

IMPROVED RESOURCE ASSESSMENT FOR CHALLENGER

Highlights

- Improved interpretation of the gold mineralisation at the Challenger Gold Project
- Grade of Resources Estimates at the Challenger deposits increase by 38% to 3.76g/tAu
- Provides additional potential to improve mining economics
- JORC (2012) Mineral Resources for Challenger now 685,000t @ 3.76g/t Au and adjusts the total resources for the Adelong Gold Project to 174,200 oz Au

3D Resources Limited (**ASX:DDD**) (**3D Resources** or the **Company**) is pleased to advise that it has completed a reassessment of the Resource Estimates for the Challenger and Challenger Extended deposits to JORC (2012) Standards.

Commenting on the Resource update, 3D Resources Managing Director, Mr Peter Mitchell, said:

"We are very pleased with the re-interpretation of the geology at the Challenger deposits, as it better fits the style of mineralisation present as a series of discrete higher grade veins.

It is evident from these new Resource Estimates that 93% of the gold resources previously reported at the Challenger deposits are contained within much higher grade vein systems (38% increased grade) and much lower tonnages (33% reduction in tonnes). These findings have significant implications for future mine planning and development."

This re-assessment was undertaken after an independent technical review of the Resource Estimates carried out in 2018 had shown that significant quantities of un-mineralised/sub-economic grade material had been incorporated into the mineralised domains used in the earlier JORC (2012) Resource Estimates for the Challenger deposits.

The nature of the mineralisation in the Challenger deposit is a shear hosted gold veining system in highly competent granodiorite host rock where the mineralisation is structurally controlled and tends to form high grade veins along discrete faults, with the occasional stringers found in the surrounding host rock which give the appearance of a low grade mineralised envelope.

The geological interpretation on which the previous resource estimates had been made, stemmed from work completed by Robin Rankin (as a consultant with ECSMC) in 1999, that had largely modelled several of the veins based on the mineralised envelopes. While minor changes to the Resource Estimates were subsequently reported as a result of additional drilling results and underground sampling, no major review of the geological interpretation had been made. This work culminated in the 2016 Resource Estimates for the Challenger deposits that were reported and previously announced by the Company for the Challenger Deposit.

Following the findings of the 2018 review, Robin Rankin (GeoRes) was engaged to update his geological interpretation of the vein system at Challenger and to take into account the additional geological information generated from drilling and assay results. This interpretation was aimed at better defining the mineralised zones and in particular the main high grade mineralisation at Challenger.

The earlier interpretation on which the 2016 resource estimations had broadly interpreted the main Challenger deposits as 4 mineralised envelopes containing (CHO – CH3) as shown (left section) in Figure 1, but following the reinterpretation of all the assay data and in particular the higher grade zones (>2g/t Au), this reinterpretation split these broader envelopes into 9 discrete higher grade veins contained within the mineralised envelopes.

To show the effect of this reinterpretation, Figures 1 & 2 shows a typical cross section across the Challenger Deposit that highlight the changes made as a result of the geological interpretation and associated block model for the Challenger deposits.

Figure 1 Showing a Typical Cross Section(6,903,740N) Across the Challenger Deposit with the revised interpretation of the veins(right)

Figure 2 Showing a Cross Section(6,903,740N) Showing the revised Block Model (right)

This interpretation better fits the style of mineralisation at Challenger and is an important step forward in assessing the mining options for these deposits.

As a result of this re-interpretation, the resources were remodelled into a new JORC (2012) Resource Estimate for the Challenger and Challenger Extended Deposits. A copy of this JORC Report is appended to this announcement and has been also lodged on the <u>Company's website</u>.

SUMMARY OF THE CHANGES

The previously announced resources for the Challenger deposits are shown in Table 1

Table 1: Prior Resource Es deposits	timates for the CHALLENGER	Tonnes (t)	Au (g/t)	Au (oz)
Measured	51%	459,000	3.07	45,000
Indicated	26%	268,000	2.67	23,000
Inferred	23%	290,000	2.16	20,000
Total	100%	1,017,000	2.72	89,000

Following the reassessment of the geology and remodelling of the JORC Resource Estimates for the Challenger deposits, the revised resource estimates for the Challenger deposits can be summarised as follows in table 2:

Table 2: Revised Resource E deposits	stimate for CHALLENGER	Tonnes (t)	Au (g/t)	Au (oz)
Measured	60%	372,000	4.16	49,700
Indicated	23%	168,000	3.48	18,800
Inferred	17%	146,000	3.06	14,400
Total	100%	685,000	3.76	82,000

(See Attached JORC Report for Details)

This re-interpretation has shown there to be good correlation between the high grade zones and also vastly improves the geological interpretation of the Challenger Deposits to better reflect the current data. This has resulted in:

- an improved level of confidence in continuity between high grade vein intersections that has allowed Measured Resources to increase (now based on drill spacing of <27.5m)
- Reduced the influence that the lower grade "envelope" has on block model. The net effect of the improved interpretation has been to reduce overall gold resources at the Challenger deposits by just 7% but it has substantially increased the overall grades by 38%. This will be an important factor in underground mining or selective mining of the deposit.
- A revised definition of mineralised zones that provides a better fit with the geology of the deposits and one that highlight the best zones for mining.

PROJECT RESOURCES

Based on this updated Resource Estimate for the Challenger Deposit, and the previously announced resource estimated for the Currajong West, Currajong East, Donkey Hill and Caledonian deposits (ASX Announcement 17 August 2020), the overall JORC Resource Estimates for the Adelong Gold Project are summarised in Table 3.

able 3: Resources Statement (JORC 2012) for the Adei	ong Gold Project based on	1g/tAu Cutoff		
CHALLENGER deposit		Tonnes (t)	Au (g/t)	Au (oz)	
Measured	60%	372,000	4.16	49,700	
Indicated	23%	168,000	3.48	18,800	
Inferred	17%	146,000	3.06	14,400	
Total	100%	685,000	3.76	82,000	
CURRAJONG deposit		Tonnes (t)	Au (g/t)	Au (oz)	
Measured	-	-	-	-	
Indicated	22%	126,000	2.57	10,400	
Inferred	78%	407,000	2.63	34,400	
Total	100%	533,000	2.61	44,800	
DONKEY HILL deposit		Tonnes (t)	Au (g/t)	Au (oz)	
Measured	-	-	-	-	
Indicated	-	-	-	-	
Inferred	100%	103,000	5.03	16,600	
Total	100%	103,000	5.03	16,600	
CALEDONIAN deposit		Tonnes (t)	Au (g/t)	Au (oz)	
Measured	-	-	-	-	
Indicated	-	-	-	-	
Inferred	100%	157,000	5.94	30,000	
Total	100%	157,000	5.94	30,000	
TOTAL ADELONG GOLD PROJE	ECT RESOURCES*	Tonnes (t)	Au (g/t)	Au (oz)	
Measured	25%	372,000	4.16	49,700	
Indicated	20%	294,000	3.09	29,200	
Inferred	55%	813,000	3.65	95,400	
Total	100%	1,478,000	3.67	174,200	

See details of the Resource Estimates for Challenger (attached to this announcement) and the Resource Assessment for Currajong West, Currajong East, Donkey Hill and Caledonian deposits completed by Robin Rankin (GeoRes) and announced by the Company on 17th August 2020. These reports are also located on the Company's website.

-ENDS-

Released with the authority of the board.

For further information on the Company and our projects, please visit: 3dresources.com.au

Contact:

3D Resources Ltd

Peter Mitchell Managing Director Peter.mitchell@3dresources.com.au +61 400 880 309 Andrew Draffin Company Secretary andrew.draffin@3dresources.com.au +61 3 8611 5333 Mark Flynn Investor Relations mark.flynn@3dresources.com.au +61 416 068 733

Competent Persons Statement

Information in this "ASX Announcement" contains a summary of resource estimates published by Robin Rankin who is the Competent Person and Member of the AusIMM in respect of those Resource Estimates. Mr Peter Mitchell has summarised the Exploration Results and geological data. Mr Peter Mitchell is a Member of the Australasian Institute of Mining and Metallurgy and is Managing Director of 3D Resources Ltd. Peter Mitchell has sufficient experience that is relevant to the types of deposits being explored for and qualifies as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code 2012 Edition).

The JORC (2012) Resource Estimates and associated report attached to this announcement was prepared Robin Rankin. Robin Rankin is a Competent Person who is a Member (#110551) of the Australasian Institute of Mining and Metallurgy (MAusIMM) and accredited since 2000 as a Chartered Professional (CP) by the AusIMM in the Geology discipline. Robin Rankin provided this information to his Client 3D Resources Limited as paid consulting work in his capacity as Principal Consulting Geologist and operator of independent geological consultancy GeoRes. He and GeoRes are professionally and financially independent in the general sense and specifically of their Client and of the Client's project. This consulting was provided on a paid basis, governed by a (in this case an on-going engagement) scope of work and a fee and expenses schedule, and the results or conclusions reported were not contingent on payments. Robin Rankin has sufficient experience that is relevant to the style of mineralization and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person (CP) as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Robin Rankin consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

About 3D Resources Ltd

3D Resources Limited is a minerals explorer targeting high value commodities with a particular focus on Gold and owns the Adelong Goldfield in New South Wales (NSW).

In May 2020, 3D Resources took control of the Adelong GoldField which covers 70km², comprising the old Adelong Goldfield situated in Southern NSW located approximately 20km from Tumut and 80km from Gundagai. The Goldfield also contains 17 freehold properties with all mining and processing plant equipment onsite, and until recently was a producing mine.

The project now carries a JORC (2012) Resource of 174,200 oz of gold, following resource upgrades in August 2020 and August 2021.

Attn: Mr Peter Mitchell

3D Resources Limited 4/91 William Street Melbourne VIC Australia **Geo**Res PO Box 2332 Bowral NSW 2576 Australia

27th August 2021

Dear Peter

Adelong Gold Project – Challenger JORC Gold Resources – Summary August 2021

This Report summarises the JORC Resource re-estimate and reporting of gold in 3D Resources Ltd's (3D or the Company) Challenger deposit at the Adelong Gold Project in NSW, Australia.

The Report is brief and in a summary form due to the understood imperative to supply sufficient documentation to back other downstream analysis and reporting by the Company. As such it does not contain some of GeoRes's standard long-form reporting features (such as full cross-sectional plotting). However as this Report only gives the results of a re-estimate of the Challenger Resources, using existing data (not new data), the past detailed reporting (most recently that for MGL in 2016) remains specifically relevant and does not require repeating. The Report also lacks GeoRes's Consultant Statements Appendix which defines such issues as independence, confidentiality, and validity.

The Report consists of a Project precis, a JORC Table 1, CP statement, detailed Resources by vein (Appendix 2), a listing of the drill holes used (Appendix 3), a listing of interpreted vein intercepts (envelope veins in Appendices 4 and high grade veins in Appendix 5). It is only really missing vein model thickness statistics, but that is not too important.

This documentation is specifically directed at the 'estimation' process and results. Other peripheral supporting information regarding the Project (such as location, tenure, geology etc) which would normally accompany an announcement have been reported in the past and could be supplied by the Company.

Yours sincerely

R.A. Rankin.

Robin A Rankin MSc DIC MAusIMM (CPGeo)¹

Principal Consulting Geologist - GeoRes

¹ Accredited by The Australasian Institute of Mining & Metallurgy (The AusIMM) since 2000 as a Chartered Professional (CP) in the Geology discipline.

CONTENTS

Contents	2
Figures	2
Tables	2
Summary documentation – 27 August 2021	3
Appendix 1 – JORC Code, 2012 Edition – Table 1	11
Appendix 2 – Challenger JORC Mineral Resources – by vein	
Appendix 3 – Challenger drill hole listing & collar surveys	
Appendix 4 – Challenger drill hole 'ENVELOPE' vein intercepts	
Appendix 5 – Challenger drill hole 'HIGH GRADE' vein intercepts	40
Appendix 5 – Challenger drill hole 'HIGH GRADE' vein intercepts	40

FIGURES

Figure 1 Adelong deposits	3
Figure 2 Adelong drill holes	4
Figure 3 Envelope veins in section	6
Figure 4 plan	6
Figure 5 High grade veins in section	6
Figure 6 High grade gold grades	7
Figure 7 Envelope gold grades	7
Figure 8 Resource classes	8

TABLES

Table 1 Challenger vein sequence (mid 2018)	5
Table 2 Adelong Challenger JORC Mineral Resources - summary by Resource class	9
Table 3 Adelong Challenger - Resource reconciliation 2016/2018	9
Table 4 Adelong Challenger JORC Mineral Resources - by vein	

Adelong Gold Project Challenger Deposit JORC (2012 Edition) Gold Resource Re-estimate

SUMMARY DOCUMENTATION – 27 AUGUST 2021

V2 - Final

Engagement: GeoRes (through Consultant Robin Rankin)) was engaged by Peter Mitchell for 3D Resources Limited (3D, the Consultant's Client) on 4th August 2021 to complete Mineral Resource estimation and JORC² reporting (the Estimate and the Consultant's Project) of gold in the Challenger deposit (white label and oval in Figure 1) at the Adelong Gold Project in southern NSW (the Client's Project). GeoRes has worked on Adelong since ~1998 (and consequently possesses considerable Project knowledge) and has estimated and reported Resources on several of the Project's deposits.

Introduction, objective & background: This reports a re-estimate of previously reported Resources, used existing raw data, and was based on interpretation and preliminary estimation work undertaken in 2018 for a previous owner. JORC gold Resources had previously been reported by the Consultant for a series of previous owners - and iterated on a 'Phase 1' single semi-vertical vein interpretation dating back from 2016 to 1999. The 2018 work initiated a re-assessment and refinement of the geological vein models and a re-estimation of gold grades - a 'Phase 2' multi-vein interpretation. It also proved underground mining viability. Interpretation discriminated multiple narrow semi-vertical high grade veins within the wider semi-vertical vein-like mineralised envelope. This Phase 2 block grade estimation also employed 'un-folding' for the first time, a process to trend grade continuity along the plane of the veins. A similar JORC report to this was prepared in August 2020 of maiden gold Resources at the three other nearby deposits labelled in black in Figure 1.

Consultant/CP: Robin Rankin has +30 years' experience as a geologist, the majority of those years also as a JORC Mineral Resource estimator and reporter. He is a Competent Person (CP) according to the JORC Code's Figure 1 Adelong deposits

requirements, being a Member of the AusIMM, having +5 years relevant experience in the styles of mineralisation, and also being a Chartered Professional in geology as accredited by the AusIMM. As such he is the CP for this Resource re-estimate. The Consultant's CP Statement and release consent is included, as is a Code Table 1.

Consulting: All Resource estimation work (the Consulting) behind this Statement (the geological interpretation, modelling, grade estimation, reporting, and JORC Mineral Resource classification) was performed by the Consultant. This was a 're-estimate' of Challenger and as such all data was either already with the Consultant or was supplied by or on behalf of the Client and was taken at face value. Although the Consultant validated the data to his satisfaction he nevertheless provides this estimate on the basis that his Client takes responsibility for the data integrity.

Site visit: The Consultant did not visited the Project specifically for this re-estimate. However he has consulted to all recent Project owners, has visited it many times since 1998, and has gone underground in the adit at Challenger several times including in the months immediately prior to the Company acquiring the Project.

Location, tenure & history: Details should be sources from 3D. However in summary the Adelong Gold Project is located immediately north of the small town of Adelong in southern NSW. Historically the area hosted the Adelong Goldfield which produced nearly 1M oz of gold at the beginning of the 19th century. Pertinent mineral leases held by 3D are a central Mining Lease (ML 1435) of ~6 km² surrounded by a larger

Exploration License (EL 5278) of ~68 km². Also within the EL and just outside the ML exist a number of small

² The JORC Code (2012 Edition), abbreviated as JORC or the Code. Prepared by the Joint Ore Reserves Committee of the Australasian Institute of Mining and Metallurgy (AusIMM), Australian Institute of Geoscientists (AIG) and Minerals Council of Australia (MCA).

Mineral Claim Leases (MCLs). The ML is shown by the red boundary in Figure 1, overlayed on solid shaded topography. Coordinate grid lines are at 500 m spacing, are in AMG, and north is to the top. The Challenger deposit surface expression is marked by the small scale disturbances over a ~750 m long strike length in the white oval north of the Challenger label in Figure 1.

Geology: The Consultant's Geologist's Report³, contained within the 2016 Macquarie Gold Limited (MGL) IPO prospectus, should be consulted for a full geological summary of the Project area and its gold deposits.

Gold deposits & drilling: The Project area covers the heart of the old goldfield and contains numerous deposits which were mined underground. Exploration over the last 25 years focused on the Challenger deposit (labelled in white in Figure 1 and historically called 'Old Hill') and it was well drilled as shown by the many black E/W traces in the orange oval in Figure 2. However many other nearby deposits were also drilled in more limited amounts, and the drilling at the three which were the subject of the Consultant's 2020 Resource estimation, Currajong, Caledonian and Donkey Hill, is shown within the green ovals in Figure 2.

Gold mineralisation: Gold mineralisation is contained in narrow sub-vertical sub-parallel quartz veins hosted in granodiorite. Surface outcrop mapping shows that the veins cluster in groups with a ~350° to 355° orientation. Caledonian and Donkey Hill appear to be along strike north of the Challenger deposit. Currajong is on a parallel system ~600 m to the west and south of it the line probably runs through the Victoria deposit (which is marked by the drilling south west of Challenger in Figure 2. Recent high definition geophysical ground mag surveys by MGL highlighted these mineralisation directions clearly and forms a backbone to the geological vein interpretation done here.

Data: Drill hole data from all explorers over the last 25 years prior to the Companies tenure was collated by the Consultant as part of Resource estimation consulting to them. Data consists of reports; topographical data; mapping data; geophysical maps; and drill hole data. The bulk of the drilling was undertaken in the late 90s and early 2000s (by Carpentaria and Consolidated). Subsequent drilling was mostly of an in-fill nature (by Golden Cross and Somerset). The most recent limited drilling by the Company in 2021 post-dates this estimation work and was not on Challenger. Drill hole and topography data is all in AMG66 coordinates.

Drill hole data: Figure 2 shows thick black traces of all drill holes (but excludes the Company holes). Drill holes were overwhelmingly steeply inclined and oriented ~E/W across the strike of the veins. At Challenger topography dictated that the great majority of holes were drilled eastwards. Drill hole sample data was predominantly of gold at various interval lengths. Challenger drilling is tightly clustered (orange oval) over the southern ~500 m part of the deposit (known now as 'Challenger Main'). The northern ~250 m part of the deposit (known now as 'Challenger Extended') is less tightly and more shallowly drilled. Drilling of the line to the south is very sparse. Holes were predominantly drilled by Reverse Circulation (RC) and Reverse Air Blast (RAB), a lesser number were drilled by diamond drilling (DDH).

Challenger. At Challenger (comprising Main and Extended) ~218 holes exist for a total of ~19,531 m (average length ~90 m). Of those holes ~10 were drilled slightly to the north of Challenger Extended. A listing of drill holes at Challenger (with collar surveys) is given in Appendix 3 – Challenger drill hole listing & collar surveys.

Figure 2 Adelong drill holes

Geological vein interpretation: The Consultant firmly believes all gold mineralisation encountered is generally speaking 'narrow sub-vertical sub-parallel quartz vein hosted'. Drill hole assays are either completely barren (noted as blanks, zero or below detection values (typically 0.01 g/t)) or very sharply slightly or highly mineralised (typically >0.2 g/t) with gold over short intervals. The mineralised intervals represent correlateable vein intercepts with sharp boundaries.

³ Rankin, R., 3 August 2016. Geologist's Report on Macquarie Gold Limited's Tenements at Adelong, NSW, Australia. Report for MGL included within their IPO prospectus lodged with the ASX on 8 August 2016.

Interpretation involved 1) identifying all mineralised vein intercepts and then 2) identifying or correlating each intercept as belonging to a particular named vein. Identification was iterative and performed from cross-section to cross-section on the belief that the strike was essentially N/S.

From ~1999 to 2015 the early 'Phase 1' computerised geological interpretation and Resource estimation of Challenger was as a single semi-vertical vein along the full deposit strike length. The vein was named C1 (and identified as data population domain 1). Its overall strike was assumed as virtually exactly N/S. However this vein kinked slightly to the east (and changed strike slightly to slightly west of north) at a point roughly between Challenger Main and Challenger Extended. Thus in 2016 the interpretation was refined to terminate the Challenger vein C1 at that point and to rename the vein to the north to CHX2 (and domain 2). The CHX2 vein was effectively sub-parallel to C1 and ~10-15 m to the east. It was then also interpreted as overlapping southwards with C1 as it could be found in the footwall in the northern parts of C1. This re-interpretation coincided with the Consultant's conviction that the vein's true strike was slightly west of north at 350° to 355° as could be deduced from MGL's new high resolution geophysical data produced at the time. This strike also better lined up Challenger with the Caledonian deposit to the north.

A 'Phase 2' re-interpretation in mid-2018 (*the Resources of which are reported here*) considerably refined the vein definition by segregating multiple narrow semi-vertical markedly high grade veins within the wider semi-vertical old C1 vein-like more poorly mineralised 'envelope' previously interpreted. Additionally other minor veins were interpreted within the foot-wall and hanging-wall of C1. This process was principally aimed at investigating the practicality of underground mining. Previous open-cut mine planning had assumed a lower gold cut-off at ~1.0 g/t which was found to produce an economic pit when studied with pit optimisation software. Underground mine planning would require a higher gold cut-off at ~2.0 g/t. The Phase 2 re-interpretation researched the possibility of sufficient contiguous high grade lodes (with sufficient dimensions) being found to support underground mining.

The Phase 2 re-interpretation successfully showed that underground mining was possible. Two of the three new veins interpreted within the old C1 now corresponded closely to the actual old mined lodes (narrow and high grade) visible now within the Challenger adit.

The Phase 2 re-interpretation was a 2-step process:

- 1. Interpret broad generally and variably mineralised vein envelope veins. These intercepts were interpreted on gold grade using a lower ~0.2 g/t cut-off.
- 2. Interpret narrow high grade veins within the envelopes. These intercepts were interpreted on gold grade using a lower ~2.0 g/t cut-off.

All envelope vein intercepts are listed in Appendix 4 – Challenger drill hole 'ENVELOPE' vein intercepts. All high grade vein intercepts are listed in Appendix 5 – Challenger drill hole 'HIGH GRADE' vein intercepts.

Vein gold assays: An important addition to the Phase 2 vein re-interpretation effort was a re-collation of assays from all previous Project owners. This revealed that many re-assays of high grade samples had been previously ignored in the grade estimation. A feature long appreciated of Adelong sample gold assaying (along with many other gold deposits) was the accuracy of high grade values in the initial XRF/XRD/AAS assaying. Different project owners had variously re-assayed such samples using cyanide leaching and fire assay methods. Re-assays generally returned more repeatable values which were thought more accurate – as well as higher values for the truly high grade samples. Incorporating the re-assay results helped the vein interpretation process as well as improving the ultimate block grade estimates.

