must be included in item 8.7

8.8 If Item 8.7 is less than 2 quarters, please provide answers to the following questions:

1. Does the entity expect that it will continue to have the current level of net operating cash flows for the time being and, if not, why not?

Ansv	ver: Not applicable
2.	Has the entity taken any steps, or does it propose to take any steps, to raise further cash to fund its operations and, if so, what are those steps and how likely does it believe that they will be successful?
Ansv	ver: Not applicable
3.	Does the entity expect to be able to continue its operations and to meet its business objectives and, if so, on what basis?

Answer: Not applicable

Compliance statement

- 1 This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.
- 2 This statement gives a true and fair view of the matters disclosed.

Date: 30 July 2021

Authorised by: By the Board (Name of body or officer authorising release – see note 4)

Notes

- This quarterly cash flow report and the accompanying activity report provide a basis for informing the market about the entity's activities for the past quarter, how they have been financed and the effect this has had on its cash position. An entity that wishes to disclose additional information over and above the minimum required under the Listing Rules is encouraged to do so.
- 2. If this quarterly cash flow report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly cash flow report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.
- 3. Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.
- 4. If this report has been authorised for release to the market by your board of directors, you can insert here: "By the board". If it has been authorised for release to the market by a committee of your board of directors, you can insert here: "By the [name of board committee – eg Audit and Risk Committee]". If it has been authorised for release to the market by a disclosure committee, you can insert here: "By the Disclosure Committee".
- 5. If this report has been authorised for release to the market by your board of directors and you wish to hold yourself out as complying with recommendation 4.2 of the ASX Corporate Governance Council's Corporate Governance Principles and Recommendations, the board should have received a declaration from its CEO and CFO that, in their opinion, the financial records of the entity have been properly maintained, that this report complies with the appropriate accounting standards and gives a true and fair view of the cash flows of the entity, and that their opinion has been formed on the basis of a sound system of risk management and internal control which is operating effectively.