Vein sequence: The sequence of envelope veins, and the high grade veins within them, is listed going west to east in Table 1. Each vein was assigned a unique population domain number (for segregating during analysis and grade estimation). The four central envelope veins (CH0 to CH3, shaded red) were the principal veins, the outer ones (CHM1 and CH4) were only rarely encountered. The central envelope vein CH1 was approximately equivalent to the old vein C1. Only the high grade veins shaded in red contained sufficient samples for grade estimation.

Interpretation	WEST										EAST
Envelope veins:	CHM1	CH0		CH1	(~C1)		CH2		CH3		CH4
Domain:	6	5		1			2		3		4
High grade veins:		CHOW	CHOE	CH1W	CH1M	CH1E	CH2W	CH2E	CH3W	CH3E	CH4E
Domain:		16	17	7	8	9	10	11	12	13	15

Table 1 Challenger vein sequence (mid 2018)

Veins interpreted at Challenger remain open at depth and to a more limited extent along strike (because the drilling distinctly drops off in coverage outside the tight Challenger Main and Extended areas).

Vein surface modelling: Given the geological vein interpretation of gold grade mineralisation existing within fairly linear sharply bounded vein systems the veins were modelled from the drill hole intercept ends as computed DTM gridded surfaces. As they were semi-vertical they were computed relative to a vertical N/S plane located to the west. For each a roof (east side) and a floor (west side) was computed. Grid point interpolation in 3D employed a 'growth' algorithm to best suit realistic geological undulations. A 5*5 m mesh was chosen to adequately represent the typical drill hole spacing (typically 20-50 m). Lateral extrapolation was conservatively restricted to 25 m outside bounding drill holes.

Envelope models: Figure 3 shows a typical vertical E/W crosssection through envelope surface models (bounding blocks) and drill holes at Challenger Main (50 m grid lines). Pairs of thin blue lines mark the bounding surfaces of the four principal envelope veins CH0, CH1, CH2 and CH3 (west to east), with CH1 clearly the thickest.

Envelope vein dimensions: The same four principal envelope veins are shown on a level plan in Figure 4 for the full deposit strike length (CH0 on the left in purple, CH1 in brown, CH2 in green, and CH3 in blue on the right, 50 m grid lines).

At Challenger Main (southern end) the principal and widest vein CH1 (brown) averaged \sim 15-20 m (true horizontal width) over a \sim 350 m strike length. At Challenger Extended (northern end) the principal and widest vein CH3 (blue) averaged \sim 10-15 m over a \sim 200 m strike length.

Strike direction of the veins was \sim 350-355° over a total strike length of 700+ m (not all veins covered the full strike length).

Average dip of the veins was ~80°W (seen clearly in Figure 3).

And the maximum vertical depth of the veins was 250+ m with Main averaging ~ 200 m and Extended averaging ~ 100 m.

High grade models: Figure 5 shows the high grade veins within the envelopes on the same vertical E/W cross-section as above. Only the six high grade veins with sufficient data for grade estimation are shown (the ones marked in red in Table 1).

Figure 3 Envelope veins in section

Figure 5 High grade veins in section

High grade vein dimensions: Widths of the six principal high grade veins were in the order of several metres.

Un-folding block grade continuity control: Grade estimation continuity along (in the plane of) the veins was implemented (for the first time at Challenger) though use of a 3D 'un-folding' block model built within the vein surfaces. This method dynamically (changing at every block to be parallel to the vein orientation at that spot) trends the data search parallel to the vein by sub-blocking finely across a vein and then trending the search along the fine layers in the plane of

the vein. Bock sizes were 4*10 m (Z*Y) in the long-section (~vertically N/S) in the plane of the veins and dynamically of the order of <1 m (X) across-strike (E/W).

Gold block grade estimation: Gold grades were estimated into orthogonal blocks using an 'un-folding' grade continuity control block model. Model block sizes were ultimately set at 1*5*2 m with no sub-blocking (during a 1/2021 re-estimation to remove sub-blocking implemented in the original 7/2018 model). A fine block size was used to honour the narrow sub-vertical vein shapes. Grade estimation was performed in a single pass using a simple Inverse Distance squared (ID2) algorithm. Across strike (E/W) a distance weighting of 3 was applied to impose weak cross-strike continuity (and increase along strike continuity). This directional continuity control supplemented the inherently greater vein continuity (along the veins rather than across them) implemented by concurrently using the 'un-folding' control. A maximum scan distance of 50 m was used, with up to 3 samples per sector allowed (potential maximum 18). Drill hole samples were composited down-hole to exactly 1.0 m with residuals >0.5 m. No data cutting or clipping was used. Low values had effectively been clipped out by the vein interpretation; and high grades were deliberately left in to simulate expected high grade pods (even though numerically they would be numerically highly diminished). A second round high grade specific interpolation was not considered necessary. Figure 7 and Figure 6 illustrate the effect of introducing the high grade vein segregation in the Phase 2 interpretation. In Figure 7 the gold grades are smoothed across the wide vein CH1. In Figure 7 the high grade veins contain most of the grades >1.0 g/t and the intervening envelope grades are mostly <0.5 g/t.

Figure 7 Envelope gold grades

JORC classification method: During the individual gold block grade estimation individual average sample distances (D) and number of sample points (P) were stored for subsequent use in the JORC Resource classification. Those distance and points value ranges were used solely as the criteria to classify each block as either Measured, Indicated or Inferred. Before acceptance the classifications produced were validated by viewing the blocks in 3D and ensuring that each class formed a contiguous zone without being patchy or otherwise unrealistic. The primary criterium was distance (as the numbers of points were generally near maximum), and distance ranges were based on results of past geostatistical analysis of the gold samples. Classification criteria applied sequentially were:

•	Measured:	Class 1	D ≤ 27.5 m	P ≥ 6	
•	Indicated:	Class 2	D ≤ 35.0 m	P≥3	
•	Indicated:	Class 2	D ≤ 70.0 m	P ≥ 1	(in reality D ≤ 50 m)

Challenger's JORC (2012 Edition) Resource classification: The Consultant had previously (most recently in 8/2016 for MGL's IPO) classified Challenger's Resources according to the JORC Code into varying proportions (by ounces of gold) of Measured (51%), Indicated (26%) and Inferred (23%) classes (in declining levels of confidence).

Here the CP maintains continuance of those classifications, albeit with lower tonnages and in different proportions to before. Class proportions by ounce here were Measured (60%), Indicated (23%) and Inferred (17%). The Measured Resources constitute a central core to the Challenger Main deposit, shown by the red blocks in Figure 8. They are surrounded by a selvage of Indicated blocks (yellow), with Inferred blocks (blue) around the edges. The view in Figure 8 is looking slightly downwards towards the WNW and the contours illustrate an open pit designed on Challenger Main.

Measured class support statements: In supporting the his statements on JORC Resource classifications the CP includes quotes from the Code's definitions (given in italics).

Figure 8 Resource classes

Measured – is the JORC classification 'for that part of a Mineral Resource for which quantity, grade (or quality), densities, shape, and physical characteristics are estimated with confidence sufficient to allow the application of Modifying Factors to support detailed mine planning and final evaluation of the economic viability of the deposit. Geological evidence is derived from detailed and reliable exploration, sampling and testing gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes, and is sufficient to confirm geological and grade (or quality) continuity between points of observation where data and samples are gathered.

In overall terms the Consultant (CP) believes Adelong's exploration data:

- is adequate and appropriate in scale (sufficient drill holes at close enough spacing and sampling),
- uses multiple complimentary methodologies, and
- has shown good repeatability (multiple drilling programs in similar areas producing similar results).

The CP also notes (particularly in relation to the Measured classification) that the deposit has undergone considerable mine planning (and limited underground mining) in the recent and near past all of which assumed the robust nature of the Resources being sufficient to support mining without further exploration.

These features, in combination with physical observation of veins on surface and particularly in the underground adit (which is located in the centre of the Challenger Main deposit), are sufficient 'to leave no reasonable doubt, in the opinion of the CP ..., that the tonnage and grade of the mineralisation can be estimated to within close limits, and that any variation from the estimate would be unlikely to significantly affect potential economic viability. Furthermore the CP asserts that he is confident in his geological understandings of the deposit as 'this category requires a high level of confidence in, and understanding of, the geological properties and controls of the mineral deposit. And the CP believes that 'Confidence in the estimate is sufficient to allow application of Modifying Factors within a technical and economic study'.

Indicated class support statements:

Indicated – is the JORC classification 'for that part of a Mineral Resource for which quantity, grade (or quality), densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit'. Furthermore 'Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes, and is sufficient to assume geological and grade (or quality) continuity between points of observation where data and samples are gathered'.

The CP's Measured class statements above fully cover the Indicated class's requirements on adequacy to support '*Modifying Factors*' for mine planning and economic evaluation. Furthermore he asserts that the data and observations allow '*confident interpretation of the geological framework and to assume continuity of mineralisation*' and are more than '*sufficient to assume geological and grade continuity between observation points*' (principally drill holes and samples).

Indicated class support statements:

Inferred – is the JORC classification 'for that part of a Mineral Resource for which quantity and grade may be estimated from limited geological evidence and sampling. Geological evidence is sufficient to imply but

not verify geological and grade (or quality) continuity. It is based on exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes'. Furthermore 'It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration'.

The CP believes that the Inferred classified parts of the deposit outside the Indicated zones are extensions of the same structures and mineralisation but are currently simply less explored (drill holes are further apart and 'sufficient to imply but not verify geological and grade continuity'). He believes that 'the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration'. As the Resources reported here are not predominantly in the Inferred class the Code requirement for the supply of greater detail to inform risk assessment is not necessary. And the CP states that nowhere does the estimation of Inferred Resources rely on 'extrapolation beyond the nominal sample spacing'.

Challenger JORC Mineral Resources: Global in-situ JORC (2012 Edition) Mineral Resources of gold at the Challenger deposit at the Adelong Gold Project are summarised by Resource class in Table 2 as at 13 August 2021. They were reported above a lower gold cut-off of 1.0 g/t and used a fixed default density of 2.7 t/m³. This default value has been employed at the Project for +20 years by multiple consultants. Tonnage and ounce rounding may introduce minor summation errors. The Resource class percentage proportions are by gold ounces.

ADELONG - Challenger in-situ "Full strike" JORC Resources – 8/2018						
Resource		Cut-off	SG	Tonnes	Au	Au
class		Au (g/t)	(t/m³)	(t)	(g/t)	(oz)
Measured	60%	1.00	2.70	372,000	4.16	49,700
Indicated	23%	1.00	2.70	168,000	3.48	18,800
Inferred	17%	1.00	2.70	146,000	3.06	14,400
Measured + Indicated +	+ Inferred	1.00	2.70	685,000	3.76	82,800

Table 2 Adelong Challenger JORC Mineral Resources - summary by Resource class

Detailed reporting by vein is given in Appendix 2 – Challenger JORC Mineral Resources – by vein.

Resource reconciliation: Table 3 sets out a comparison between the most recent previous 2016 Resource estimates reported for MGL and the current 2018 Resource estimates reported here.

ADELONG - Challenger JORC Resources reconciliation									
Resource		Cut-off	SG	Tonnes		Au		Au	
class		Au (g/t)	(t/m³)	(t)	(∆ %)	(g/t)	(Δ %)	(oz)	(∆ %)
MGL 7/2016									
Measured	51%	1.00	2.70	459,000		3.07		45,000	
Indicated	26%	1.00	2.70	268,000		2.67		23,000	
Inferred	23%	1.00	2.70	290,000		2.16		20,000	
Meas + Ind+ Inf		1.00	2.70	1,017,000		2.71		89,000	
8/2018									
Measured	60%	1.00	2.70	372,000		4.16		49,700	
Indicated	23%	1.00	2.70	168,000		3.48		18,800	
Inferred	17%	1.00	2.70	146,000		3.06		14,400	
Meas + Ind+ Inf		1.00	2.70	685,000		3.76		82,800	
DIFFERENCE									
Measured	10%	1.00	2.70	-87,000	-19%	1.09	35%	4,700	10%
Indicated	-18%	1.00	2.70	-100,000	-37%	0.81	31%	-4,200	-18%
Inferred	-28%	1.00	2.70	-144,000	-50%	0.90	42%	-5,600	-28%
Meas + Ind+ Inf	-7%	1.00	2.70	-332,000	-33%	1.05	39%	-6,200	-7%

Table 3 Adelong Challenger - Resource reconciliation 2016/2018

Given the considerably different modelling methodologies used (2016 used the Phase 1 method, 2018 used the high grade vein discriminating Phase 2 method) gold ounce differences between the estimates are considered remarkable close and adequate. The latest 2018 Resource ounces were less by 7%. That could have been expected as both used the same input data. The slight reduction is ascribed to the overall effect of the latest Phase 2 model having far more veins and thus fewer samples per vein.

However the new Phase 2 high grade vein modelling had a dramatic effect on the grades and tonnages – with the 2018 grades 39% higher and the tonnes 33% lower. Whilst large these differences could have been expected and the newer grades are considered more accurate than before.

Competent Person Statement:

Source data: All source data in the Consultant's possession was originally taken at face value by the Consultant. The Consultant performed validation of the drill hole data to the extent thought possible, and believes that validation to at least be to the level required for JORC Resource estimation and reporting. Although the Consultant validated the data to his satisfaction he nevertheless provides this Resource estimate and the following Competent Person Statement for it on the basis that i) the Client takes responsibility to a Competent Persons level for the integrity of the source data and ii) that it partly uses historical descriptive data which cannot be physically validated to the same degree as recent data.

Statement: The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by **Robin Rankin**, a Competent Person who is a Member (#110551) of the Australasian Institute of Mining and Metallurgy (MAusIMM) and accredited since 2000 as a Chartered Professional (CP) by the AusIMM in the Geology discipline. Robin Rankin provided this information to his Client **3D Resources Limited** as paid consulting work in his capacity as Principal Consulting Geologist and operator of independent geological consultancy GeoRes. He and GeoRes are professionally and financially independent in the general sense and specifically of their Client and of the Client's project. This consulting was provided on a paid basis, governed by a (in this case an on-going engagement) scope of work and a fee and expenses schedule, and the results or conclusions reported were not contingent on payments. Robin Rankin has sufficient experience that is relevant to the style of mineralization and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person (CP) as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Robin Rankin consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Validity: This Statement will be become invalid, and all consents withdrawn, if consulting fees are outstanding for an unreasonable period (taken here to be more than a month after the date on the introductory letter). This general consent may be subordinated by specific consent details agreed with the Client.

APPENDIX 1-JORC CODE, 2012 EDITION-TABLE 1

Sections:

- Sections 1 (sampling techniques and data) and 2 (exploration results) of Table 1 are NOT contained here as they were previously reported by the Consultant in August 2016 (see below). Statements on any subsequent exploration activity and data as it would relate to these Resource estimates (the Consultant is not aware of any) should be sought from the Company (3D Resources Ltd).
- Sections 1 and 2 were contained in the Consultant's stand-alone Appendix 2 JORC 2012 'Table 1' to his 20th July 2016 Expert Geologist's Report on Adelong (2016 EGR) for Macquarie Gold Ltd (MGL). The EGR and Appendix 2 were included in MGL's IPO Prospectus of 8th August 2016 lodged with the Australian Securities and Investments Commission (ASIC) in July 2016.
- Aspects of Section 3 here have been abstracted from the Section 3 in the 2016 Appendix 2 described above.

Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Historical knowledge continuity: All data was essentially 'historical' to the current Project owners. However the Consultant has worked on the Project continuously (in a Resource estimation sense) for each successive owner since the late 1990s. Over that period he worked for ECS Mining Consultants (ECSMC), SMG Consultants (SMGC), and then latterly for his own consultancy GeoRes. Previous Project owners during the Consultant's involvement included: Adelong Consolidated (AC) Golden Cross Resources (GCR) Tasman Goldfields (Tasman) Somerset Mining (Somerset) Macquarie Gold (MG) The Consultant has been continuously involved with data collection and its databasing – and speaks for its integrity and validity. Data coordinates: All Project drill hole and topography data used by the Consultant here was in the AMG 66 (or AGD66) coordinate system (promulgated in 1966 and using the Australian Geodetic Datum (AGD66/AGD84) and the Universal Transverse Mercator Grid (UTM) projection). That system was the precursor to the current GDA94 system (Geocentric Datum of Australia, circa 1994, which uses the Mag Grid of Australia (MGA94) projection which also conforms with UTM). The distance between origins of AMG66 and GDA94 is ~200 m in a NNE direction. The consultant's data was in AMG66 and not GDA94 had absolutely no impact on estimation accuracy. The continued use of AMG 66 for this Project by the Consultant simply stems from the

Mail PO Box 2332 Bowral NSW 2576 Australia Ph +61 (0)2 4861 3568 Mob +61 (0)408 724 811 E-mail robin.rankin@geores.com.au

GeoRes		CHALLENGER JORC RESOURCES - SUMMARY AUGUST 2021 - V2			
	DORC Code explanation	 Commentary desire for consistency with the older system's use for all Project data and reporting until the mid-2000s. All subsequently collected data has consequently also remained in AMG66. Drill hole data integrity & validation: 			
	the Competent Person and the outcome of those visits.	 The Consultant (the Competent Person) has visited the Property on numerous occasions in the last 22 years (since 1998) 			
	27 August 2021	Page 12			

	Geolo
	interp
\bigcirc	
(15)	
$\widetilde{\mathbb{O}}$	
AD	
\bigcirc	
\bigcirc	

O GeoRes		CHALLENGER JONG RESOURCES - SUMMART AUGUST 2021 - V2
Criteria	JORC Code explanation	Commentary
)	 If no site visits have been undertaken indicate why this is the case. 	 The Consultant visited the Property in the company of all successive exploration owners (except 3D Resources Ltd) since 1998 and with the local land holder. During those visits virtually all parts of the Project surface area were visited. The Consultant has also visited the underground workings in the Challenger Adit early on with AC and most recently in 2019 with MGL (during the Sale process). Various drill hole locations, dumps and old shafts were inspected, photographed and coordinates taken by GPS.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Geological mineralisation style interpretation: The geological interpretation at ALL prospects is that of similar 'narrow sub-vertical sub-parallel quartz vein hosted gold mineralisation'. Confidence in the geological interpretation: The Consultant is confident in the geological interpretation of vein style gold deposits. This was ultimately and primarily based on the known style of the historical mining of narrow sub-vertical quartz reefs, observing outcrops of the reefs at surface, and being able to observe such reefs underground in the Challenger Adit. All drill hole gold mineralisation confirmed the shape, position and style of a vein system. Intercepts in the drill holes in the immediate vicinity of the Challenger Adit and of the Boumoya Adit at Currajong confirm the vein styles at both deposits. Data nature, assumptions & geological controls: The basic assumption was that all gold assays ->0.2 g/t represented localized mineralization intercepts would also frequently contain much higher grades typically recognized as 'ore' grades (>1.0 g/t). Mineralization clearly grouped together in laminar 'vein' styles (contiguously from hole to hole along strike and up and down dip) forming bodies (lodes) of realistic extraction size (and therefore representing Resources). Even very lowly mineralized intercepts (0.1 to 0.2 g/t) exist on strike and dip of veins – interpreted as the trace of the vein between thicker and better mineralized lodes. Mineralised intercepts clearly aligned in 3D into swarms of sub-parallel (350° to 355°) to the latest aeromagnetic and ground magnetic mapping. Very steep westerly to vertical dips were interpreted – similar to the 80°W observed and modelled at Challenger. The vein foot wall and hangin

GeoResCHALLENGER JORC RESOURCES - SUMMARY AUGUS		CHALLENGER JORC RESOURCES - SUMMARY AUGUST 2021 - V2
Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	 Commentary All samples within the interpreted vein surfaces was used – as they all represented the vein material. Internal lower grades included were seldom much below cut-off. Vein interpretations: At set of sub-vertical sub-parallel (~N/S striking) veins were interpreted. The following lists the main veins from west to east. Assay population domain numbers are in brackets (and are unique to each deposit as holes were selected by deposit). Veins (CHM1 on the very west, and CH4 on the very east) intercepted in only a few holes (<4) are not listed. Challenger envelope veins: CH0 (dom 5), CH1 (dom 1), CH2 (dom 2), CH3 (dom 3). Challenger high grade veins: Within CH0: CHOW (dom 16), CHOE (dom 17) Within CH1: CH1W (dom 7), CH1M (dom 8), CH1E (dom 9) Within CH2: CH2W (dom 10), CH2E (dom 11) Within CH3: Ch3W (dom 12), CH3E (dom 13)
		 Alternative interpretations: All deposits: Given the physical evidence from past mining it is very difficult to envisage an interpretation other than a multi-vein system. Even if the nature of mineralisation is different to that interpreted as being within sharply defined veins then its continuity would still have been constrained by the vein surface modelling, the block modelling within the vein surfaces, and the domain (by individual vein) assay control. And in many spots the density of drilling is sufficient to preclude any other type of mineralisation continuity. Where drill hole spacing becomes wider (>50 m) the individual close-spaced veins may have been miss-named (hence the lowest confidence assignment). However this would not impact volumetrics and would have minimal impact on estimated grades overall. The CP considers it very unlikely overall that mineralization continuity could be interpreted in any other orientation (sub-vertical 355° oriented veins) given the more recent geophysical mag data modelling. Continuity factors on geology and grades: Geological continuity was ultimately controlled by interpreting individual named veins in each deposit. This name was used to model the vein's roof and floor surfaces independently. Grades in each vein were segregated with a unique a data population domain number. All assays within a vein were linked by the number with other assays in the vein identified in
		 other holes. Block grade continuity within veins was controlled by an 'un-folding' technique oriented in the plane of the veins. Block grade estimation also employed a strong E/W (X) direction distance weighting factor

O GeoRes		CHALLENGER JORC RESOURCES - SUMMARY AUGUST 2021 - V2
Criteria	JORC Code explanation	Commentary (3) to minimise cross-strike continuity and emphasise continuity within the vein (up-dip and along-strike).
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 Deposit dimensions (volume containing each deposit. <i>Challenger dimensions</i>: Strike length (N/S): ~7500 m Width (E/W): ~30 m Depth: 250 m from surface down Vein dimensions: Widths: Individual veins were typically ranged from ~0.5 m to ~15 m wide horizontally (E/W). Vein spacing: Spacing between individual veins varied, but typically closer spacings were of the order of ~5 to 10 m apart.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the 	 ESTIMATION TECHNIQUES Vein surface modelling: Software: Modelling and estimation was done in Minex Genesis software. Method: Geological modelling employed computerised gridded DTM surface interpolation. The method's appropriateness stems from its 3D computational capability and rigor. Gridded surfaces allow simple mathematical operations within and between surfaces. Bounding lode surfaces were interpolated from the top and bottom down-hole lode intercepts. Each lode was modelled independently with a hanging wall (structure roof, SR) and foot wall (structure floor, SF) boundary surface (see below). Algorithm: Surface modelling used a trending growth algorithm to interpolate smooth natural surfaces (as opposed to straight line methods) as a regular fine mesh. Through extrapolation this method honours local inflections away from the reference plane mean orientation. Mesh point interpolations grow out from data points until all mesh points are estimated. Orientation: All vein surfaces effectively semi-vertical and ~N/S. So model wrt a vertical N/S reference plane west of the veins. Models vertical N/S, looking west. Model build: After independent interpolation of each lode's roof and floor the suite of surfaces was 'built' into a valid model using processes to correct potential cross-overs between and within lodes. Surface estimation parameters – common to ALL deposits:

Grid file: DD 2018 CH, file ... 201907 Chall env model GR1806.GRD

Samples and blocks (see below) in veins were uniquely identified and segregated by

Detailed statistical or geostatistical analysis was undertaken up to 2016 and has been

• Gold grades throughout the goldfield are characterised generally by great variability. Scattered high grade samples are of much higher tenor (to >100 g/t) than more general (numerous) 'ore grade' samples (~2-5 g/t). This nuggety effect would typically require

o That detailed geostatistical analysis informed the general grade estimation parameters (see

An 'un-folding' 3D block model (a Minex Z-grid) was built within the geological vein surface models to provide domain control within layers and to control grade trending continuity

 A Z-grid is built to align its X and Y data search directions sub-parallel to geological layer models (with each layer modelled by bounding upper and lower surfaces) with the same orientation. The XY searching is continuously (dynamically) transformed to follow along the undulations of the geological layers (and is therefore not in a straight line but parallels the layer). The Z direction remains a fixed direction normal to the average plane of the layer. The layer sub-parallel effect is achieved by a fixed number of 'sub-blocks' being assigned across a layer in the Z direction (say 10). Layers with higher average and maximum thicknesses are assigned the most Z blocks. Thus Z direction block heights are always fractions of the full layer height at any XY location. As the thickness of the layer varies so does the Z sub-block height (so with 10 sub-blocks where the layer is 10 m thick the Z block heights would be 1 m, where 5 m they would be 0,5 m, etc.). This creates an undulating block height mesh normal to the layer as the individual Z block

 \circ As the veins were essentially in an $\sim N/S$ semi-vertical plane the Z-grid required rotating to

Origin (minimum) – lower south corner:

domain number for assay analysis and block grade estimation. • Domains were set in the drill hole database and in the block models.

• X: 6,092,900 (equiv. Y) Y: 1,100 (equiv. Z)

• X: 2,000 m (equiv. Y) • Y: 400 m (equiv. Z)

o Domain numbers are given above with the vein names.

specific handling of high grades during block estimation.

Drill hole sample data population domains:

Gold (AU) was the focus of the Project.

Grade continuity control block model (Z-grid):

• 'Un-folding' block model (Z-grid):

within and along the layers (the 'Z' direction).

have its Z axis normal to that plane (see below).

•

Extent:

Drill hole gold sample analysis:

previously reported.

below).

GeoRes_		
Criteria	 JORC Code explanation resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	Commentary
		 Drill hole Samp doma Doma Doma Drill hole Gold
		 Detail previo That of below Gold of Scatter (nume specification)
		 Grade cor An 'ur mode within As the have
		∘ 'Un-fc
	27 August 2021	
	ZI AUQUST ZUZI	

GeoRes		CHALLENGER JORC RESOURCES – SUMMARY AUGUST 2021 – V2
Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	 Commentary boundaries continuously remain sub-parallel to the layer orientation. This 3D mesh orients the X and Y direction search preferentially along the Z sub-block layers. Z direction grade estimation weighting >1 supresses grade continuity across the layers. A Z-grid may be built from multiple geological layers. Blocks in each layer are assigned a unique domain number. Where a geological layer model is not 'horizontal' (where its XY axis would be in the usual horizontal plane) then the Z-grid is rotated to align its 'pseudo' XY axes parallel to the plane of the geological model (and therefore its Z axis normal to the plane of the model). Thus a vertical geological layer model strike direction) to orient the XY plane vertically, resulting in the Z axis now being horizontal. Adelong Z-grid rotation – common to ALL deposits:
		 Position and directions (see dimensions below). Rotation – common to ALL deposits: X: 0° Y: -90° Z: 0°
		 Adelong Z-grid block sizes – Challenger deposit only (Currajong, Caledonian, Donkey Hill different):
		 X and Y (pseudo Z and Y) block sizes were set to reflect a simple proportion (usually 25%) of the actual drill hole spacings N/S and vertically. As this spacing averaged ~20 m for closer holes an X/Y blocks size of 5 m was set. This was also a simple multiple (x2) of the vein surface X/Y mesh size of 2.5 m.
		 Z (pseudo X) block sizes were nominally set to be 2.5 m by dividing ~100 blocks into an horizontal deposit width of ~250 m. Actual Z block sizes would be determined by the number of blocks assigned and vein widths. In practice the Z block sizes would all be <0.5 m wide. Z-grid block sizes:
		 X: 4.0 m (pseudo Z) Y: 10.0 m (actual Y) Z: 0.0 m exercised (constraints) (Constraints)
		 2: 2.0 m nominal (pseudo X (E/W)) Challenger Z-grid block dimensions: (CH_HG_Z.GR3) Origin:
		 X: 596,900 E (actual) Y: 6,092,951 N (actual) Z: 1,500 RL (actual – at surface)

GeoRes.		CHALLENGER JORC RESOURCES - SUMMARY AUGUST 2021 - V2
Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	 Extent: X: 400 m (pseudo vertically down (to 1,100 RL) with rotation about Y axis) Y: 1,300 m (actual to 6,094,251 N) Z: 130 m (pseudo horizontally east (to 597,030 E) with rotation about Y axis) Z blocks: A Z block size of 2.0 m would give 65 blocks over the 130 m pseudo Z extent. To accommodate 6 high grade veins each was assigned ~10 blocks. Domain control block model (domain 3D-grid): A 'domain' 3D block model (a Minex 3D-grid) was built for each deposit within the geological vein surface models to provide block domain control within veins – linking vein block domains with the vein assay domains in the drill hole database. The domain grids was built in tandem with the Z-grids, with the same block dimensions and rotations. The domain grids carried similar names to the Z grids with the substitution of the letter 'D' for the 'Z'. Gold grade block estimation (gold 3D-grid): A 'gold' grade 3D block model (a Minex 3D-grid) was estimated for each deposit from gold assays stored in the drill hole database.
		 The grade grids was built with direct control from the Z-grids (to dynamically trend search directions along the veins) and the domain grids (to segregate samples by vein). Minex 3D-grids are usually built as orthogonal 3D grids without sub-blocking. However here the gold grade 3D-grids had the same block dimensions and rotations as the Z-grids (see above). The grade grids carried similar names to the Z grids with the inclusion of the letters 'AU'. Input drill hole sample parameters – common to ALL deposits: Variable: AU Down-hole sample compositing: None.
		 Independent the taken because of the typically very limited (typically 1.0) numbers of samples in each vein intercept. Down-hole composit lengths of 1.0 m and 0.5 m were trialled initially – both leading to excessive data smoothing and the effective elimination of any high grades. Block gold grade estimation parameters – common to ALL deposits: Method: Single pass estimation. The interpolation of grades in two passes (to overcome the issues of very localised highly anomalous grades) was considered but not undertaken because of the limited numbers of samples/holes in general and high grade samples in particular. In a 2 pass estimation an initial 1st pass uses all samples whilst a 2nd pass uses only high grade samples with severely restricted scan distances to over-write blocks close to the high grades.

GeoRes		CHALLENGER JORC RESOURCES - SUMMARY AUGUST 2021 - V2
Criteria	JORC Code explanation	Commentary
		 Continuity control: Un-folding search direction continuity control by Z-grid in the
		vertical N/S plane of the lodes.
		 Scan distance: 50 m. One pass.
		 Data IIMIts: None. No lower out or aligned required on the vaig interpent interpretation effectively.
		 No lower cut of clip was required as the veins the vest majority of which were effectively.
		a/t (or below detection)
		 No upper cut of clip was applied because of 1) the limited number of anomalous
_		high grades. 2) their short intervals, and 3) the positive desire to allow the few
		high grades to register higher grades in some blocks because of the CP's past
		experience at the Challenger deposit where this was found to be realistic.
2		 Sample numbers used to calculate each block:
リー・		 Samples/sector: 3 maximum, 1 minimum
		Sectors: 1 minimum
		Effectively samples 18 maximum, 1 minimum
\mathcal{D}		 Anisotropy:
<i>9</i>		• Without any clear indications of plunge in the ~N/S plane of the veins the grades
		were assumed to be isotropic (effectively in Y and Z directions) in the plane.
))		 With the natural in-vein continuity in play continuity was discouraged across strike (offectively X direction). Direction distance weighting was applied to the X
		(enectively \wedge direction). Direction distance weighting was applied to the \wedge
5		• Distance weighting: Direction distance ratios applied were $X = 3$, $Y = 1$, $Z = 1$
9		 Direction rotation: None (no plunge accounted for)
		 Block gold grade estimation statistics:
		 Challenger gold estimates: (.GR3)
7		 Input Au: Samples 7,933, Max 73.00 g/t, Min 0.00 g/t, Av 0.52 g/t
))		 Estimated Au: Blocks 112,226, Max 45.86 g/t, Min 0.00 g/t, Av 1.05 g/t
		 Grade reporting block model (geological resource database):
		 'Geological resource block database':
		 A Minex geological database is used to store, JORC classify, report and plot grade
		estimates. It may then also be used for pit optimisation.
))		 The database has regular onnogonal 3D blocks (which hav be sub-blocked down in size) and is used to database geology (by domain) and multiple variables
		(typically grades and density)
		 Blocks are built from geological models (typically wire-frames or vein surface)
2		models). Primary maximum size blocks are created where possible, and smaller
		variably sized sub-blocks are created along edges of models to provide volumetric
		accuracy.
))		 Grades may be estimated directly into blocks from drill hole samples or may be
2		loaded from individual grade block 3D-grids. Those grade 3D-grids may be rotated
		and/or computed with Z-grid control.

Geokes		
Criteria	JORC Code explanation	Commentary
		 Other variables, such as manipulated grades, density or JORC classification
		variables, may be computed using SQL macros.
		 Adelong resource block database: (ALL deposits)
		 Primary block sizes (1^5^5 m) were set to reflect the thin N/S vertical planar shape
		of the veins.
		 Sub-blocking: None (XYZ 1) Gradee: Detabase blocks were leaded with gradee directly from the individual
Р		 Grades: Database blocks were loaded with grades directly from the individual grade block models (see shows). Grades were everaged into the detabase
		grade block models (see above). Grades were averaged mit the database
		Challenger reporting block model dimensions: (CHALL 20210101 2 ENIV HC C3*)
		 History: Initially (7/2018) a coarser block model including sub-blocking was built
		Subsequently (1/2010) a finer block size model was built with no sub-blocking
		Details given below are for the most recent 2021 block model
		 Block build:
		Built from ENV vein surfaces and then from HG vein surfaces
		Rotation: None All coordinates actual
		Sub-blocking: None
		 Origin (minimum):
		• X: 596.900 E
		• Y ⁺ 6 092 951 N
		• 7: 1 100 RI
		• Extent
		• X: 130 m
		• Y: 1.330 m
		• Z: 400 m
		Block sizes:
		• X: 1.0 m
		• Y: 5.0 m
		• Z: 2.0 m
		 Block gold grade estimation statistics:
		 Challenger gold estimates: direct into block model
		 Input Au: Samples 7,933, Max 73.00 g/t, Min 0.00 g/t, Av 0.52 g/t
		 Estimated Au: Blocks 112,226, Max 45.86 g/t, Min 0.00 g/t, Av 1.05 g/t
		Resource classification:
		• Challenger: Resources were all considered to be in all classes (continuing on from past
		estimates).
		 During grade estimation of each block the average distance of samples and the
		number of samples were stored (variables AU_D and AU_P).
		 A classification variable (AU_CAT) was computed in each block by applying CP
		determined criteria (see below in JORC classification section) to the distance and

GeoRes		CHALLENGER JORC RESOURCES – SUMMARY AUGUST 2021 – V2
Criteria	JORC Code explanation	Commentary
		number variables. The criteria set a number in each block for Resource class: • 3 – Measured • 2 – Indicated • 1 – Inferred • CHECK ESTIMATES:
5		 Other estimates to check against: Estimates dating back to 1999. Particularly those of 2005/6 and 7/2016. By-product recovery & deleterious elements: Potential by-products: Other estimates upper offectively net considered in this Resource estimation on the
		 Other elements were effectively not considered in this Resource estimation as the Client's economic focus was principally gold. This focus would appear reasonable from the past gold mining history in the district. Silver was assayed for very sporadically, and showed little mineralisation. From a wider range of element assayed in scattered holes there appears little potential for both by-product or deleterious elements. The CP's impression is that no 'modern' high-tech elements (lithium, rare earths etc) have been assayed for, their potential would appear completely untested, and their presence would be unlikely. Deleterious elements: Past mining did not apparently encounter deleterious elements. The presence of some sulphides (principally pyrite) within yeins was apparently.
		 The presence of some supplies (principally pyrite) within verifs was apparently taken into account by MGL's more recent metallurgy and plant design. It is presumed that the AMD issue was similarly taken into account by MGL
		 Block size - sample size relationship: Situation: Block sizes: Major block sizes were effectively small at 1*5*2 m. Sample spacing: Down-hole sampling was typically ~0.5 to 2 m; drill section spacing was mostly down to ~20-50 m; and hole spacing on section was ~20-100 m. Data search distances: Maximum 50 m.
		 Distance relationships: Block sizes were considered well-proportioned to drill hole spacing and down-hole sampling intervals. In long-section the block size (5 m) was 25% of the typical minimum hole spacing (20 m). In cross-section the block size (1 m) was of the same order as down hole sample intervals and usually 2-300% narrower than 2-3 m wide veins.
		 Model – SMU relationship: No specific focus on selective mining units occurred. However The primary 1*5*2 m tall thin block sizes in the model was specifically built not

GeoRes_		CHALLENGER JORG RESOURCES - SUMMARY AUGUST 2021 - V2
Criteria	JORC Code explanation	Commentary
		 Plots: Methodical visual cross-sectional plot comparison of colour-coded block grades with annotated drill hole samples. Comparisons considered acceptable. Estimate reconciliation: Not possible as no previous estimates exist. Estimate reconciliation: The Challenger 8/2018 estimate was compared with the 7/2016 estimate done for MGL (see summary above). Total contained gold ounces were 7% lower in the 2018 estimate. This result was considered close and acceptable. The slight reduction would be expected from the Phase 2 re-estimation process where the same number of samples would be spread over more veins (menaing less samples in each vein). reconcile against. Mine records: Comparison was not specifically possible with mine records as where they applied to was not certain. However the reported past production grades are very high by rough comparison. This fact is presumably the reason many past geologists have surmised that drill hole assay values under-call the true grades significantly. This latter position is partially bourne out by the Consultants' experience with the MGL 2013 drilling where all 'anomalous' fire assay gold values were re-assay by bottle roll – and found to be up to ~100% greater. The Consultant's overall view here is that past Adelong mining encountered small volumes of ore with possible very high grades (in the order of many oz/t, or >100 g/t). Encountering these by drilling is very difficult and unlikely, and only actual mining will prove the point.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 Moisture: Reporting has assumed a hard rock dry basis, with no account made for water. No data on moisture was available.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The principal low Resource reporting 1.0 g/t gold cut-off value was justified as being in line with other similar gold deposits in Australia.
Mining factors or assumption	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating 	 Underground mining has been considered for the Project as this occurred in the past. However open cut mining would also be highly possible for shallower regions of the deposits. Past Resources have be studied using 'pit optimisation' and practical profitable open cuts have been shown for Challenger and Currajong.
	27 August 2021	Page 23

GeoRes		CHALLENGER JORC RESOURCES - SUMMARY AUGUST 2021 - V2
Criteria	JORC Code explanation	Commentary
	Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 Several past owners have conducted metallurgical studies. The most recent (MGL) undertook fairly extensive testing and on that basis constructed a gold mill at site. The CP understands that a high proportion (>90%) of the gold may be extracted by gravity.
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 The Project is understood to have had recent (and possibly continuing) mining approval – which would indicate that environmental factors have already been addressed.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must 	 Density used: No density data was available. A dry bulk density of 2.7 t/m³ has been assumed and used. The Consultant is not generally aware of historic drill hole density determinations, and is under the impression they had either not been taken (particularly not recently) or not in sufficient numbers. The assumed density was derived from the detailed AC/GCR dump studies (and possibly
	27 August 2021	Page 24

GeoRes_		CHALLENGER JORC RESOURCES - SUMMARY AUGUST 2021 - V2
Criteria	 JORC Code explanation have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Commentary by the CEC bulk sample from the Challenger adit). Density accounting for rock variability: The vein rock could be considered as a rock type whose density may vary considerably over short distances (considering the variable mineralogy). This represents an inhomogeneous rock mass on a small drill hole diameter scale. Therefore bulk sampling should be the most reliable source of determinations. The historic CEC bulk sample is the only one to date, and data is sketchy (but possibly informed AC/GCR use of 2.7 t/m³). Assumptions behind density estimates: The Consultant has taken the default 2.7 t/m³ density default as reasonable for a considerable period. During that time the density has also been assumed as correct by a variety of mining engineers and other experts, particularly metallurgists.
JORC Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Classification basis: Classification basis: Classification basis: Classification: Challenger: The CP's opinion was that the deposit's JORC classification should follow the past decisions to classify the deposit with proportions of Measured, Indicated and Inferred classes. It should be noted that the deposit was historically mined, hence the confidence with the Measured classification. Classification criteria: Classification criteria: Classification was done on a numeric block by block basis followed by visual verification of acceptable areas of contiguous classes. The principal criteria used to set a block class number was the average distance and number of samples used to estimate individual block grades (see method above). Sample distance could be related to the average geostatistical maximum range determined from the variogram analysis done in the past for the Challenger deposit. Samples distances less than the range would have higher confidence (as they would be statistically linked) with increasing confidence with reducing distance. Numbers of samples could be related to the uniformity of drilling around a block. Greater numbers of samples would imply better data distribution around a block. Blocks at the edges of veins, where holes were only present on one side, would have the lowest confidence. Class rules were: Measured – 3 distance ≤ 27.5 m and samples ≥ 6 Indicated – 2 distance ≤ 70.0 m and samples ≥ 1 (although in reality this was 50 m) Accounting for relevant factors: Classification details were developed : As project knowledge was gained – over 20 years. During the geological interp

GeoRes_		CHALLENGER JORC RESOURCES – SUMMARY AUGUST 2021 – V2
Criteria	JORC Code explanation	Commentary
		 for that. The CP was particularly aware of: Past mining (which proves the existence of gold in narrow veins structures). The close link between surface outcrop lode mapping and vein intercepts interpreted in drill holes. The close link between the ~350-355° orientation of the veins with the new and detailed ground mag mapping. CP's view of Challenger classification: CP's view of Challenger classification: The classification (Measured 60%, Indicated 23% and Inferred 17% by ounces) adequately reflects the CP's expectations of the class, proportions and locations. The Measured material forms a particularly contiguous mass in the centre and majority of the Challenger main deposit and is well supported by drilling. The lower confidence Indicated and Inferred material strongly conforms with areas of lesser drilling and greater sample distances. CP's view of Currajong West classification: The classification (27% Indicated and 73% Inferred by ounces), although largely developed in 2005 and before subsequent detailed geostatistical work on the Challenger deposit, reflects the CP's expectations of the class, proportions and locations. No Measured class was reported, and at this point (prior to further drilling exploration and observation in the adit (which he has not seen)) the CP would not consider classification (100% Inferred by ounces) reflects the CP's expectations of the appropriate class for these newly estimated deposits. The CP would note that the fact of past mining could have encouraged contemplation of higher classification. However he also notes that most drilling on the deposits has not been fully focussed on targeting narrow veins systems and the different programs were faily uncoordinated
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 Audits: The Consultant is unaware of specific third-party audits of these Resources. However during early MGL (and its precursor Somerset Mining) ownership (and more recently) the 2005 Resources were reviewed by a series of potential purchasers or mining consultants acting for them. One of these consultants, Mining One from Melbourne, conducted (in ~2010) a detailed study and review of the geology, Resources and pit optimisation of Challenger and Currajong (West). In 2016 an independent geological Resource consultant very briefly reviewed the Resources, apparently concluding their validity but noting the risk of not having excluded all past mining. The Consultant here concurs with that risk, but considers it minimal (see also

Criteria	JORC Code explanation	Commentary
		'Risk' below).
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 Accuracy & confidence in the estimate: Statement: The Consultant is confident in the accuracy of the estimate. Reasons: The careful geological vein intercept interpretation and vein surface modelling ar considered the most appropriate to the style of mineralisation. The clear continuity of grades between a great majority of drill holes gives the Cl confidence in the interpretation. Drilling on Challenger is of multiple eras – and the results of each are similar. Parts of these interpretations and estimates may be considered as at least secor generation studies. The Challenger geostatistical analysis in 2010 produced good results which built confidence and showed that statistically determined ranges were up to ~200% th typical drill hole spacings. Risks: The Consultant considers the greatest risk to the reported Resources is the quantum or materially already mined. That material has been deducted to the extent that it is known (through wire-framing known stopes and drives). However whilst the CP would assess that deduction to in all likelihood be incomplete he nevertheless considers the optication typical and program and poor quality. However all past attempts to quantify this at Challenger (where some records are available and the site of effectively the greatest extraction) have shown that the mined volumes are much <10% of Resource volumes. This previously mined risk is considered minimal (and nil below old depth limits which a above the base of the Resources). Global or local estimate: This is a global estimate. Comparisons: The only comparisons that can be made are with historical (~100 year old now) mine production. That production was considerable (see all recent reports, including the 2016 MGL IPO document) and cut-off grades were much higher than possible now.

APPENDIX 2 - CHALLENGER JORC MINERAL RESOURCES - BY VEIN

The following tabulations give the Challenger JORC Mineral Resources by Resource class for individual veins.

	- 1						
ADELONG - Challenge	er in-situ "	Full strike" JORC R	lesources	12/0/202			
Block model:	CHALL_	20210812.63*	<u> </u>	13/8/202	_		
Area:	_	Resource	Cut-off	SG	Tonnes	Au	Au
Vein	Dom	class	Au (g/t)	(t/m³)	(t)	(g/t)	(oz)
MEASURED							
CH0 envelope	5	Measured	1.00	2.70		1.16	
CH1 envelope	1	Measured	1.00	2.70	6,000	1.17	200
W high grade	7	Measured	1.00	2.70	78,000	4.65	11,700
M high grade	8	Measured	1.00	2.70	149,000	4.21	20,200
E high grade	9	Measured	1.00	2.70	62,000	4.28	8,500
CH2 envelope	2	Measured	1.00	2.70			
E high grade	11	Measured	1.00	2.70	1,000	2.14	100
CH3 envelope	3	Measured	1.00	2.70	1,000	1.47	100
W high grade	12	Measured	1.00	2.70	42,000	4.51	6,000
E high grade	13	Measured	1.00	2.70	32,000	2.78	2,900
Total	73%	Measured	1.00	2.70	372,000	4.16	49,700
INDICATED							
CH0 envelope	5	Indicated	1.00	2.70			
CH1 envelope	1	Indicated	1.00	2.70	2,000	1.05	100
W high grade	7	Indicated	1.00	2.70	24,000	4.53	3,500
M high grade	8	Indicated	1.00	2.70	52,000	3.52	5,900
E high grade	9	Indicated	1.00	2.70	47,000	3.44	5,200
CH2 envelope	2	Indicated	1.00	2.70			
E high grade	11	Indicated	1.00	2.70	17,000	3.98	2,200
CH3 envelope	3	Indicated	1.00	2.70	4,000	1.52	200
W high grade	12	Indicated	1.00	2.70	11,000	3.36	1,200
E high grade	13	Indicated	1.00	2.70	11,000	1.66	600
Total	27%	Indicated	1.00	2.70	168,000	3.48	18,800
MEASURED + INDICA	TED						
CH0 envelope	5	Meas + Ind	1.00	2.70		1.16	
CH1 envelope	1	Meas + Ind	1.00	2.70	8,000	1.14	300
W high grade	7	Meas + Ind	1.00	2.70	102,000	4.62	15,200
M high grade	8	Meas + Ind	1.00	2.70	202,000	4.03	26,100
E high grade	9	Meas + Ind	1.00	2.70	109,000	3.92	13,700
CH2 envelope	2	Meas + Ind	1.00	2.70			
E high grade	11	Meas + Ind	1.00	2.70	19,000	3.84	2,300
CH3 envelope	3	Meas + Ind	1.00	2.70	5,000	1.51	200
W high grade	12	Meas + Ind	1.00	2.70	52,000	4.27	7,200
E high grade	13	Meas + Ind	1.00	2.70	42,000	2.50	3,400
Total		Meas + Ind	1.00	2.70	539,000	3.95	68,500

Table 4 Adelong Challenger JORC Mineral Resources - by vein

INFERRED							
CH0 envelope	5	Inferred	1.00	2.70			
CH1 envelope	1	Inferred	1.00	2.70	5,000	1.09	200
W high grade	7	Inferred	1.00	2.70	28,000	3.86	3,500
M high grade	8	Inferred	1.00	2.70	31,000	3.79	3,800
E high grade	9	Inferred	1.00	2.70	31,000	2.56	2,600
CH2 envelope	2	Inferred	1.00	2.70	1,000	2.26	100
E high grade	11	Inferred	1.00	2.70	19,000	3.80	2,300
CH3 envelope	3	Inferred	1.00	2.70	10,000	1.24	400
W high grade	12	Inferred	1.00	2.70	9,000	2.91	800
E high grade	13	Inferred	1.00	2.70	11,000	1.99	700
Total	17%	Inferred	1.00	2.70	146,000	3.06	14,400

MEASURED + IND	MEASURED + INDICATED + INFERRED								
CH0 envelope	5	All	1.00	2.70		1.16			
CH1 envelope	1	All	1.00	2.70	13,000	1.12	500		
W high grade	7	All	1.00	2.70	131,000	4.46	18,700		
M high grade	8	All	1.00	2.70	232,000	4.00	29,900		
E high grade	9	All	1.00	2.70	140,000	3.61	16,300		
CH2 envelope	2	All	1.00	2.70	1,000				
E high grade	11	All	1.00	2.70	38,000	3.82	4,600		
CH3 envelope	3	All	1.00	2.70	15,000	1.33	600		
W high grade	12	All	1.00	2.70	61,000	4.08	8,000		
E high grade	13	All	1.00	2.70	54,000	2.39	4,200		
All classes		All	1.00	2.70	685,000	3.76	82,800		

ADELONG - Challenger in-situ "Full strike" JORC Resources											
Block model:	CHALL_20210812.G3*		13/8/202	1							
Resource		Cut-off	SG	Tonnes	Au	Au					
class		Au (g/t)	(t/m³)	(t)	(g/t)	(oz)					
Measured	73%	1.00	2.70	372,000	4.16	49,700					
Indicated	27%	1.00	2.70	168,000	3.48	18,800					
Measured + Indicated		1.00	2.70	539,000	3.95	68,500					

ADELONG - Challenger in-situ "Full strike" JORC Resources											
Block model:	CHALL_20210812.G3*		13/8/202	1							
Resource		Cut-off	SG	Tonnes	Au	Au					
class		Au (g/t)	(t/m³)	(t)	(g/t)	(oz)					
Inferred	17%	1.00	2.70	146,000	3.06	14,400					

ADELONG - Challenger in-situ "Full strike" JORC Resources									
Resource		Cut-off	SG	Tonnes	Au	Au			
class		Au (g/t)	(t/m³)	(t)	(g/t)	(oz)			
Measured	60%	1.00	2.70	372,000	4.16	49,700			
Indicated	23%	1.00	2.70	168,000	3.48	18,800			
Inferred	17%	1.00	2.70	146,000	3.06	14,400			
Measured + Indicated + Inferred		1.00	2.70	685,000	3.76	82,800			

APPENDIX 3 – CHALLENGER DRILL HOLE LISTING & COLLAR SURVEYS

The following listing gives name and collar details of the drill holes within the Challenger deposit area.

NB: Easting and Northing coordinates are in AMG 66. Elevations have had 1,000 m added to true elevation.

Drill	Fasting	Northing	Flevation	Depth	Azimuth	Din	Type
hole	(m)	(m)	(m)	(m)	(°)	(°)	1,100
AD039	596,950.7	6,093,682.9	1466.0	64.5	102.6	-60.0	CHL
AD040	596,950.0	6,093,734.1	1458.7	61.6	102.6	-60.0	CHL
AD041	596,956.7	6,093,791.9	1443.2	62.0	119.6	-60.0	CHL
AD043	596,935.8	6,093,635.0	1472.0	117.8	102.6	-70.0	CHL
AD044	596,950.4	6,093,606.5	1476.7	64.0	102.6	-60.0	CHL
AD046	596,962.7	6,093,961.1	1424.0	58.7	102.6	-60.0	
AD047	596,977.7	6,093,223.4	1412.0	51.4 19.2	102.6	-60.0	
AD048 AD049	596 976 2	6 093 909 8	1405.0	40.2 53.0	102.0	-65.0	СНХ
AD045 AD050	596 867 0	6 093 776 6	1429.0	249.4	102.0	-75.0	СНІ
AD051	596.863.5	6.093.680.4	1452.8	311.0	102.6	-70.0	CHL
AD052	596,939.8	6,093,889.2	1426.8	150.4	102.6	-71.0	CHX
AD053	596,932.2	6,093,969.3	1421.6	157.7	102.6	-75.0	СНХ
AD054	596,888.7	6,093,508.9	1477.0	310.6	102.6	-65.0	CHL
AD055	596,861.0	6,093,854.3	1428.5	319.6	102.6	-68.0	CHL
AD056	596,881.0	6,093,371.7	1462.5	232.6	102.6	-65.0	CHL
AD057	596,931.1	6,093,257.4	1428.0	130.6	102.6	-65.0	CHL
AD058	596,920.2	6,093,163.7	1421.0	214.5	102.6	-65.0	AU
AD059	596,959.3	6,093,659.8	1469.3	61.8	102.6	-60.0	CHL
AD060	596,961.4	6,093,682.8	1467.0	41.7	102.6	-60.0	CHL
AD061	596,952.2	6,093,710.2	1462.3	55.7	100.6	-60.0	CHL
AD062	596,964.9	6,093,737.2	1458.4	40.5	105.6	-60.0	CHL
AD063	596,959.5	6,093,765.8	1451.0	57.6	103.6	-60.0	CHL
AD064	596,956.5	6,093,611.3	1474.0	69.8	101.1	-50.0	CHL
AD069	596,960.3	6,093,295.3	1427.8	64.3 66.0	84.0 95.6	-70.0	
AD070	596,902.7	6,093,232.0	1420.7	67.4	88.6	-55.0	
AD071 AD072	596 963 1	6 093 575 6	1409.4	68.7	97.6	-55.0	СНІ
AD072	596.964.4	6.093.537.5	1470.4	72.7	93.6	-55.0	CHI
AD074	596.957.1	6.093.435.4	1453.3	69.3	100.6	-60.0	CHL
AD075	596,982.0	6,093,847.2	1435.1	80.0	96.6	-60.0	CHX
AD080	596,930.3	6,094,321.7	1407.5	51.0	97.6	-60.0	СНХ
AD081	596,977.1	6,094,189.6	1414.2	51.0	99.6	-60.0	СНХ
ARC001	596,789.8	6,094,198.7	1399.7	80.0	91.6	-59.5	CHX
ARC002	596,750.2	6,094,198.4	1397.1	96.0	93.6	-60.2	CHX
ARC003	596,998.6	6,093,924.1	1433.3	30.0	95.6	-60.0	CHX
ARC004	596,961.0	6,093,921.1	1426.7	102.0	96.6	-64.3	CHX
ARC005	596,946.2	6,093,721.6	1460.4	86.0	90.6	-68.0	CHL
ARC006	596,935.1	6,093,758.1	1453.0	96.0	92.1	-60.0	CHL
ARC007	596,964.8	6,093,714.8	1462.2	54.0	96.6	-60.4	CHL
ARCO08	596,939.1	6,093,821.1	1435.6	96.0	89.1	-59.0	CHL
ARC009	596,995.3	6,093,905.6	1436.9	60.0	100.1	-90.0	CHX
ARCUIU ARCUII	596,988.5	6,093,784.8 6,092,721,7	1452.3	12.0 84.0	358.3	-70.0	
ARCOIL	596,940.0	6 093,721.7	1400.4	04.0 96.0	90.0	-09.0	СНХ
ARC020	596 937 0	6 093 887 2	1402.5	120.0	89.6	-58.6	СНХ
ARC022	596.690.9	6.094.196.6	1393.8	102.0	96.6	-49.0	СНХ
ARC024	596.967.2	6.093.638.3	1472.2	52.0	97.1	-59.2	CHL
ARC025	596,938.5	6,093,639.5	1473.1	93.0	87.6	-70.8	CHL
ARC028	596,946.3	6,093,721.6	1460.3	59.0	90.6	-70.0	CHL
ARC042	596,898.9	6,093,711.8	1454.5	94.0	98.1	-62.1	CHL
ARC046	596,899.9	6,093,711.7	1454.6	150.0	91.6	-56.8	CHL
ARC051	596,968.9	6,093,619.1	1473.3	51.0	91.6	-48.0	CHL
ARC052	596,987.5	6,093,660.6	1470.2	46.0	91.6	-48.0	CHL
ARC053	596,977.9	6,093,628.3	1472.0	36.0	86.6	-49.0	CHL
ARC055	596,972.8	6,093,660.5	1469.8	72.0	88.6	-60.0	CHL
ARC056	596,946.5	6,093,660.1	1470.0	88.0	85.6	-60.0	CHL
ARC057	596,955.3	6,093,616.9	1474.2	66.0	87.6	-50.0	CHL
ARCU58	596,976.4	6,093,682.3	1467.9	40.0	90.6	-60.0	CHL
ARCU59	596,965.0	0,093,681.9	1467.8	51.0	89.1	-61.5	
	596,955.1	0,093,081.8 6 002 710 2	1407.0	01.U	92.b 02.6	-00.0	
ARC062	596,967 8	6.093.701.6	1465 3	41.0 48.0	90.6	-56.0	CHI

Drill	Easting	Northing	Elevation	Depth	Azimuth	Dip	Туре
hole	(m)	(m)	(m)	(m)	(°)	(°)	
ARC063	596,952.6	6,093,700.1	1464.3	60.0	87.6	-60.0	CHL
ARC065	596,936.1	6,093,699.4	1463.9	90.0	94.6	-60.5	CHL
ARC066	596,953.5	6,093,719.7	1461.3	69.0	93.6	-58.5	CHL
ARC067	596,970.3	6,093,741.2	1457.7	40.0	97.6	-51.0	CHL
ARC068	596,952.2	6,093,738.9	1458.1	66.0	92.6	-59.5	CHL
ARC069	596,971.7	6,093,604.4	1473.4	48.0	102.6	-45.0	CHL
ARC070	596,974.1	6,093,760.9	1453.0	54.0	96.6	-61.5	CHL
ARCU/1	596,987.6	6,093,776.8	1452.6	30.0	92.6	-60.0	CHX
ARCU72	596,961.4	6,093,791.2	1443.0	60.0 27.0	97.6	-55.0	CHL
ARCU73	596,988.4	6,093,819.9	1439.8	37.0	92.6	-50.0	CHX
ARC074	590,970.5	6 002 808 4	1431.9	50.0	91.0	-59.0	
ARC075	596,959.8	6 002 010 4	1420.4	54.0	02.6	-55.0	
ARC077	596 979 1	6 093 960 1	1420.7	48.0	90.6	-59.5	СНХ
ARC078	596 981 9	6 094 034 3	1427.0	40.0 84 0	95.6	-67 5	СНХ
ARC079	596.979.2	6.094.118.5	1418.8	84.0	87.6	-65.0	СНХ
ARC081	596 932 8	6 093 659 2	1469 7	108.0	92.6	-58.0	CHI
ARC082	597.003.8	6.093.659.2	1469.7	24.0	94.6	-54.5	CHI
ARC083	596.954.6	6.093.617.1	1474.3	80.0	88.6	-62.5	CHL
ARC084	596.933.9	6.093.679.5	1466.4	90.0	88.6	-60.0	CHL
ARC085	596,940.1	6,093,738.2	1457.7	73.0	88.6	-63.0	CHL
ARC086	596,984.3	6,093,898.5	1432.2	42.0	88.6	-54.5	CHX
ARC087	596,974.2	6,093,981.1	1425.9	36.0	91.6	-58.0	CHX
ARC088	596,980.7	6,093,766.3	1452.7	42.0	93.1	-48.5	CHL
ARC089	596,963.7	6,093,940.0	1425.9	66.0	91.6	-59.0	CHX
ARC090	596,979.3	6,093,940.3	1428.5	42.0	91.6	-58.5	CHX
ARC091	596,985.7	6,093,920.0	1430.6	36.0	102.6	-55.0	CHX
ARC092	596,977.2	6,093,890.2	1431.4	45.0	91.6	-61.5	CHX
ARC093	596,988.2	6,093,882.7	1433.5	24.0	91.6	-49.0	CHX
ARC094	596,962.6	6,093,918.9	1426.9	60.0	90.6	-60.0	CHX
ARC095	596,996.7	6,093,940.8	1431.1	30.0	92.6	-55.0	CHX
ARC096	596,975.3	6,093,931.3	1427.6	48.0	90.6	-60.0	CHX
ARC097	596,973.0	6,093,960.1	1426.0	50.0	89.6	-61.0	CHX
ARC098	596,969.9	6,093,999.7	1423.8	36.0	88.6	-59.0	CHX
ARC099	596,912.6	6,094,160.5	1410.3	80.0	92.6	-60.0	CHX
ARC100	596,920.2	6,094,036.4	1415.1	96.0	87.6	-60.0	CHX
ARC101	596,939.2	6,094,100.5	1413.1	80.0	89.6	-60.0	CHX
ARC102	596,991.0	6,093,857.3	1435.7	30.0	88.6	-49.5	CHX
ARC104	596,991.2	6,093,940.6	1430.1	33.0	91.6	-58.0	CHX
ARC105	590,897.0	6,093,764.0	1445.0	138.0	84.0 02.6	-53.U	
ARC100	596,905.7	6 004 002 0	1420.5	26.0	92.0	-02.5	
ARC107	596,902.1	6 093 981 /	1420.9	20.0	88.0 89.6	-00.0	СНХ
ARC109	596 963 1	6 093 980 8	1423.3	54.0	90.6	-60 5	СНХ
ARC110	596,978,9	6.093.994.7	1425.2	18.0	91.6	-59.5	СНХ
ARC111A	596.958.2	6.093.999.9	1422.3	50.0	90.6	-60.0	CHX
ARC112	596.972.1	6.094.018.9	1422.8	36.0	91.6	-58.0	CHX
ARC113	596,953.8	6,094,019.1	1420.7	51.0	91.6	-58.5	CHX
ARC125	596,954.0	6,093,620.0	1472.0	96.0	86.6	-73.0	CHL
ARC126	596,970.0	6,093,858.0	1431.5	58.0	93.6	-58.5	CHX
ARC127	596,986.0	6,093,836.0	1438.0	30.0	94.6	-45.5	CHX
ARC128	596,965.0	6,093,810.0	1441.5	66.0	77.6	-58.5	CHL
ARC129	596,955.0	6,093,791.0	1444.5	78.0	78.6	-59.5	CHL
ASD001	596,917.4	6,093,665.2	1466.6	165.4	78.1	-71.5	CHL
ASD002	596,901.1	6,093,711.2	1454.6	90.0	81.6	-60.0	CHL
ASD003	596,901.5	6,093,711.4	1454.6	132.0	83.6	-54.0	CHL
ASD004	596,850.4	6,093,920.9	1415.8	315.2	91.1	-65.0	CHX
ASD005	596,954.6	6,093,644.2	1472.7	79.0	90.6	-60.0	CHL
ASD006	596,939.0	6,093,639.4	1473.3	96.4	92.6	-59.5	CHL
DDH001	596,910.5	6,093,668.2	1464.5	157.1	105.6	-60.0	CHL
DDH002	596,862.7	6,093,681.5	1452.8	250.0	105.6	-65.0	CHL
DDH003	596,897.8	6,093,718.2	1453.6	205.6	105.6	-60.0	CHL
DDH006	596,870.1	6,093,725.4	1448.4	250.0	105.6	-60.0	CHL
	590,936.8	0,093,/32.9 6 002 74C 1	1458.6	1/5.1	105.6	-72.0	CHL
	270,888./	0,093,740.1 6 002 760 7	1448.5	209.5	105.0	-00.0	
	220,233.2 596 907 2	6 002 770 0	1452.8 1115 0	170.A	105.0 105.0	-70.0	CHL
	596 015 1	6 003 707 7	1443.2 1771 E	140.0 216 0	105.0	-05.0	СПС
	596 91/ 9	6 093 792.2	1 <u>44</u> 1.5 1 <u>1</u> 11 5	102 5	105.0	-53.5	СПЕ
DDH013	596,912.7	6.093.819.0	1436 2	244 5	105.6	-52.0	CHI
DDH014	596,912.3	6,093,819.1	1436.2	250.2	105.6	-77.0	CHL
	,	-,,					

Drill	Easting	Northing	Elevation	Depth	Azimuth	Dip	Туре
hole	(m)	(m)	(m)	(m)	(°)	(°)	
DDH015	596,914.0	6,093,792.5	1441.5	220.5	105.6	-78.0	CHL
DDH016	596,896.3	6,093,770.2	1445.2	235.5	105.6	-70.0	CHL
DDH017	596,932.2	6,093,683.2	1465.8	223.5	105.6	-68.5	CHL
	590,932.2	6,093,083.2	1405.8	180.1	105.0	-80.0	
	596 898 7	6 093 718 0	1453.6	129 5	105.0	-52.0	СНІ
DDH020	596.895.8	6.093.770.3	1445.2	257.0	105.6	-77.0	CHI
DDH022	596.887.7	6.093.746.3	1448.5	212.0	105.6	-72.0	CHL
DDH023	596,888.3	6,093,799.4	1437.2	225.2	105.6	-76.0	CHL
DDH024	596,872.3	6,093,827.5	1433.1	246.1	105.6	-76.0	CHL
DDH025	596,912.5	6,093,819.1	1436.2	137.8	105.6	-67.0	CHL
DDH026	596,899.3	6,093,848.3	1430.0	173.0	105.6	-74.0	CHL
DDH027	596,917.9	6,093,615.2	1475.0	131.0	105.6	-62.0	CHL
DDH038	596,899.5	6,093,848.3	1430.0	148.3	105.6	-62.3	CHL
GAB001	596,989.0	6,093,665.0	1469.0	17.0	85.1	-45.0	CHL
GAB002	597,011.0	6,093,667.0	1468.6	15.0	270.3	-45.0	CHL
GAB003	596,985.0	6,093,501.0	1456.4	17.0	105.1	-60.0	CHL
GAB004	596,864.0	6,093,419.0	1474.3	25.0	270.3	-45.0	CHL
GAB005	596,871.0	6,093,368.0	1464.2	25.0	270.3	-45.0	CHL
GAB006	596,879.0	6,093,237.0	1439.0	25.0	270.3	-45.0	CHL
GABUU7	596,881.0	6,093,242.0	1439.0	12.0	270.3	-45.0	
GABOOO	596,980.0	6 002 224 0	1431.0	11.0	90.1	-45.0	
GAB010	597 011 0	6 093 005 0	1390.0	12.0 6.0	90.1	-45.0	СНІ
GAB010 GAB011	597 011 0	6 092 978 0	1396.0	25.0	90.1	-45.0	СНІ
GAB011	597 024 0	6 093 003 0	1386.0	25.0	270.3	-45.0	CHI
GAB013	597.007.0	6.093.230.0	1408.0	16.2	270.3	-45.0	CHL
GAB038	596.972.0	6.094.075.0	1420.0	25.0	90.1	-47.0	CHX
GAB039	596,986.0	6,094,070.0	1422.0	25.0	90.1	-46.0	CHX
GAB040	596,940.0	6,094,178.0	1412.0	25.0	90.1	-45.0	СНХ
GAB041	596,955.0	6,094,179.0	1413.0	25.0	94.1	-46.0	CHX
GAB042	596,973.0	6,094,179.0	1415.0	25.0	90.1	-45.0	CHX
GAB068	597,177.0	6,094,058.0	1451.0	25.0	90.1	-41.0	CHXE
GAB069	597,163.0	6,094,058.0	1449.0	25.0	90.1	-45.0	CHXE
GRC001	596,995.6	6,093,880.7	1434.9	20.0	87.6	-56.0	CHX
GRC002	596,984.4	6,093,880.3	1435.3	33.0	86.6	-59.5	CHX
GRC003	596,996.9	6,093,891.3	1434.5	24.0	86.6	-54.0	CHX
GRC004	596,984.8	6,093,890.6	1432.6	36.0	89.6	-60.0	CHX
GRC005	596,974.9	6,093,899.8	1429.8	45.0	88.6	-54.0	CHX
GRC006	596,976.8	6,093,909.6 6,003,010 F	1429.5	42.0	87.6	-48.0	CHX
GRC007	596,980.4	6,093,919.5	1429.8	52.0	89.0 00.6	-54.5	
GRC009	596 974 4	6 093 999 7	1427.0	30.0	90.0	-55 5	СНХ
GRC010	596 946 9	6 093 976 9	1420.2	78.0	87.6	-55.0	СНХ
GRC011	596,985,4	6.093.939.9	1429.5	30.0	90.6	-60.0	СНХ
GRC012	596.964.2	6.093.999.9	1423.0	48.0	92.6	-58.5	CHX
GRC013	596,989.5	6,093,965.1	1428.6	24.0	91.6	-60.0	CHX
GRC014	596,963.9	6,094,020.6	1422.5	40.0	89.6	-57.0	СНХ
GRC015	597,002.4	6,094,040.1	1426.1	36.0	89.6	-51.0	CHX
GRC016	596,990.0	6,093,934.0	1429.3	15.0	97.6	-49.5	CHX
GRC017	596,935.2	6,093,998.8	1417.5	90.0	90.1	-55.0	CHX
GRC018	596,944.6	6,093,976.6	1419.8	95.0	85.1	-63.0	CHX
GRC019	596,927.1	6,093,754.8	1452.9	132.0	108.6	-65.5	CHL
GRC020	596,925.6	6,093,755.1	1452.8	150.0	108.6	-71.0	CHL
GRC021	596,926.9	6,093,757.5	1452.7	138.0	81.1	-68.0	CHL
GRC022	596,937.0	6,093,660.0	1458.0	140.0	90.1	-/6.0	CHL
GRC023	596,930.1		1457.9	130.0	90.1	-73.0	
GRC027	596,929.0	6 002 577 7	1479.1	120.0	90.1	-07.0	
GRC030	596 878 7	6 093 724 3	1479.1	197.0	90.1 86 1	-65.0	СНІ
GRC032	596.917.5	6.093.614.0	1475.0	168.0	91.1	-68.0	CHI
GRC033	596.874.4	6,093.777.3	1439.2	216.0	102.1	-65.0	CHL
GRC034	596,879.3	6,093,819.8	1432.9	192.0	97.0	-61.0	CHL
GRC036	596,872.0	6,093,868.7	1425.2	186.0	90.1	-68.0	CHL
GRC037	596,875.6	6,093,869.0	1425.2	220.0	90.1	-60.0	CHL
GRC062	596,920.0	6,094,100.0	1414.0	120.0	90.1	-70.0	CHX
GRC063	596,915.0	6,094,000.0	1416.0	126.0	90.1	-60.0	CHX
GRC064	596,940.0	6,093,920.0	1415.2	125.0	90.1	-80.0	CHX
GRC065	596,914.0	6,093,485.0	1476.5	142.0	120.1	-60.0	CHL
GRC066	596,965.0	6,093,295.0	1426.5	60.0	90.1	-60.0	CHL
GSD001	596,898.9	6,093,711.8	1454.5	165.4	98.1	-60.0	CHL

Drill	Easting	Northing	Elevation	Depth	Azimuth	Dip	Туре
hole	(m)	(m)	(m)	(m)	(°)	(°)	
GSD003	596,891.2	6,093,793.5	1437.8	165.9	109.1	-62.0	CHL
GSD004	596,877.3	6,093,819.8	1432.7	240.1	90.1	-69.0	CHL
GSD005	596,862.0	6,093,660.0	1458.0	108.0	90.1	-66.0	CHX
TGRC004	596,781.0	6,093,322.0	1468.7	10.0	90.1	-50.0	CHL
TGRC026	596,905.0	6,094,146.0	1409.9	8.0	90.1	-60.0	CHX
TGRC027	596,931.0	6,094,176.0	1411.6	15.0	90.1	-60.0	CHX
TGRC028	596,917.0	6,094,216.0	1407.7	10.0	90.1	-60.0	CHX
TGRC029	596,937.0	6,094,251.0	1406.7	38.0	90.1	-50.0	CHX
TGRC030	596,926.0	6,094,299.0	1405.8	19.0	90.1	-50.0	CHX
TGRC031	596,919.0	6,094,348.0	1407.4	34.0	90.1	-50.0	CHX
TGRC040	597,067.0	6,094,178.0	1426.7	40.0	90.1	-60.0	CHX
TGRC041	596,945.0	6,094,299.0	1407.5	20.0	270.3	-65.0	CHX
TGRC047	596,959.0	6,094,220.0	1410.9	9.0	270.3	-60.0	CHX
218			Total	19,531.4	m		

APPENDIX 4 – CHALLENGER DRILL HOLE 'ENVELOPE' VEIN INTERCEPTS

0.05

The following listings give all drill hole vein intercepts within the Challenger deposit area – for the 'Envelope veins' interpretation. Intercepts are listed by vein, from east to west. Vein intercepts may have had multiple sample intervals and the gold values are the composits of all samples within each vein.

Hole (m) (m) (g/t) CHALLENGER ENVELOPE - <td< th=""><th>Vein</th><th>Roof</th><th>Floor</th><th>Thick</th><th>Au</th></td<>	Vein	Roof	Floor	Thick	Au
CH4 A AD052 131.00 132.00 1.00 0.00 AD072 66.70 67.70 1.00 0.03 ARC008 94.00 95.00 1.00 6.25 ARC082 18.00 24.00 6.00 0.60 DDH003 166.80 169.60 2.80 0.75 DDH003 166.80 169.60 2.80 0.75 DDH006 243.30 246.60 3.30 0.03 DDH011 152.10 155.90 3.80 0.64 DDH013 138.80 141.70 2.90 0.33 DDH017 154.40 156.60 2.20 0.54 Max_Value : 128.26 130.84 2.58 0.57 Max_Value : 128.00 12.00 12.00 12.00 No14 40.65 56.65 16.00 .87 AD049 36.60 51.00 1.44 0.68 AD052 120.00 12.00 1.00 <th>Hole</th> <th>(m)</th> <th>(m)</th> <th>(m)</th> <th>(g/t)</th>	Hole	(m)	(m)	(m)	(g/t)
ERVELUPE CH4 AD052 131.00 132.00 1.00 0.03 ARC052 131.00 94.00 95.00 1.00 0.04 ARC052 41.00 42.00 1.00 6.25 ARC082 18.00 24.00 6.00 0.60 DDH001 148.15 153.48 5.33 0.28 DDH006 243.30 246.60 3.30 0.03 DDH006 243.30 246.60 3.30 0.64 DDH011 152.10 155.90 3.80 6.64 DDH013 138.80 141.70 2.90 0.63 DDH017 154.40 156.60 2.20 0.54 Mean_Value : 128.26 130.84 2.58 0.57 Max_Value : 128.00 24.00 0.60 0.00 No. Samples: 12.00 12.00 12.00 12.00 AD046 40.65 56.65 16.00 8.7 AD049 36.60	CHALLENGER				
CH4 ADDS5 131.00 132.00 1.00 0.00 AD072 66.70 67.70 1.00 0.03 ARC082 18.00 24.00 6.00 0.60 DDH001 148.15 153.48 5.33 0.28 DDH003 166.80 169.60 2.80 0.75 DDH006 243.30 246.60 3.30 0.03 DDH011 152.10 155.90 3.80 0.64 DDH013 138.80 141.70 2.90 0.33 DDH017 154.40 156.60 2.20 0.54 Mean_Value : 128.26 130.84 2.58 0.57 Max_Value : 128.00 12.00 12.00 12.00 12.00 Obto3 12.00 12.00 12.00 12.00 12.00 12.00 AD046 40.65 56.65 16.00 0.87 AD049 36.60 1.00 0.01 AD046 35.00 66.30 <	ENVELOPE				
AD072 151.00 152.00 152.00 1.00 0.03 ARC008 94.00 95.00 1.00 0.04 ARC052 41.00 42.00 1.00 6.25 ARC082 18.00 24.00 6.00 0.60 DDH001 148.15 153.48 5.33 0.28 DDH006 243.30 246.60 3.30 0.03 DDH008 184.90 185.50 0.60 0.34 DDH011 152.10 155.90 3.80 0.64 DDH013 138.80 141.70 2.90 0.03 DDH017 154.40 156.60 2.20 0.54 Max_Value : 128.00 240.00 0.60 0.00 No.5amples : 12.00 12.00 12.00 12.00 12.00 AD046 40.55 56.65 16.00 0.87 AD049 36.60 51.00 1.44 0.68 AD052 120.00 12.00 0.33 <td></td> <td>131 00</td> <td>132 00</td> <td>1 00</td> <td>0.00</td>		131 00	132 00	1 00	0.00
ARC008 94.00 95.00 1.00 0.04 ARC052 41.00 42.00 1.00 6.25 ARC082 18.00 24.00 6.00 0.60 DDH001 148.15 153.48 5.33 0.28 DDH003 166.80 169.60 2.80 0.75 DDH006 243.30 246.60 3.30 0.03 DDH011 152.10 155.90 3.80 0.64 DDH013 138.80 141.70 2.90 0.03 DDH017 154.40 156.60 2.20 0.54 Mmar_Value : 128.26 130.84 2.58 0.57 Max_Value : 128.00 24.00 0.60 0.00 No.5amples: 12.00 12.00 12.00 12.00 12.00 AD046 40.65 56.65 16.60 0.87 AD049 36.60 51.00 1.40 0.68 AD052 120.00 12.00 1.00 0.03	AD052 AD072	131.00 66.70	67 70	1.00	0.00
ARC052 41.00 42.00 1.00 6.25 ARC082 18.00 24.00 6.00 0.60 DDH001 148.15 153.48 5.33 0.28 DDH006 243.30 246.60 3.30 0.03 DDH006 243.30 246.60 3.30 0.64 DDH011 152.10 155.90 3.80 0.64 DDH013 138.80 141.70 2.90 0.33 DDH017 154.40 156.60 2.20 0.54 Mean_Value : 128.26 130.84 2.58 0.57 Max_Value : 128.00 24.00 0.60 0.00 No.Samples: 12.00 12.00 12.00 12.00 AD046 40.65 56.65 16.00 8.7 AD046 20.52 120.00 12.00 10.00 AD053 121.00 142.00 21.00 0.03 AD055 305.65 306.29 0.64 2.69 AD072 61.70 62.70 1.00 0.12 AD075	ABCOOS	94.00	95.00	1.00	0.03
ARC082 18.00 24.00 6.00 0.60 DDH001 148.15 153.48 5.33 0.28 DDH006 243.30 246.60 3.30 0.33 DDH008 184.90 185.50 0.60 0.34 DDH011 152.10 155.90 3.80 0.64 DDH013 138.80 141.70 2.90 0.03 DDH017 154.40 156.60 2.20 0.54 Mean_Value : 128.26 130.84 2.58 0.57 Max_Value : 120.00 12.00 12.00 12.00 No 46 40.65 56.65 16.00 0.87 AD049 36.60 51.00 14.40 0.68 AD052 120.00 120.20 0.20 0.03 AD053 121.00 142.00 21.00 0.12 AD053 121.00 142.00 21.00 0.31 AD053 120.00 13.00 0.12 AD073	ARC052	41.00	42.00	1.00	6.25
DDH001148.15153.485.330.28DDH003166.80169.602.800.75DDH006243.30246.603.300.03DDH018184.90185.500.600.34DDH011152.10155.903.800.64DDH013138.80141.702.900.03DDH017154.40156.602.200.54Max_Value:243.30246.606.006.25Min_Value:243.30246.606.006.25Min_Value:12.0012.0012.0012.00No. Samples:12.0012.0012.000.03AD04640.6556.6516.000.87AD04536.6051.0014.400.68AD052120.00120.200.200.03AD053121.00142.0021.000.03AD055305.65306.290.642.98AD07261.7062.701.000.11AD07357.5058.501.000.12AD07357.5058.501.000.12ARC0453.0065.0012.000.35ARC0691.0092.001.000.35ARC0691.0092.001.000.35ARC0691.0092.001.000.35ARC0691.0092.001.000.35ARC0453.0065.001.000.76ARC05142.0044.002.	ARC082	18.00	24.00	6.00	0.60
DDH003 166.80 169.60 2.80 0.75 DDH006 243.30 246.60 3.30 0.03 DDH011 155.90 3.80 0.64 DDH011 152.10 155.90 3.80 0.64 DDH017 154.40 156.60 2.20 0.54 Mean_Value : 243.30 246.60 6.00 6.25 Min_Value : 18.00 24.00 0.66 0.00 No.Samples : 12.00 12.00 12.00 12.00 AD046 40.65 56.65 16.00 0.87 AD045 305.65 306.29 0.64 2.69 AD053 121.00 142.00 2.100 0.01 AD055 305.65 306.29 0.64 2.69 AD057 30.00 31.00 1.00 0.12 AD073 57.50 58.50 1.00 0.12 AD075 30.00 31.00 1.00 0.33 ARC006	DDH001	148.15	153.48	5.33	0.28
DDH006 243.30 246.60 3.30 0.03 DDH008 184.90 185.50 0.60 0.34 DDH011 152.10 155.90 3.80 0.64 DDH017 154.40 156.60 2.20 0.54 Mean_Value : 128.26 130.84 2.58 0.57 Max_Value : 128.00 24.00 0.60 0.00 No.Samples : 12.00 12.00 12.00 12.00 CH3	DDH003	166.80	169.60	2.80	0.75
DDH008 184.90 185.50 0.60 0.34 DDH011 152.10 155.90 3.80 0.64 DDH017 154.40 156.60 2.20 0.54 Mean_Value: 128.26 130.84 2.58 0.57 Max_Value: 128.00 240.00 0.60 0.00 No. Samples: 12.00 12.00 12.00 12.00 CH3	DDH006	243.30	246.60	3.30	0.03
DDH011 152.10 155.90 3.80 0.64 DDH013 138.80 141.70 2.90 0.03 DH017 154.40 156.60 2.20 0.54 Mean_Value : 243.30 246.60 6.00 6.55 Min_Value : 243.30 246.60 6.00 0.00 No.Samples : 12.00 12.00 12.00 12.00 AD046 40.65 56.65 16.00 0.87 AD045 120.00 120.20 0.20 0.03 AD053 121.00 142.00 21.00 0.03 AD055 305.65 306.29 0.64 2.69 AD055 305.65 306.29 0.42 AD07 AD073 57.50 58.50 1.00 0.12 AD075 30.00 31.00 1.00 0.33 ARC006 91.00 92.00 1.00 0.33 ARC03 0.00 13.00 0.50 3.24 <td< td=""><td>DDH008</td><td>184.90</td><td>185.50</td><td>0.60</td><td>0.34</td></td<>	DDH008	184.90	185.50	0.60	0.34
DDH013 138.80 141.70 2.90 0.03 DDH017 154.40 156.60 2.20 0.54 Mea_Value : 128.26 130.84 2.58 0.57 Max_Value : 128.00 240.60 6.00 6.25 Min_Value : 18.00 24.00 0.60 0.00 No.Samples : 12.00 12.00 12.00 12.00 AD046 40.65 56.65 16.00 0.87 AD053 121.00 142.00 21.00 0.03 AD055 305.65 306.29 0.64 2.69 AD059 59.70 60.70 1.00 A01 AD072 61.70 62.70 1.00 0.01 AD075 30.00 31.00 1.00 0.17 ARC003 0.00 13.00 0.25 3.87 ARC004 53.00 65.00 12.00 0.53 ARC005 91.00 92.00 1.00 0.22 <t< td=""><td>DDH011</td><td>152.10</td><td>155.90</td><td>3.80</td><td>0.64</td></t<>	DDH011	152.10	155.90	3.80	0.64
DDH017154.40156.602.200.54Mean_Value :128.26130.842.580.57Max_Value :18.00240.000.600.00No. Samples :12.0012.0012.0012.00AD04640.6556.6516.000.87AD045120.00120.200.200.03AD052120.00120.200.200.03AD055305.65306.290.642.69AD055305.65306.290.642.69AD05463.5066.302.800.42AD07530.0031.001.000.17AD07357.5058.501.000.12AD07530.0031.0013.000.25ARC00453.0065.0012.000.03ARC00591.0092.001.000.33ARC00691.0092.001.000.53ARC00751.0052.001.000.25ARC02281.0082.001.000.24ARC05142.0044.002.000.79ARC05216.0017.001.000.00ARC05542.0043.001.000.76ARC05542.0043.001.000.76ARC05686.0087.001.000.07ARC05542.0043.001.000.00ARC05542.0043.001.000.00ARC05666.0061.001.00<	DDH013	138.80	141.70	2.90	0.03
Mean_Value : 128.26 130.84 2.58 0.57 Max_Value : 243.30 246.60 6.00 6.25 Min_Value : 18.00 24.00 0.60 0.00 No. Samples : 12.00 12.00 12.00 12.00 CH3 AD046 40.65 56.65 16.00 0.87 AD052 120.00 120.20 0.20 AD053 121.00 142.00 21.00 0.03 AD055 305.65 306.29 0.64 2.69 AD076 1.00 AD1 AD074 61.70 62.70 1.00 0.01 AD073 57.50 58.50 1.00 0.12 AD075 30.00 31.00 1.00 0.17 ARC003 0.00 13.00 0.25 ARC006 91.00 92.00 1.00 0.53 ARC006 91.00 92.00 1.00 0.53 ARC004 53.00 65.00 1.00 0.02 <	DDH017	154.40	156.60	2.20	0.54
Max_Value 243.30 246.60 6.00 6.25 Min_Value 18.00 24.00 0.60 0.00 No. Samples: 12.00 12.00 12.00 12.00 CH3 AD046 40.65 56.65 16.00 0.87 AD049 36.60 51.00 14.40 0.68 AD052 120.00 120.20 0.20 AD053 121.00 142.00 21.00 0.03 AD055 305.65 306.29 0.64 2.69 AD057 60.70 1.00 0.12 AD073 57.50 58.50 1.00 0.12 AD075 30.00 31.00 1.00 0.33 ARC003 0.00 13.00 0.53 ARC004 53.00 65.00 1.00 0.33 ARC004 53.00 65.00 1.00 0.33 ARC03 1.00 0.14 ARC03 76.00 81.00 5.	Mean Value :	128.26	130.84	2.58	0.57
Min_Value 18.00 24.00 12.00 12.00 12.00 NO. Samples: 12.00 12.00 12.00 12.00 CH3 0.66 56.65 16.00 0.87 AD049 36.60 51.00 14.40 0.68 AD052 120.00 120.20 0.20 AD053 121.00 142.00 21.00 0.03 AD055 305.65 306.29 0.64 2.69 AD059 59.70 60.70 1.00 0.01 AD072 61.70 62.70 1.00 0.17 ARC003 0.00 13.00 1.30 0.25 ARC004 53.00 65.00 12.00 0.33 ARC005 91.00 92.00 1.00 0.33 ARC006 91.00 92.00 1.00 0.22 ARC007 51.00 52.00 1.00 0.22 ARC008 76.00 81.00 5.00 0.	Max_Value :	243.30	246.60	6.00	6.25
No. Samples: 12.00 12.00 12.00 12.00 CH3	Min_Value :	18.00	24.00	0.60	0.00
CH3 AD046 40.65 56.65 16.00 0.87 AD049 36.60 51.00 14.40 0.68 AD052 120.00 120.20 0.20 AD053 AD053 121.00 142.00 21.00 0.03 AD055 305.65 306.29 0.64 2.69 AD059 59.70 60.70 1.00 AD072 AD072 61.70 62.70 1.00 0.01 AD073 57.50 58.50 1.00 0.17 ARC003 0.00 13.00 13.00 0.25 ARC004 53.00 65.00 12.00 0.33 ARC005 91.00 92.00 1.00 0.53 ARC006 91.00 5.00 0.87 ARC008 76.00 81.00 5.00 0.87 ARC022 81.00 82.00 1.00 0.22 ARC046 147.00 148.00 1.00 0.44 ARC05	No. Samples :	12.00	12.00	12.00	12.00
AD046 40.65 56.65 16.00 0.87 AD049 36.60 51.00 14.40 0.68 AD052 120.00 120.20 0.20 AD053 121.00 142.00 21.00 0.03 AD055 305.65 306.29 0.64 2.69 AD059 59.70 60.70 1.00 0.01 AD072 61.70 62.70 1.00 0.12 AD073 57.50 58.50 1.00 0.12 AD075 30.00 31.00 1.00 0.17 ARC003 0.00 13.00 13.00 0.25 ARC04 53.00 65.00 12.00 0.33 ARC06 91.00 92.00 1.00 0.53 ARC003 75.00 81.00 5.00 0.87 ARC022 81.00 82.00 1.00 0.22 ARC046 147.00 148.00 1.00 0.24 ARC051 42.00 44	СНЗ				
AD04936.6051.0014.400.68AD052120.00120.200.20AD053121.00142.0021.000.03AD055305.65306.290.642.69AD05959.7060.701.00AD06463.5066.302.800.42AD07261.7062.701.000.11AD07357.5058.501.000.12AD07530.0031.001.000.17ARC030.0013.0013.000.25ARC0453.0065.0012.000.35ARC0751.0052.001.000.03ARC0876.0081.005.008.7ARC0933.0049.0016.002.84ARC02281.0082.001.000.22ARC046147.00148.001.000.14ARC05142.0044.002.000.79ARC05542.0043.001.000.00ARC05686.0087.001.000.00ARC05764.0065.001.000.70ARC05950.0050.100.100.00ARC06060.0061.001.000.70ARC06134.0035.001.000.05ARC06245.0046.001.000.70ARC05950.0050.100.100.00ARC06134.0035.001.000.05ARC06245.0046	AD046	40.65	56.65	16.00	0.87
AD052120.00120.200.20AD053121.00142.0021.000.03AD055305.65306.290.642.69AD05959.7060.701.00AD06463.5066.302.800.42AD07261.7062.701.000.01AD07357.5058.501.000.12AD07530.0031.001.000.17ARC0030.0013.0013.000.25ARC00453.0065.0012.000.35ARC00691.0092.001.000.63ARC00751.0052.001.000.53ARC00876.0081.005.008.87ARC00933.0049.0016.002.84ARC02281.0082.001.000.14ARC05142.0044.002.000.79ARC05216.0017.001.000.00ARC05542.0043.001.000.24ARC05686.0087.001.000.00ARC05764.0065.001.000.70ARC05686.0087.001.000.00ARC05764.0065.001.000.07ARC06950.0050.100.1000.00ARC05666.0067.001.000.38ARC06736.0040.004.001.34ARC06666.0067.001.000.02ARC06134.00<	AD049	36.60	51.00	14.40	0.68
AD053 121.00 142.00 21.00 0.03 AD055 305.65 306.29 0.64 2.69 AD059 59.70 60.70 1.00 AD064 63.50 66.30 2.80 0.42 AD072 61.70 62.70 1.00 0.01 AD073 57.50 58.50 1.00 0.12 AD075 30.00 31.00 1.00 0.17 ARC003 0.00 13.00 12.00 0.35 ARC004 53.00 65.00 12.00 0.35 ARC005 91.00 92.00 1.00 0.03 ARC006 91.00 92.00 1.00 0.53 ARC006 91.00 92.00 1.00 0.35 ARC007 51.00 52.00 1.00 0.22 ARC008 76.00 81.00 5.00 0.79 ARC022 81.00 82.00 1.00 0.00 ARC051 42.00 <td>AD052</td> <td>120.00</td> <td>120.20</td> <td>0.20</td> <td></td>	AD052	120.00	120.20	0.20	
AD055 305.65 306.29 0.64 2.69 AD059 59.70 60.70 1.00	AD053	121.00	142.00	21.00	0.03
AD05959.7060.701.00AD06463.5066.302.800.42AD07261.7062.701.000.01AD07357.5058.501.000.12AD07530.0031.001.000.17ARC0030.0013.0013.000.25ARC00453.0065.0012.000.35ARC00691.0092.001.000.03ARC00751.0052.001.000.53ARC00933.0049.0016.002.84ARC02281.0082.001.000.22ARC046147.00148.001.000.14ARC05142.0044.002.000.79ARC05216.0017.001.000.00ARC05542.0043.001.000.24ARC05686.0087.001.000.00ARC05764.0065.001.000.76ARC05830.0031.001.000.00ARC05950.0050.100.100.00ARC06060.0061.001.000.05ARC06666.0067.001.000.38ARC06736.0040.004.001.34ARC06941.0045.004.000.02ARC07120.0020.000.02ARC071ARC06736.0040.004.000.02ARC07120.0020.000.000.02ARC072 <td< td=""><td>AD055</td><td>305.65</td><td>306.29</td><td>0.64</td><td>2.69</td></td<>	AD055	305.65	306.29	0.64	2.69
AD06463.5066.302.800.42AD07261.7062.701.000.01AD07357.5058.501.000.12AD07530.0031.001.3000.25ARC0030.0013.0012.000.35ARC00453.0065.0012.000.03ARC00751.0052.001.000.53ARC00876.0081.005.008.7ARC02281.0082.001.000.22ARC046147.00148.001.000.22ARC05142.0044.002.000.79ARC05216.0017.001.000.00ARC05542.0043.001.000.00ARC05686.0087.001.000.00ARC05764.0065.001.000.00ARC05830.0031.001.000.00ARC05950.0050.100.100.00ARC06060.0061.001.000.07ARC06134.0035.001.000.05ARC06245.0046.001.000.02ARC06336.0039.002.000.02ARC06466.0067.001.000.00ARC06566.0067.001.000.02ARC06666.0067.001.000.02ARC06666.0067.001.000.02ARC06736.0040.004.001.34ARC	AD059	59.70	60.70	1.00	
AD07261.7062.701.000.01AD07357.5058.501.000.12AD07530.0031.001.000.17ARC0030.0013.0013.000.25ARC00453.0065.0012.000.35ARC00691.0092.001.000.03ARC00751.0052.001.000.53ARC00876.0081.005.00887ARC02281.0082.001.000.22ARC046147.00148.001.000.14ARC05142.0044.002.000.79ARC05216.0017.001.000.00ARC05335.0036.001.000.70ARC05686.0087.001.000.00ARC05764.0065.001.000.76ARC05830.0031.001.000.00ARC05950.0050.100.100.00ARC06060.0061.001.000.07ARC06134.0035.001.000.05ARC06245.0046.001.000.02ARC06336.001.000.003.8ARC06736.0040.004.001.34ARC06941.0045.004.000.02ARC07120.0020.100.100.02ARC07254.0054.100.100.00ARC07317.0020.003.000.10ARC07	AD064	63.50	66.30	2.80	0.42
AD07357.5058.501.000.12AD07530.0031.001.000.17ARC0030.0013.0013.000.25ARC00453.0065.0012.000.35ARC00691.0092.001.000.03ARC00751.0052.001.000.53ARC00876.0081.005.008.87ARC02281.0082.001.000.22ARC046147.00148.001.000.14ARC05142.0044.002.000.79ARC05216.0017.001.000.00ARC05335.0036.001.000.70ARC05686.0087.001.000.00ARC05764.0065.001.000.00ARC05830.0031.001.000.00ARC05950.0050.100.100.00ARC06060.0061.001.000.07ARC06134.0035.001.000.05ARC06245.0046.001.000.05ARC06366.0067.001.000.38ARC06466.0067.001.000.02ARC07120.0020.100.100.02ARC07254.0054.100.100.02ARC07317.0020.003.000.10ARC07432.0037.005.000.46ARC07546.0059.0013.000.67	AD072	61.70	62.70	1.00	0.01
AD07530.0031.001.000.17ARC0030.0013.0013.000.25ARC00453.0065.0012.000.35ARC00691.0092.001.000.03ARC00751.0052.001.000.53ARC00933.0049.0016.002.84ARC02281.0082.001.000.22ARC046147.00148.001.000.14ARC05142.0044.002.000.79ARC05216.0017.001.000.00ARC05335.0036.001.000.70ARC05686.0087.001.000.00ARC05764.0065.001.000.76ARC05830.0031.001.000.00ARC05950.0050.100.100.00ARC06134.0035.001.000.07ARC06245.0046.001.000.07ARC06336.0040.004.001.34ARC06941.0045.004.000.80ARC07037.0039.002.000.02ARC07120.0020.100.100.00ARC07317.0020.003.000.10ARC07546.0059.0013.000.67ARC07626.0040.0014.0010.43ARC07626.0040.0014.001.40ARC078-5.00-4.001.001.40 <td>AD073</td> <td>57.50</td> <td>58.50</td> <td>1.00</td> <td>0.12</td>	AD073	57.50	58.50	1.00	0.12
ARC003 0.00 13.00 13.00 0.25 ARC004 53.00 65.00 12.00 0.35 ARC006 91.00 92.00 1.00 0.03 ARC007 51.00 52.00 1.00 0.53 ARC009 33.00 49.00 16.00 2.84 ARC022 81.00 82.00 1.00 0.22 ARC046 147.00 148.00 1.00 0.14 ARC051 42.00 44.00 2.00 0.79 ARC052 16.00 17.00 1.00 0.00 ARC053 35.00 36.00 1.00 0.70 ARC056 86.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.00 ARC058 30.00 31.00 1.00 0.00 ARC061 34.00 35.00 1.00 0.00 ARC062 45.00 46.00 1.00 0.07 ARC061	AD075	30.00	31.00	1.00	0.17
ARC004 53.00 65.00 12.00 0.35 ARC006 91.00 92.00 1.00 0.03 ARC007 51.00 52.00 1.00 0.53 ARC008 76.00 81.00 5.00 0.87 ARC009 33.00 49.00 16.00 2.84 ARC022 81.00 82.00 1.00 0.22 ARC046 147.00 148.00 1.00 0.14 ARC051 42.00 44.00 2.00 0.79 ARC052 16.00 17.00 1.00 0.00 ARC053 35.00 36.00 1.00 0.70 ARC056 86.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.00 ARC058 30.00 31.00 1.00 0.00 ARC060 60.00 61.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.05 ARC062	ARC003	0.00	13.00	13.00	0.25
ARC006 91.00 92.00 1.00 0.03 ARC007 51.00 52.00 1.00 0.53 ARC008 76.00 81.00 5.00 0.87 ARC009 33.00 49.00 16.00 2.84 ARC022 81.00 82.00 1.00 0.22 ARC046 147.00 148.00 1.00 0.14 ARC051 42.00 44.00 2.00 0.79 ARC052 16.00 17.00 1.00 0.00 ARC053 35.00 36.00 1.00 0.24 ARC056 86.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.00 ARC058 30.00 31.00 1.00 0.00 ARC060 60.00 61.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.05 ARC062 45.00 46.00 1.00 0.05 ARC066 6	ARC004	53.00	65.00	12.00	0.35
ARC007 51.00 52.00 1.00 0.53 ARC008 76.00 81.00 5.00 0.87 ARC009 33.00 49.00 16.00 2.84 ARC022 81.00 82.00 1.00 0.22 ARC046 147.00 148.00 1.00 0.14 ARC051 42.00 44.00 2.00 0.79 ARC052 16.00 17.00 1.00 0.00 ARC053 35.00 36.00 1.00 0.70 ARC056 86.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.00 ARC058 30.00 31.00 1.00 0.00 ARC061 34.00 35.00 1.00 0.07 ARC062 45.00 46.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.05 ARC062 45.00 46.00 1.00 0.05 ARC066 6	ARC006	91.00	92.00	1.00	0.03
ARC008 76.00 81.00 5.00 0.87 ARC009 33.00 49.00 16.00 2.84 ARC022 81.00 82.00 1.00 0.22 ARC046 147.00 148.00 1.00 0.14 ARC051 42.00 44.00 2.00 0.79 ARC052 16.00 17.00 1.00 0.00 ARC053 35.00 36.00 1.00 0.70 ARC056 86.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.00 ARC058 30.00 31.00 1.00 0.00 ARC061 34.00 35.00 1.00 0.07 ARC062 45.00 46.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.00 ARC061 34.00 35.00 1.00 0.05 ARC062 45.00 46.00 1.00 0.05 ARC063 6	ARC007	51.00	52.00	1.00	0.53
ARC009 33.00 49.00 16.00 2.84 ARC022 81.00 82.00 1.00 0.22 ARC046 147.00 148.00 1.00 0.14 ARC051 42.00 44.00 2.00 0.79 ARC052 16.00 17.00 1.00 0.00 ARC053 35.00 36.00 1.00 0.70 ARC055 42.00 43.00 1.00 0.24 ARC056 86.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.00 ARC058 30.00 31.00 1.00 0.00 ARC059 50.00 50.10 0.10 0.00 ARC061 34.00 35.00 1.00 0.07 ARC062 45.00 46.00 1.00 0.05 ARC061 34.00 35.00 1.00 0.38 ARC062 45.00 40.00 4.00 1.34 ARC067 3	ARC008	76.00	81.00	5.00	0.87
ARC022 81.00 82.00 1.00 0.22 ARC046 147.00 148.00 1.00 0.14 ARC051 42.00 44.00 2.00 0.79 ARC052 16.00 17.00 1.00 0.00 ARC053 35.00 36.00 1.00 0.70 ARC055 42.00 43.00 1.00 0.24 ARC056 86.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.00 ARC058 30.00 31.00 1.00 0.00 ARC059 50.00 50.10 0.10 0.00 ARC061 34.00 35.00 1.00 0.07 ARC062 45.00 46.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.38 ARC062 45.00 46.00 1.00 0.38 ARC067 36.00 40.00 4.00 0.80 ARC070 37	ARC009	33.00	49.00	16.00	2.84
ARC046 147.00 148.00 1.00 0.14 ARC051 42.00 44.00 2.00 0.79 ARC052 16.00 17.00 1.00 0.00 ARC053 35.00 36.00 1.00 0.70 ARC055 42.00 43.00 1.00 0.24 ARC056 86.00 87.00 1.00 0.00 ARC056 86.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.00 ARC058 30.00 31.00 1.00 0.00 ARC060 60.00 61.00 1.00 0.00 ARC061 34.00 35.00 1.00 0.07 ARC062 45.00 46.00 1.00 0.05 ARC062 45.00 46.00 1.00 0.38 ARC067 36.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.02 ARC071 20	ARC022	81.00	82.00	1.00	0.22
ARCUS1 42.00 44.00 2.00 0.79 ARC052 16.00 17.00 1.00 0.00 ARC053 35.00 36.00 1.00 0.70 ARC055 42.00 43.00 1.00 0.24 ARC056 86.00 87.00 1.00 0.00 ARC056 86.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.00 ARC058 30.00 31.00 1.00 0.00 ARC059 50.00 50.10 0.10 0.00 ARC061 34.00 35.00 1.00 0.07 ARC062 45.00 46.00 1.00 0.05 ARC062 45.00 46.00 1.00 0.38 ARC067 36.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.0	ARC046	147.00	148.00	1.00	0.14
ARCU52 16.00 17.00 1.00 0.00 ARC053 35.00 36.00 1.00 0.70 ARC055 42.00 43.00 1.00 0.24 ARC056 86.00 87.00 1.00 0.00 ARC056 86.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.00 ARC058 30.00 31.00 1.00 0.00 ARC059 50.00 50.10 0.10 0.00 ARC060 60.00 61.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.05 ARC062 45.00 46.00 1.00 0.38 ARC062 45.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.80 ARC070 37.00 39.00 2.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.0	ARC051	42.00	44.00	2.00	0.79
ARCUS3 35.00 36.00 1.00 0.70 ARC055 42.00 43.00 1.00 0.24 ARC056 86.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.76 ARC058 30.00 31.00 1.00 0.00 ARC059 50.00 50.10 0.10 0.00 ARC060 60.00 61.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.07 ARC062 45.00 46.00 1.00 0.07 ARC066 66.00 67.00 1.00 0.38 ARC067 36.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.80 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC075 46.0	ARC052	16.00	17.00	1.00	0.00
ARCUSS 42.00 43.00 1.00 0.24 ARC056 86.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.76 ARC058 30.00 31.00 1.00 0.00 ARC059 50.00 50.10 0.10 0.00 ARC060 60.00 61.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.07 ARC062 45.00 46.00 1.00 0.07 ARC062 45.00 46.00 1.00 0.05 ARC066 66.00 67.00 1.00 0.38 ARC067 36.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.80 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC075 46.0	ARC053	35.00	36.00	1.00	0.70
ARCUSE 88.00 87.00 1.00 0.00 ARC057 64.00 65.00 1.00 0.76 ARC058 30.00 31.00 1.00 0.00 ARC059 50.00 50.10 0.10 0.00 ARC060 60.00 61.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.07 ARC062 45.00 46.00 1.00 0.05 ARC066 66.00 67.00 1.00 0.38 ARC067 36.00 40.00 4.00 1.34 ARC066 66.00 67.00 1.00 0.02 ARC070 37.00 39.00 2.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC075 46.00 59.00 13.00 0.67 ARC076 26.	ARC055	42.00	43.00	1.00	0.24
ARCUS7 64.00 65.00 1.00 0.76 ARC058 30.00 31.00 1.00 0.00 ARC059 50.00 50.10 0.10 0.00 ARC060 60.00 61.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.07 ARC062 45.00 46.00 1.00 0.05 ARC066 66.00 67.00 1.00 0.38 ARC067 36.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.80 ARC070 37.00 39.00 2.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.	ARC056	86.00	87.00	1.00	0.00
ARCUSS 30.00 31.00 1.00 0.00 ARC059 50.00 50.10 0.10 0.00 ARC060 60.00 61.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.10 ARC062 45.00 46.00 1.00 0.05 ARC066 66.00 67.00 1.00 0.38 ARC067 36.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.80 ARC070 37.00 39.00 2.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 14.33 ARC077 1	ARCU57	64.00	65.00	1.00	0.76
ARC039 50.00 50.10 0.10 0.00 ARC060 60.00 61.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.10 ARC062 45.00 46.00 1.00 0.05 ARC066 66.00 67.00 1.00 0.38 ARC067 36.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.80 ARC070 37.00 39.00 2.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 10.43 ARC078 -5.00 -4.00 1.00 ARC078	ARCU58	30.00	31.00	1.00	0.00
ARCUGO 60.00 61.00 1.00 0.07 ARC061 34.00 35.00 1.00 0.10 ARC062 45.00 46.00 1.00 0.05 ARC066 66.00 67.00 1.00 0.38 ARC067 36.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.80 ARC070 37.00 39.00 2.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.02 ARC073 17.00 20.00 3.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 4.00	ARC059	50.00	50.10	0.10	0.00
ARCOOL 34.00 35.00 1.00 0.10 ARC062 45.00 46.00 1.00 0.05 ARC066 66.00 67.00 1.00 0.38 ARC067 36.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.80 ARC070 37.00 39.00 2.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 4.00		60.00	01.00	1.00	0.07
ARC062 45.00 46.00 1.00 0.05 ARC066 66.00 67.00 1.00 0.38 ARC067 36.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.80 ARC070 37.00 39.00 2.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.02 ARC073 17.00 20.00 3.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 40.01		34.00	35.00	1.00	0.10
ARC000 00.00 07.00 1.00 0.38 ARC067 36.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.80 ARC070 37.00 39.00 2.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 4.00		45.00	40.00	1.00	0.05
ARC007 30.00 40.00 4.00 1.34 ARC069 41.00 45.00 4.00 0.80 ARC070 37.00 39.00 2.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 40.01		26.00	40.00	1.00	U.38 1 34
ARC070 37.00 39.00 2.00 0.02 ARC070 37.00 39.00 2.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 40.01		30.00	40.00	4.00	1.34
ARC070 37.00 35.00 2.00 0.02 ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 400	ARC009	41.00 37.00	45.00 30 00	4.00	0.00
ARC071 20.00 20.10 0.10 0.02 ARC072 54.00 54.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 400	ARC070 ARC071	20.00	59.00 20.10	2.00	0.02
ARC072 J4.00 J4.10 0.10 0.00 ARC073 17.00 20.00 3.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 4.00		20.00 5/L00	20.10	0.10	0.02
ARC073 17.00 20.00 5.00 0.10 ARC074 32.00 37.00 5.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 4.00	ARC072	54.00 17.00	20.00	3 00	0.00
ARC075 46.00 59.00 13.00 0.46 ARC075 46.00 59.00 13.00 0.67 ARC076 26.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 4.00	ARC074	22 00	20.00	5.00	0.10
ARC076 26.00 40.00 13.00 0.07 ARC076 26.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 ARC081 98.00 102.00 4.00 1.40	ARC075	46.00	59.00	13.00	0.40
ARC077 15.00 40.00 14.00 10.43 ARC077 15.00 30.00 15.00 1.03 ARC078 -5.00 -4.00 1.00 ARC081 98.00 102.00 4.00 1.40	ARC076	0.00 26.00	<u>40 00</u>	14 00	10 /12
ARC078 -5.00 -4.00 1.00 ARC081 98.00 102.00 4.00 1.40	ARC077	15 00	30.00	15.00	1 03
ARC081 98.00 102.00 4.00 1.40	ARC078	-5.00	-4 00	1 00	1.05
70,001 30,00 102,00 4,00 1,40	ARC081	98.00	102.00	4.00	1.40

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
ARC086	20.00	31.00	11.00	0.31
ARC087	18.00	31.00	13.00	2.49
ARC088	22.00	23.00	1.00	
ARC089	39.00	52.00	13.00	0.37
ARC090	21.00	36.00	15.00	1.61
ARC091	17.00	28.00	11.00	0.59
ARC092	32.00	39.00	7.00	0.37
ARC093	14.00	22.00	8.00	3.58
ARC094	47.00	58.00	11.00	0.31
ARC095	0.00	12.00	12.00	0.02
ARC096	28.00	42.00	14.00	3.35
ARC097	23.00	40.00	17.00	2.84
ARC098	16.00	35.00	19.00	4.67
ARC099	72.00	73.00	1.00	1.25
ARC100	86.00	87.00	1.00	0.06
ARC102	14.00	17.00	3.00	1.35
ARC104	6.00	21.00	15.00	0.17
ARC105	136.00	137.00	1.00	0.00
ARC106	16.00	17.00	1.00	0.01
ARC107	15.00	16.00	1.00	0.03
ARC108	6.00	14.00	8.00	0.33
ARC109	37.00	49.00	12.00	0.68
ARC110	3.00	18.00	15.00	0.45
ARC111A	36.00	51.00	15.00	3.38
ARC112	13.00	17.00	4.00	1.03
ARC113	38.00	47.00	9.00	3.79
ARC126	41.00	44.00	3.00	0.01
ARC127	22.00	24.00	2.00	0.16
ARC128	49.00	50.00	1.00	0.05
ARC129	67.00	68.00	1.00	0.37
ASD004	237.70	247.90	10.20	0.50
ASD005	77.00	/8.00	1.00	0.31
DDH001	140.00	141.00	1.00	
	220.00	221.00 14E 10	1.00	
DDH005	145.00	145.10	0.10	
	197.00	197.10	0.10	
	130.00	120.10	0.10	
	112.00	112 10	0.10	
	139.20	130 00	0.10	0.02
	139.20	111 10	0.70	0.02
	190.90	192.60	1 70	27 51
	196.20	196.40	0.20	1 50
DDH017	128.20	129.40	1.00	0.28
DDH020	129 40	129 50	0.10	5.20
DDH021	235.00	235 10	0.10	
DDH023	215.20	218.50	3.30	0.37
DDH025	129.10	129.70	0.60	0.42
DDH027	130.00	131.00	1.00	0.09
DDH038	142.60	144.30	1.70	0.14
GAB001	16.00	17.00	1.00	0.52
GAB002	14.00	15.00	1.00	0.04
GAB040	19.00	20.00	1.00	0.17
GRC001	6.00	15.00	9.00	1.12
GRC002	23.00	30.00	7.00	0.77
GRC003	5.00	15.00	10.00	1.17
GRC004	21.00	31.00	10.00	2.24
GRC005	32.00	39.00	7.00	7.06
GRC006	24.00	35.00	11.00	2.14
GRC007	21.00	33.00	12.00	1.82
GRC008	35.00	49.00	14.00	1.78
GRC009	10.00	24.00	14.00	1.37
GRC010	52.00	67.00	15.00	3.43

76.00

77.00

1.00

ARC083

Vein	Roof	Floor	Thick	Au (c/t)
HOIE CDC011	(m)	(m)	(m)	(g/t)
GRC011	28.00	29.00	17.00	0.01
GRC012	28.00	45.00	12.00	0.50
GRC013	22.00	28.00	15.00 6.00	0.59
GRC014	22.00 E 00	20.00	12.00	0.15
GRC010	5.00	18.00	14.00	1.52
GRC017	61.00	20.00	14.00	0.90
GRC010	00.00	00.00	14.00	0.40
GRC029	94.00	95.00	1.00	0.00
GRC032	167.00	210.10	1.00	
GRC033	210.00	210.10	0.10	0.00
GRC034	178.00	180.00	2.00	0.06
GRC037	186.00	186.10	0.10	0.22
GRC063	94.00	110.00	22.00	0.22
GRC064	118.00	120.00	2.00	0.00
	234.00	234.10	0.10	2 27
IGRC029	3.00	4.00	1.00	2.27
wean_value :	68.59	74.25	5.66	1.57
Max_Value :	305.65	306.29	22.00	27.51
Min_Value :	-5.00	-4.00	0.10	0.00
NO. Samples :	122.00	122.00	122.00	104.00
CHZ		<i></i>		
AD039	61.00	62.00	1.00	
AD047	46.20	48.20	2.00	0.19
AD049	18.00	18.10	0.10	
AD052	106.35	106.65	0.30	0.03
AD053	114.00	114.50	0.50	0.00
AD054	293.93	295.00	1.07	0.02
AD055	289.00	290.00	1.00	0.02
AD057	120.00	123.00	3.00	0.28
AD059	51.50	53.00	1.50	0.41
AD060	40.30	40.69	0.39	0.15
AD062	37.60	38.60	1.00	0.68
AD063	53.10	55.10	2.00	0.03
AD064	56.50	59.70	3.20	0.81
AD070	60.00	60.10	0.10	
AD071	51.00	51.10	0.10	
AD072	57.70	58.70	1.00	0.04
AD073	51.30	52.30	1.00	0.24
AD074	63.00	64.00	1.00	0.00
AD075	12.00	14.00	2.00	0.00
ARC004	44.00	45.00	1.00	0.03
ARC006	85.00	86.00	1.00	0.03
ARC007	44.00	48.00	4.00	0.24
ARC008	69.00	73.00	4.00	0.47
ARC022	71.90	72.00	0.10	0.00
ARC024	39.00	47.00	8.00	0.79
ARC046	140.00	141.00	1.00	0.20
ARC051	37.00	39.00	2.00	0.28
ARC052	7.00	8.00	1.00	0.01
ARC053	24.00	28.00	4.00	0.34
ARC055	26.00	27.00	1.00	0.02
ARC056	76.00	79.00	3.00	0.13
ARC057	55.00	58.00	3.00	2.25
ARC058	23.00	24.00	1.00	0.22
ARC059	38.00	38.50	0.50	0.03
ARC060	48.00	49.00	1.00	0.46
ARC061	24.00	25.00	1.00	0.04
ARC062	36.00	37.00	1.00	0.08
ARC065	88.00	90.00	2.00	0.10
ARC066	59.00	61.00	2.00	0.17
ARC067	27.00	31.00	4.00	0.66
ARC068	60.00	61.00	1.00	
ARC069	32.00	33.00	1.00	0.02
ARC070	28.00	29.00	1.00	0.00
ARC071	9.00	10.00	1.00	0.46
ARC072	48.00	48.10	0.10	0.00
ARC073	6.00	7.00	1.00	0.00
ARC074	19.00	19.10	0.10	0.00
ARC075	34.00	36.00	2.00	0.41
ARC077	11.00	11.10	0.10	0.00

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
ARC081	91.00	94.00	3.00	0.36
ARC083	70.00	72.00	2.00	0.20
ARC084 ARC087	14.00	14.10	0.10	0.00
ARC088	15.00	15.50	0.50	0.00
ARC089	34.00	34.10	0.10	0.00
ARC090	15.00	15.10	0.10	0.00
ARC093	4.00	5.00	1.00	0.12
ARC094	39.00	40.00	1.00	0.02
ARC098 ARC102	14.00	2 00	1.00	0.08
ARC102	0.00	0.50	0.50	0.03
ARC105	129.00	130.00	1.00	0.00
ARC108	3.00	4.00	1.00	0.10
ARC109	34.00	35.00	1.00	0.13
ARC110	-2.00	-1.90	0.10	0.07
ARCIIIA ARC112	51.00 6.00	32.00 6.10	1.00	0.07
ARC112 ARC113	30.00	30.10	0.10	0.00
ARC125	87.00	88.00	1.00	0.16
ARC126	26.00	26.10	0.10	
ARC128	42.00	44.00	2.00	0.78
ARC129	57.00	63.00	6.00	0.52
ASD003	129.60	130.05	0.45	0.11
	63.00	222.70 72.45	9.45	0.04
ASD005	89.80	91.00	1.20	0.10
DDH001	132.00	133.00	1.00	
DDH002	207.10	207.60	0.50	0.05
DDH003	141.10	141.50	0.40	0.38
DDH006	190.00	190.10	0.10	
DDH008	151.40	152.00	0.60	0.02
	123.80	124.30	0.50	0.00 9.11
DDH012	130.50	131.50	1.00	0.72
DDH013	104.80	106.80	2.00	3.14
DDH014	179.80	183.80	4.00	1.15
DDH015	183.70	192.20	8.50	0.46
DDH016	185.00	185.10	0.10	
	120.40	121.40	1.00	0.24
	217.00	217 10	0.10	
DDH020	120.70	121.60	0.90	0.41
DDH021	230.00	230.10	0.10	
DDH022	206.50	207.50	1.00	0.09
DDH023	208.80	211.10	2.30	0.18
DDH024	237.00	244.10	7.10	3.97
	123.30	126.30	3.00	1.23
DDH027	122.60	124.70	2.10	0.15
DDH038	131.40	132.20	0.80	2.96
GAB013	4.00	5.00	1.00	0.83
GRC010	50.00	51.00	1.00	0.30
GRC011	8.00	9.00	1.00	3.23
GRC012	23.00	24.00	1.00	0.00
GRC017	58.00 63.00	59.00 64.00	1.00	0.02
GRC019	127.00	127.10	0.10	0.00
GRC021	131.00	132.00	1.00	0.05
GRC022	139.00	140.00	1.00	0.01
GRC023	145.00	147.00	2.00	1.52
GRC027	117.00	118.00	1.00	0.08
GRC029	88.00	91.00	3.00	0.23
GRC032	169.00 150.00	109.10	5 00	0.00
GRC033	204.00	205.00	1.00	37.00
GRC034	170.00	172.00	2.00	0.00
GRC037	170.00	170.10	0.10	
GRC063	88.00	90.00	2.00	0.08
GRC064	106.00	108.00	2.00	0.16
GKC065	140.00	142.00	2.00	0.00

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
GRCUBB	56.00	50.10 161.00	0.10	0.02
GSD001	155.00	156.00	1.00	0.05
GSD003	217.00	219.00	2.00	0.00
Mean Value :	87.68	89.21	1.54	0.88
Max Value :	293.93	295.00	9.45	37.00
Min Value :	-2.00	-1.90	0.10	0.00
No. Samples :	124.00	124.00	124.00	107.00
CH1				
AD039	38.00	53.50	15.50	4.57
AD040	40.00	57.10	17.10	2.45
AD043	97.35	113.00	15.65	1.12
AD044	53.15	67.00	13.85	0.24
AD047	38.30	43.14	4.84	0.64
AD048	43.00	46.65	3.65	0.39
AD051	299.14	300.14	1.00	0.01
AD052	90.00 279 12	280 36	1 22	0.00
AD055	270.00	279.00	9,00	0.40
AD056	217.35	220.35	3.00	0.05
AD057	115.62	116.23	0.61	0.22
AD058	194.00	198.00	4.00	0.12
AD059	30.00	46.40	16.40	1.68
AD060	22.00	32.60	10.60	0.16
AD061	34.00	53.70	19.70	0.93
AD062	19.00	35.10	16.10	1.33
AD063	32.00	50.00	18.00	0.59
AD064	36.00	50.10	14.10	1.16
AD070	48.00	48.10	0.10	
AD071	46.00	46.10	10.10	0.50
AD072 AD073	41.70	49.00	6.00	2 25
AD073 AD074	43.00 53.60	40.00 54 70	1 10	0.01
AD075	2.70	3.60	0.90	0.01
ARC005	54.00	80.00	26.00	2.05
ARC006	64.00	83.00	19.00	0.70
ARC007	18.00	41.00	23.00	1.17
ARC008	58.00	59.00	1.00	0.04
ARC011	56.00	83.00	27.00	2.71
ARC022	64.00	64.10	0.10	0.00
ARC024	22.00	37.00	15.00	2.01
ARCU25	88.00	102.00	14.00	0.58
ARC040	22.00	22.00	20.00	0.07
ARC052	-8.00	3.00	11.00	0.27
ARC053	9.00	20.00	11.00	1.08
ARC055	9.00	19.00	10.00	1.19
ARC056	47.00	63.00	16.00	2.24
ARC057	37.00	53.00	16.00	1.53
ARC058	2.00	8.00	6.00	0.64
ARC059	17.00	27.00	10.00	0.83
ARCO60	31.00	43.00	12.00	0.74
ARCU61	6.00	19.00	13.00	0.63
ARCO62	13.00	22.00 52.00	9.00	0.58
ARCO65	52.00 62.00	32.00 79.00	20.00 17 00	2.04
ARC066	33.00	53.00	20.00	0.69
ARC067	11.00	22.00	11.00	0.73
ARC068	33.00	51.00	18.00	0.96
ARC069	18.00	28.00	10.00	0.29
ARC070	10.00	26.00	16.00	0.88
ARC071	-5.00	6.00	11.00	0.24
ARC072	33.00	40.00	7.00	0.01
ARC073	-2.50	-2.00	0.50	
ARC075	30.00	31.00	1.00	0.02
ARC081	69.00	90.00	21.00	5.69
ARC083	48.00	67.00	19.00	0.61
	03.UU	83.UU 80.00	20.00	2.90
71000	00.00	00.00	20.00	1.23

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
ARC105	110.00	126.00	16.00	0.66
ARC125	64.00	84.00	20.00	1.10
ARCI28 ASD001	30.00	32.00	2.00	0.02 1.89
ASD001 ASD003	107.85	125.00	17.15	1.74
ASD005	35.00	53.40	18.40	2.04
ASD006	67.00	81.15	14.15	6.69
DDH001	110.00	128.50	18.50	1.54
DDH002	192.90	199.20	6.30	0.30
DDH003	120.80	140.20	19.40	7.26
	174.60 85.60	185.00	10.40	2.60
DDH008	131.40	149.50	18.10	6.36
DDH009	80.40	117.60	37.20	3.61
DDH010	127.00	144.50	17.50	3.30
DDH011	90.60	102.40	11.80	6.00
DDH012	111.70	129.50	17.80	1.42
DDH013	84.20	101.90	17.70	0.46
	154.20	174.60	20.40	0.67
DDH015	160.50	178.60	18.10	0.19
DDH017	83.60	110.50	26.90	3.20
DDH018	136.70	163.00	26.30	2.29
DDH019	206.00	206.50	0.50	
DDH020	107.00	120.20	13.20	2.02
DDH021	217.50	225.20	7.70	0.24
	188.60	202.50	13.90	1.14
DDH023	225.60	205.80	10.30	0.39
DDH025	104.40	122.30	17.90	1.48
DDH026	155.00	156.00	1.00	0.04
DDH027	109.70	120.70	11.00	0.07
DDH038	119.50	127.20	7.70	0.10
GAB003	16.00	17.00	1.00	0.00
GAB008	6.00	7.00	1.00	0.05
GABOII GABOII	7.00	8 00	1.00	0.14
GAB013	11.00	12.00	1.00	0.74
GRC019	88.00	119.00	31.00	2.78
GRC020	122.00	150.00	28.00	1.64
GRC021	101.00	127.00	26.00	2.33
GRC022	106.00	126.00	20.00	3.49
GRC023	114.00	138.00	24.00	7.18
GRC027	76.00	83.00	8.00 7.00	0.80
GRC030	177.00	188.00	11.00	0.37
GRC032	132.00	144.00	12.00	0.39
GRC033	184.00	197.00	13.00	0.66
GRC034	153.00	167.00	14.00	1.53
GRC037	158.00	158.10	0.10	0.00
GRC064	96.00	124.00	4.00	0.22
GRC066	34.00	36.00	2 00	0.03
GSD001	139.00	157.00	18.00	2.18
GSD003	134.00	153.00	19.00	1.54
GSD004	195.00	206.00	11.00	3.45
Mean_Value :	84.51	97.07	12.56	1.98
Max_Value :	299.14	300.14	37.20	7.26
Min_Value :	-8.00	-2.00	0.10	0.00
NO. Samples :	117.00	117.00	117.00	112.00
	34 00	36.00	2 00	
AD041	30.30	33.89	2.00	0.06
AD043	93.15	94.15	1.00	0.11
AD044	50.85	51.36	0.51	0.26
AD054	254.20	255.20	1.00	0.03
AD056	200.00	202.25	2.25	1.00
AD059	24.00	29.00	5.00	0.36
AD060 AD061	18.00 18.00	33 UU 13'00	3 00	0.00
	20.00	52.00	5.00	0.25

0.00

13.00

13.00

0.18

ARC088

Hole (m) (m) (g/t) AD062 10.00 11.00 0.01 AD063 22.00 23.00 1.00 0.01 AD072 29.70 30.70 1.00 0.00 AD073 25.90 27.90 2.00 0.36 ARC006 54.00 59.00 5.00 0.04 ARC007 13.00 16.00 3.00 1.20 ARC014 16.00 21.00 5.00 0.03 ARC024 16.00 21.00 5.00 0.43 ARC051 14.00 15.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC055 3.00 7.00 8.00 1.00 ARC055 3.00 1.00 0.02 A	Vein	Roof	Floor	Thick	Au
AD062 10.00 11.00 1.00 0.01 AD063 22.00 33.50 1.50 0.01 AD072 29.70 30.70 1.00 0.00 AD073 25.90 27.90 2.00 0.36 ARC005 48.00 49.00 1.00 0.03 ARC007 13.00 66.00 3.00 1.20 ARC024 16.00 21.00 0.03 ARC024 16.00 21.00 0.03 ARC051 14.00 5.00 0.43 ARC053 1.00 2.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.00 ARC053 3.00 14.00 1.00 0.00 ARC055 7.00 9.00 2.00 1.02 ARC051 2.00 3.00 1.00 0.02	Hole	(m)	(m)	(m)	(g/t)
AD063 22.00 23.00 1.00 0.01 AD064 32.00 33.50 1.50 0.04 AD072 29.70 30.70 1.00 0.00 ARC005 48.00 49.00 1.00 0.03 ARC006 54.00 59.00 5.00 0.04 ARC007 13.00 16.00 3.00 1.20 ARC024 16.00 21.00 5.00 0.03 ARC025 74.00 75.00 1.00 0.01 ARC051 14.00 15.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.04 ARC053 13.00 14.00 1.00 0.00 ARC061 2.00 3.00 2.00 0.00 ARC062 7.00 9.00 2.00 0.00 ARC063 28.00	AD062	10.00	11.00	1.00	0.01
AD064 32.00 33.50 1.50 0.04 AD072 29.70 30.70 1.00 0.00 ARC005 48.00 49.00 1.00 0.03 ARC006 54.00 59.00 5.00 0.04 ARC007 13.00 16.00 3.00 1.20 ARC011 50.00 51.00 0.03 ARC021 16.00 2.100 5.00 0.43 ARC025 74.00 75.00 1.00 0.03 ARC055 1.00 2.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.04 ARC056 42.00 46.00 4.00 1.17 ARC057 31.00 3.00 1.00 0.00 ARC061 2.00 3.00 1.00 0.00 ARC065 54.00 51.00 1.02 ARC06 ARC066 28.00 31.00	AD063	22.00	23.00	1.00	0.01
AD072 29.70 30.70 1.00 0.00 AC005 25.90 27.90 2.00 0.36 ARC006 54.00 59.00 5.00 0.03 ARC007 13.00 16.00 3.00 1.20 ARC08 50.00 52.00 2.00 0.03 ARC011 50.00 51.00 1.00 0.03 ARC025 74.00 75.00 1.00 0.01 ARC051 14.00 15.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.04 ARC056 42.00 46.00 4.00 1.41 ARC057 31.00 3.00 1.00 0.00 ARC058 -3.00 -2.00 1.00 A.00 ARC061 2.00 3.00 2.00 0.00 ARC062 7.00 9.00 2.00 0.00 ARC065 54.00	AD064	32.00	33.50	1.50	0.04
AD073 25.90 27.90 2.00 0.36 ARC005 48.000 49.00 1.00 0.03 ARC006 54.00 59.00 5.00 0.04 ARC008 50.00 52.00 2.00 0.03 ARC011 50.00 51.00 1.00 0.03 ARC025 74.00 75.00 1.00 0.01 ARC051 14.00 15.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC056 42.00 46.00 4.00 1.41 ARC057 31.00 7.00 1.00 0.00 ARC058 -3.00 -2.00 1.00 4.00 ARC066 28.00 3.00 1.00 4.00 ARC066 28.00 3.00 0.02 4.00 ARC066 28.00 3.00 1.00 0.02 ARC066 28.00 3.00 1.00 0.02 ARC066 28.00	AD072	29.70	30.70	1.00	0.00
ARC005 48.00 49.00 1.00 0.03 ARC006 54.00 59.00 50.00 0.04 ARC001 13.00 16.00 3.00 1.20 ARC011 50.00 51.00 0.03 ARC011 50.00 51.00 0.03 ARC025 74.00 75.00 1.00 0.03 ARC053 1.00 2.00 1.01 0.03 ARC055 7.00 8.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.04 ARC057 31.00 37.00 6.00 1.17 ARC058 -3.00 -2.00 1.00 0.00 ARC061 2.00 3.00 1.00 0.00 ARC063 28.00 3.00 2.00 0.02 ARC066 28.00 3.00 0.01 0.01 ARC066 28.00 1.00 0.02 ARC06 ARC067 3.00 4.00 1.00	AD073	25.90	27.90	2.00	0.36
ARC000 54.00 59.00 5.00 0.04 ARC007 13.00 16.00 3.00 1.20 ARC008 50.00 52.00 2.00 0.03 ARC011 50.00 51.00 1.00 0.03 ARC025 74.00 75.00 1.00 0.01 ARC051 14.00 113.00 7.00 1.31 ARC055 7.00 8.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.04 ARC057 31.00 37.00 6.00 1.17 ARC058 3.00 -2.00 1.00 0.00 ARC061 2.00 3.00 1.00 0.00 ARC062 7.00 9.00 2.00 1.02 ARC063 28.00 3.00 2.00 0.00 ARC066 28.00 3.00 0.00 0.70 ARC066 28.00 28.00 2.00 0.20 ARC066 28.00	ARC005	48.00	49.00	1.00	0.03
ARC007 13.00 1.20 3.00 1.20 ARC008 50.00 52.00 2.00 0.03 ARC011 50.00 51.00 1.00 0.03 ARC024 16.00 21.00 5.00 0.43 ARC046 106.00 113.00 7.00 1.31 ARC055 7.00 8.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC056 42.00 46.00 4.00 1.41 ARC057 31.00 74.00 1.00 0.00 ARC061 2.00 3.00 1.00 0.00 ARC062 7.00 9.00 2.00 1.02 ARC065 54.00 57.00 3.00 1.17 ARC065 54.00 57.00 3.00 1.02 ARC065 54.00 57.00 3.00 1.02 ARC068 26.00 28.00 2.00 0.20 ARC068 15.00	ARC006	54.00	59.00	5.00	0.04
ARC0008 50.00 52.00 2.00 0.03 ARC011 50.00 51.00 1.00 0.03 ARC024 16.00 21.00 5.00 0.43 ARC025 74.00 75.00 1.00 0.01 ARC051 14.00 15.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC056 42.00 46.00 4.00 1.41 ARC057 31.00 37.00 6.00 1.17 ARC059 13.00 14.00 1.00 0.00 ARC061 2.00 3.00 1.00 0.00 ARC062 7.00 9.00 2.00 0.00 ARC063 28.00 3.00 0.17 ARC066 28.00 3.00 0.17 ARC063 28.00 2.00 0.20 0.20 ARC067 3.00 0.10 0.00 2.00 ARC064 28.00 2.00 0.20 ARC084 5.00<	ARC007	13.00	16.00	3.00	1.20
ARC011 50.00 51.00 5.00 0.43 ARC024 16.00 21.00 5.00 0.43 ARC025 74.00 75.00 1.00 0.01 ARC051 14.00 15.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC057 31.00 37.00 6.00 1.17 ARC058 -3.00 -2.00 1.00 0.00 ARC059 13.00 14.00 1.00 0.00 ARC062 7.00 9.00 2.00 1.02 ARC063 28.00 31.00 3.00 1.72 ARC065 54.00 57.00 3.00 0.17 ARC066 28.00 31.00 3.00 0.20 ARC067 3.00 4.00 1.00 0.02 ARC068 26.00 28.00 2.00 0.20 ARC077 0.00 1.00 1.03 ARC08 4.00 4.00 0.03	ARCOU8	50.00	52.00	2.00	0.03
ARC024 16.00 21.00 5.00 0.01 ARC025 74.00 75.00 1.00 0.03 ARC051 14.00 15.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC057 31.00 7.00 6.00 1.41 ARC059 13.00 14.00 1.00 0.00 ARC061 2.00 3.00 1.00 0.06 ARC062 7.00 9.00 2.00 1.02 ARC065 54.00 57.00 3.00 0.17 ARC066 28.00 31.00 3.00 0.20 ARC067 3.00 4.00 1.00 0.02 ARC068 26.00 28.00 1.00 0.02 ARC081 61.00	ARCUII	50.00	51.00	1.00	0.03
ARC025 74.00 75.00 1.00 0.01 ARC046 106.00 113.00 7.00 1.31 ARC051 14.00 15.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC056 42.00 46.00 4.00 1.41 ARC057 31.00 37.00 6.00 1.17 ARC059 13.00 14.00 1.00 0.00 ARC061 2.00 3.00 1.00 0.00 ARC062 7.00 9.00 2.00 0.00 ARC063 28.00 30.00 2.00 0.08 ARC062 7.00 9.00 2.00 0.20 ARC065 54.00 57.00 3.00 0.10 ARC066 28.00 31.00 3.00 0.20 ARC067 3.00 4.00 1.00 0.02 ARC068 26.00 28.00 2.00 0.20 ARC070 0.00	ARCU24	16.00	21.00	5.00	0.43
ARC046 106.00 115.00 1.00 0.03 ARC053 1.00 2.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.04 ARC056 42.00 46.00 4.00 1.41 ARC057 31.00 37.00 6.00 1.17 ARC058 -3.00 -2.00 1.00 0.00 ARC061 2.00 3.00 1.00 0.06 ARC062 7.00 9.00 2.00 1.02 ARC065 54.00 57.00 3.00 0.17 ARC065 54.00 57.00 3.00 0.17 ARC066 28.00 31.00 3.00 0.17 ARC069 15.00 16.50 1.50 0.13 ARC070 0.00 1.00 0.02 ARC081 61.00 65.0 4.00 0.02 ARC081 61.00 65.00 4.00 1.04 ARC083 43.00 44.00 1.00 0.38<	ARCU25	74.00	/5.00	1.00	0.01
ARC053 14.00 12.00 1.00 0.03 ARC055 7.00 8.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.04 ARC055 3.00 7.00 6.00 1.17 ARC059 13.00 14.00 1.00 0.00 ARC061 2.00 3.00 1.00 0.06 ARC063 28.00 30.00 2.00 1.02 ARC066 28.00 31.00 3.00 0.17 ARC066 28.00 31.00 3.00 0.42 ARC068 26.00 28.00 2.00 0.20 ARC068 26.00 28.00 1.00 0.02 ARC072 18.00 19.00 1.00 0.02 ARC081 61.00 65.00 4.00 1.04 ARC083 43.00 44.00 1.00 0.38 ARC083 43.00		14.00	113.00	7.00	1.31
ARC055 7.00 2.00 1.00 0.04 ARC055 7.00 8.00 1.00 0.04 ARC056 42.00 46.00 4.00 1.41 ARC057 31.00 72.00 1.00 ARC059 ARC059 13.00 14.00 1.00 0.00 ARC061 2.00 3.00 1.00 0.06 ARC063 28.00 30.00 2.00 0.08 ARC065 54.00 57.00 3.00 0.17 ARC066 28.00 31.00 3.00 0.42 ARC065 54.00 57.00 3.00 0.17 ARC066 28.00 3.00 0.00 0.20 ARC067 3.00 4.00 1.00 0.02 ARC070 0.00 1.00 0.02 ARC081 61.00 65.0 1.00 0.38 ARC085 44.00 47.00 3.00 1.18 ARC085 3.00 0.00 2.02	ARCOSI ARCOS2	14.00	2.00	1.00	0.05
ARC055 4.200 4.600 4.00 1.41 ARC055 3.00 -2.00 1.00	ARC055	7.00	2.00	1.00	0.13
ARC057 31.00 37.00 6.00 1.17 ARC059 13.00 14.00 1.00 ARC059 ARC059 13.00 14.00 1.00 0.00 ARC061 2.00 3.00 1.00 0.06 ARC062 7.00 9.00 2.00 1.02 ARC065 54.00 57.00 3.00 1.02 ARC065 54.00 57.00 3.00 0.07 ARC066 28.00 31.00 3.00 0.42 ARC068 26.00 28.00 2.00 0.20 ARC069 15.00 16.50 1.50 0.13 ARC072 18.00 19.00 1.00 0.02 ARC081 61.00 65.00 4.00 1.04 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 58.00 1.00 0.33 ARC083 44.00 47.00 3.00 1.28 ASD003 96.25<	ARC056	42.00	46.00	4.00	1 41
ARC058 -3.00 -2.00 1.00 ARC059 13.00 14.00 1.00 0.00 ARC051 2.00 3.00 1.00 0.00 ARC061 2.00 3.00 1.00 0.00 ARC063 28.00 3.00 2.00 1.02 ARC065 54.00 57.00 3.00 0.17 ARC066 28.00 31.00 3.00 0.17 ARC067 3.00 4.00 1.00 0.42 ARC068 26.00 28.00 2.00 0.20 ARC069 15.00 16.50 1.50 0.13 ARC070 0.00 1.00 0.02 ARC081 61.00 65.00 4.00 1.04 ARC083 43.00 44.00 1.00 0.38 ARC085 44.00 1.00 0.38 ARC084 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD006 54	ARC057	31.00	37.00	4.00 6.00	1 17
ARC059 13.00 14.00 1.00 0.00 ARC060 27.00 29.00 2.00 0.00 ARC061 2.00 3.00 1.00 0.06 ARC062 7.00 9.00 2.00 1.02 ARC063 28.00 3.00 2.00 0.08 ARC065 54.00 57.00 3.00 0.17 ARC066 28.00 3.00 0.01 0.42 ARC068 26.00 28.00 2.00 0.20 ARC069 15.00 16.50 1.50 0.13 ARC070 0.00 1.00 1.00 0.02 ARC081 61.00 65.00 4.00 1.04 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD003 96.25 102.20 5.95 0.25 ASD006 54.00 <td>ARC058</td> <td>-3.00</td> <td>-2.00</td> <td>1.00</td> <td>1.17</td>	ARC058	-3.00	-2.00	1.00	1.17
ARCOGO 27.00 29.00 2.00 0.00 ARCOG1 2.00 3.00 1.00 0.06 ARCOG2 7.00 9.00 2.00 1.02 ARCOG3 28.00 30.00 2.00 0.08 ARCOG5 54.00 57.00 3.00 0.93 ARCOG6 28.00 31.00 3.00 0.93 ARCOG6 28.00 2.00 0.20 ARCO69 15.00 16.50 1.50 0.13 ARCO89 15.00 16.00 0.00 2.00 0.02 ARCO81 61.00 65.00 4.00 0.02 ARCO84 57.00 1.00 0.02 ARCO83 43.00 44.00 1.00 0.33 ASDO03 1.18 ARC125 57.00 58.00 1.00 0.03 ASDO03 96.25 0.25 ASD003 96.25 102.20 5.95 0.25 ASDO0 0.28 ASD006 54.00	ARC059	13.00	14.00	1.00	0.00
ARC061 2.00 3.00 1.00 0.06 ARC062 7.00 9.00 2.00 1.02 ARC063 28.00 31.00 2.00 0.08 ARC065 54.00 57.00 3.00 0.93 ARC066 28.00 31.00 3.00 0.42 ARC068 26.00 28.00 2.00 0.20 ARC069 15.00 1.650 1.50 0.13 ARC070 0.00 1.00 1.00 0.02 ARC081 61.00 65.00 4.00 0.07 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD005 31.00 34.00 3.00 0.28 ASD005 31.00 14.00 00 0.02 DH001 105.00 106.00 1.00 0.28 ASD006 54.00 <td>ARC060</td> <td>27.00</td> <td>29.00</td> <td>2.00</td> <td>0.00</td>	ARC060	27.00	29.00	2.00	0.00
ARC062 7.00 9.00 2.00 1.02 ARC063 28.00 30.00 2.00 0.08 ARC065 54.00 57.00 3.00 0.17 ARC066 28.00 31.00 3.00 0.42 ARC067 3.00 4.00 1.00 0.42 ARC069 15.00 16.50 1.50 0.13 ARC070 0.00 1.00 1.00 0.02 ARC081 61.00 65.00 4.00 0.77 ARC081 61.00 4.00 1.04 0.38 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD003 96.25 102.20 5.95 0.25 ASD005 31.00 34.00 3.00 0.28 ASD006 54.00 60.00 6.00 0.20 DH001 105.00 <td>ARC061</td> <td>2.00</td> <td>3.00</td> <td>1.00</td> <td>0.06</td>	ARC061	2.00	3.00	1.00	0.06
ARC063 28.00 30.00 2.00 0.08 ARC065 54.00 57.00 3.00 0.17 ARC066 28.00 31.00 3.00 0.93 ARC067 3.00 4.00 1.00 0.42 ARC068 26.00 28.00 2.00 0.20 ARC070 0.00 1.00 1.00 0.02 ARC081 61.00 65.00 4.00 0.75 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 58.00 1.00 0.03 ARC085 44.00 47.00 3.00 1.18 ARC125 57.00 58.00 1.00 0.03 ASD003 96.25 102.20 5.95 0.22 DH001 105.00 106.00 1.00 D.28 ASD005 31.00 34.00 4.00 D.22 DH001 105.00 106.00 1.00 D.22 DH002 185.00	ARC062	7.00	9.00	2.00	1.02
ARC065 54.00 57.00 3.00 0.17 ARC066 28.00 31.00 3.00 0.93 ARC067 3.00 4.00 1.00 0.42 ARC068 26.00 28.00 2.00 0.20 ARC079 15.00 16.50 1.50 0.13 ARC071 0.00 1.00 1.00 0.02 ARC081 61.00 65.00 4.00 0.57 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD005 31.00 34.00 3.00 0.22 DBH001 105.00 106.00 1.00 1.00 DH002 185.00 185.10 0.10 0.06 DH003 110.00 114.00 4.00 0.076 DH0007 73.50 76.80 3.30 3.58 DDH002 1	ARC063	28.00	30.00	2.00	0.08
ARC066 28.00 31.00 3.00 0.93 ARC067 3.00 4.00 1.00 0.42 ARC068 26.00 28.00 2.00 0.20 ARC069 15.00 16.50 1.50 0.13 ARC070 0.00 1.00 1.00 0.02 ARC081 61.00 65.00 4.00 0.57 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 61.00 4.00 1.04 ARC085 44.00 47.00 3.00 0.18 ARC125 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD005 31.00 34.00 3.00 0.28 ASD006 54.00 60.00 6.00 0.22 DH001 105.00 106.00 1.00 1400 DH002 185.00 185.10 0.10 D DH003 110.00 </td <td>ARC065</td> <td>54.00</td> <td>57.00</td> <td>3.00</td> <td>0.17</td>	ARC065	54.00	57.00	3.00	0.17
ARC067 3.00 4.00 1.00 0.42 ARC068 26.00 28.00 2.00 0.20 ARC069 15.00 16.50 1.50 0.13 ARC070 0.00 1.00 1.00 0.02 ARC072 18.00 19.00 1.00 0.02 ARC081 61.00 65.00 4.00 0.57 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 58.00 1.00 0.03 ASD001 135.90 188.30 2.40 0.53 ASD003 96.25 102.20 5.95 0.25 ASD005 31.00 34.00 3.00 0.28 ASD006 54.00 60.00 6.00 0.22 DH001 105.00 185.10 0.10 0.076 DH003 110.00 144.00 4.00 .00 DH006 172.80 173.70 0.90 0.76 DH007 73.	ARC066	28.00	31.00	3.00	0.93
ARC068 26.00 28.00 2.00 0.20 ARC069 15.00 16.50 1.50 0.13 ARC070 0.00 1.00 1.00 0.02 ARC081 61.00 65.00 4.00 0.57 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 61.00 4.00 1.04 ARC085 44.00 47.00 3.00 1.18 ARC125 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD005 31.00 34.00 3.00 0.28 ASD006 54.00 60.00 6.00 0.22 DH001 105.00 106.00 1.00 100 DH002 185.00 185.10 0.10 0.076 DH003 110.00 114.00 4.00 0.08 DH006 172.80 173.70 0.90 0.76 DH007 7	ARC067	3.00	4.00	1.00	0.42
ARC069 15.00 16.50 1.50 0.13 ARC070 0.00 1.00 1.00 0.02 ARC072 18.00 19.00 1.00 0.02 ARC081 61.00 65.00 4.00 0.07 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 58.00 1.00 0.03 ARC125 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD003 96.25 102.20 5.95 0.25 ASD006 54.00 60.00 6.00 0.22 DBH001 105.00 185.10 0.10 0.00 DDH002 185.00 185.10 0.10 0.00 DDH003 110.00 114.00 4.00 0.01 DDH003 125.00 126.00 1.00 0.10 DDH004 123.00 125.00 2.00 0.10 DDH015	ARC068	26.00	28.00	2.00	0.20
ARC070 0.00 1.00 1.00 0.02 ARC072 18.00 19.00 1.00 0.02 ARC081 61.00 65.00 4.00 0.57 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 61.00 4.00 1.04 ARC085 44.00 47.00 3.00 1.18 ARC125 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD005 31.00 34.00 3.00 0.28 ASD006 54.00 60.00 6.00 0.22 DDH001 105.00 185.10 0.10 0.00 DDH002 185.00 126.00 1.00 0.40 DDH003 110.00 14.40 4.00 .00 DDH004 172.80 173.70 0.90 0.76 DDH005 173.00 125.00 2.00 0.10 DDH010	ARC069	15.00	16.50	1.50	0.13
ARC072 18.00 19.00 1.00 0.02 ARC081 61.00 65.00 4.00 0.57 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 61.00 4.00 1.04 ARC085 44.00 47.00 3.00 1.18 ARC125 57.00 58.00 1.00 0.03 ASD001 135.90 183.30 2.40 0.53 ASD005 31.00 34.00 3.00 0.28 ASD006 54.00 60.00 6.00 0.22 DH001 105.00 106.00 1.00 100 DDH002 185.00 185.10 0.10 100 DH003 110.00 114.00 4.00 100 DDH006 172.80 173.70 0.90 0.76 DDH007 73.50 76.80 3.30 3.58 DDH010 123.00 125.00 2.00 1.00 DDH011 <	ARC070	0.00	1.00	1.00	0.02
ARC081 61.00 65.00 4.00 0.57 ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 61.00 4.00 1.04 ARC085 44.00 47.00 3.00 1.18 ARC125 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD003 96.25 102.20 5.95 0.25 ASD006 54.00 60.00 6.00 0.22 DDH001 105.00 106.00 1.00 D DDH002 185.00 185.10 0.10 D DDH003 110.00 114.00 4.00 D DDH004 73.50 76.80 3.30 3.58 DDH005 125.00 126.00 1.00 D DDH011 79.00 79.10 0.10 D DDH012 102.30 125.00 2.00 0.19 DDH013 80.20<	ARC072	18.00	19.00	1.00	0.02
ARC083 43.00 44.00 1.00 0.38 ARC084 57.00 61.00 4.00 1.04 ARC085 44.00 47.00 3.00 1.18 ARC125 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD005 31.00 34.00 3.00 0.28 ASD006 54.00 60.00 6.00 0.22 DDH001 105.00 106.00 1.00 100 DDH002 185.00 185.10 0.10 0.76 DDH003 110.00 114.00 4.00 0.76 DDH006 172.80 173.70 0.90 0.76 DDH007 73.50 76.80 3.30 3.58 DDH008 125.00 126.00 1.00 0.48 DDH011 79.00 79.10 0.10 0.19 DDH012 102.30 154.40 2.10 0.33 DDH013	ARC081	61.00	65.00	4.00	0.57
ARC084 57.00 61.00 4.00 1.04 ARC085 44.00 47.00 3.00 1.18 ARC125 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD005 31.00 34.00 3.00 0.28 ASD006 54.00 60.00 6.00 0.22 DDH001 105.00 106.00 1.00 D0 DDH002 185.00 185.10 0.10 D0 DDH003 110.00 114.00 4.00 D0 D0 DDH006 172.80 173.70 0.90 0.76 DDH007 73.50 76.80 3.30 3.58 DDH008 125.00 126.00 1.00 D48 DDH011 79.00 79.10 0.10 D10 DDH012 102.30 124.40 2.10 0.33 DDH013 80.20 81.20 1.00 0.19 DD	ARC083	43.00	44.00	1.00	0.38
ARC085 44.00 47.00 3.00 1.18 ARC125 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD003 96.25 102.20 5.95 0.25 ASD006 54.00 60.00 6.00 0.28 ASD006 54.00 60.00 6.00 0.22 DDH001 105.00 106.00 1.00 DDH002 185.00 185.10 0.10 DDH003 110.00 114.00 4.00 DDH003 158 0.100 DDH007 73.50 76.80 3.30 3.58 DDH003 125.00 126.00 1.00 DDH012 0.230 104.40 2.10 0.33 DDH011 79.00 79.10 0.10 DDH013 80.20 81.20 1.00 0.19 DDH013 80.20 81.20 1.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH018 132.00	ARC084	57.00	61.00	4.00	1.04
ARC125 57.00 58.00 1.00 0.03 ASD001 135.90 138.30 2.40 0.53 ASD003 96.25 102.20 5.95 0.25 ASD005 31.00 34.00 3.00 0.28 ASD006 54.00 60.00 6.00 0.22 DDH001 105.00 106.00 1.00 DDH002 185.10 0.10 DDH003 110.00 114.00 4.00 DDH006 172.80 173.70 0.90 0.76 DDH006 172.80 173.70 0.90 0.76 DDH007 73.50 76.80 3.30 3.58 DDH007 73.50 76.80 3.30 3.58 DDH010 123.00 125.00 2.00 DDH012 102.30 14.40 2.10 0.33 DDH011 79.00 79.10 0.10 DDH013 80.20 81.20 1.00 0.19 DDH015 150.00 150.10 0.10 DDH02 95.00	ARC085	44.00	47.00	3.00	1.18
ASD001 135.90 138.30 2.40 0.53 ASD003 96.25 102.20 5.95 0.25 ASD006 54.00 60.00 6.00 0.22 DDH001 105.00 106.00 1.00 D22 DDH002 185.00 185.10 0.10 D1000 DDH003 110.00 114.00 4.00 DD1006 172.80 173.70 0.90 0.76 DDH003 125.00 126.00 1.00 D1000 D4008 125.00 2.00 DDH010 123.00 125.00 2.00 D100 D110 D1230 104.40 2.10 0.33 DDH011 79.00 79.10 0.10 D19 DDH013 80.20 81.20 1.00 0.19 DDH015 150.00 150.10 0.10 D19 DDH017 79.00 82.70 3.70 1.45 DDH012 123.50 214.50 1.00 0.09 DDH022 185.00 185.10	ARC125	57.00	58.00	1.00	0.03
ASD003 96.25 102.20 5.95 0.25 ASD005 31.00 34.00 3.00 0.28 ASD006 54.00 60.00 6.00 0.22 DDH001 105.00 106.00 1.00 DD DDH002 185.00 185.10 0.10 DD DDH003 110.00 114.00 4.00 DD DDH006 172.80 173.70 0.90 0.76 DDH007 73.50 76.80 3.30 3.58 DDH009 73.40 79.40 6.00 0.48 DDH010 123.00 125.00 2.00 DD DDH011 79.00 79.10 0.10 0.19 DDH012 102.30 104.40 2.10 0.33 DDH013 80.20 81.20 1.00 0.19 DDH014 79.00 82.70 3.70 1.45 DDH017 79.00 82.70 3.70 1.45 DDH020 <td< td=""><td>ASD001</td><td>135.90</td><td>138.30</td><td>2.40</td><td>0.53</td></td<>	ASD001	135.90	138.30	2.40	0.53
ASD005 31.00 34.00 3.00 0.28 ASD006 54.00 60.00 6.00 0.22 DDH001 105.00 106.00 1.00 DDH002 185.00 185.10 0.10 DDH003 110.00 114.00 4.00 DDH006 172.80 173.70 0.90 0.76 DDH007 73.50 76.80 3.30 3.58 DDH009 73.40 79.40 6.00 0.48 DDH010 123.00 125.00 2.00 0.10 DDH012 102.30 104.40 2.10 0.33 DDH013 80.20 81.20 1.00 0.19 DDH015 150.00 150.10 0.10 0.19 DDH016 156.80 158.80 2.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH018 132.00 135.80 3.80 2.11 DH020 95.00 102.00 7.00 </td <td>ASD003</td> <td>96.25</td> <td>102.20</td> <td>5.95</td> <td>0.25</td>	ASD003	96.25	102.20	5.95	0.25
ASD006 54.00 60.00 6.00 0.22 DDH001 105.00 106.00 1.00 0 DDH002 185.00 185.10 0.10 0 DDH003 110.00 114.00 4.00 0 DDH006 172.80 173.70 0.90 0.76 DDH007 73.50 76.80 3.30 3.58 DDH009 73.40 79.40 6.00 0.48 DDH010 123.00 125.00 2.00 0 DDH011 79.00 79.10 0.10 0.19 DDH012 102.30 104.40 2.10 0.33 DDH013 80.20 81.20 1.00 0.19 DDH015 150.00 150.10 0.10 0 DDH016 156.80 158.80 2.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH020 95.00 102.00 7.00 0.62 DDH021 21	ASD005	31.00	34.00	3.00	0.28
DDH001 105.00 1.00 1.00 DDH002 185.00 185.10 0.10 DDH003 110.00 114.00 4.00 DDH006 172.80 173.70 0.90 0.76 DDH007 73.50 76.80 3.30 3.58 DDH009 73.40 79.40 6.00 0.48 DDH010 123.00 125.00 2.00 DDH011 79.00 79.10 0.10 DDH012 102.30 104.40 2.10 0.33 DDH013 80.20 81.20 1.00 0.19 DDH015 150.00 150.10 0.10 0.19 DDH017 79.00 82.70 3.70 1.45 DDH018 132.00 135.80 3.80 2.11 DDH020 95.00 102.00 7.00 6.2 DDH012 13.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 0.04 DDH023 178.00 178.10 0.10	ASD006	54.00	60.00	6.00	0.22
DDH002 183.00 183.10 0.10 DDH003 110.00 114.00 4.00 DDH006 172.80 173.70 0.90 0.76 DDH007 73.50 76.80 3.30 3.58 DDH009 73.40 79.40 6.00 0.48 DDH010 123.00 125.00 2.00 0.10 DDH011 79.00 79.10 0.10 0.19 DDH012 102.30 104.40 2.10 0.33 DDH013 80.20 81.20 1.00 0.19 DDH015 150.00 150.10 0.10 0.19 DDH016 156.80 158.80 2.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 0.04 DDH023 178.00 178.0		105.00	105.00	1.00	
DDH005 110.00 114.00 4.00 DDH006 172.80 173.70 0.90 0.76 DDH007 73.50 76.80 3.30 3.58 DDH008 125.00 126.00 1.00 0.48 DDH010 123.00 125.00 2.00 0.48 DDH011 79.00 79.10 0.10 0.33 DDH012 102.30 104.40 2.10 0.33 DDH013 80.20 81.20 1.00 0.19 DDH015 150.00 150.10 0.10 0.19 DDH016 156.80 158.80 2.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 0.04 DDH023 178.00 178.10 0.10 0.23 GRC019 77.00		185.00	1400	4.00	
DDH0007 73.50 76.80 3.30 3.58 DDH008 125.00 126.00 1.00 DDH009 73.40 79.40 6.00 0.48 DDH010 123.00 125.00 2.00 DDH011 79.00 79.10 0.10 DDH011 79.00 79.10 0.10 0.33 DDH012 102.30 104.40 2.10 0.33 DDH012 102.30 104.40 2.10 0.33 DDH015 150.00 150.10 0.10 DDH015 150.00 150.10 0.10 0.19 DDH017 79.00 82.70 3.70 1.45 DDH018 132.00 135.80 3.80 2.11 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 DDH023 178.00 178.10 0.10 0.23 GRC019 77.00 81.00 4.00 0.32 GRC021 <		172.80	173 70	4.00	0.76
DDH008 125.00 126.00 1.00 DDH009 73.40 79.40 6.00 0.48 DDH010 123.00 125.00 2.00 0.48 DDH010 123.00 125.00 2.00 0.33 DDH011 79.00 79.10 0.10 0.33 DDH012 102.30 104.40 2.10 0.33 DDH015 150.00 150.10 0.10 0.19 DDH016 156.80 158.80 2.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 0.04 DDH023 178.00 178.10 0.10 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.0		73 50	76.80	3 30	3 58
DDH009 73.40 79.40 6.00 0.48 DDH009 73.40 79.40 6.00 0.48 DDH010 123.00 125.00 2.00 DDH011 79.00 79.10 0.10 DDH012 102.30 104.40 2.10 0.33 DDH013 80.20 81.20 1.00 0.19 DDH015 150.00 150.10 0.10 0.19 DDH016 156.80 158.80 2.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 0.04 DDH023 178.00 178.10 0.10 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 </td <td></td> <td>125.00</td> <td>126.00</td> <td>1 00</td> <td>5.50</td>		125.00	126.00	1 00	5.50
DDH010 123.00 125.00 2.00 DDH011 79.00 79.10 0.10 DDH012 102.30 104.40 2.10 0.33 DDH013 80.20 81.20 1.00 0.19 DDH015 150.00 150.10 0.10 0.19 DDH016 156.80 158.80 2.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH018 132.00 135.80 3.80 2.11 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 0.10 DDH023 178.00 178.10 0.10 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.0	DDH009	73.40	79.40	6.00	0.48
DDH011 79.00 79.10 0.10 DDH012 102.30 104.40 2.10 0.33 DDH013 80.20 81.20 1.00 0.19 DDH015 150.00 150.10 0.10 0.19 DDH016 156.80 158.80 2.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH018 132.00 135.80 3.80 2.11 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 0.10 DDH023 178.00 178.10 0.10 0.04 DDH025 94.00 94.10 0.10 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 <td>DDH010</td> <td>123.00</td> <td>125.00</td> <td>2.00</td> <td>0110</td>	DDH010	123.00	125.00	2.00	0110
DDH012 102.30 104.40 2.10 0.33 DDH013 80.20 81.20 1.00 0.19 DDH015 150.00 150.10 0.10 DDH016 156.80 158.80 2.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH018 132.00 135.80 3.80 2.11 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 0.10 DDH023 178.00 178.10 0.10 0.23 DDH025 94.00 94.10 0.10 0.23 DH038 107.60 108.60 1.00 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 </td <td>DDH011</td> <td>79.00</td> <td>79.10</td> <td>0.10</td> <td></td>	DDH011	79.00	79.10	0.10	
DDH013 80.20 81.20 1.00 0.19 DDH015 150.00 150.10 0.10 DDH016 156.80 158.80 2.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH018 132.00 135.80 3.80 2.11 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 0.10 DDH023 178.00 178.10 0.10 0.04 DDH025 94.00 94.10 0.10 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.527 GRC023 110.00 113.00 3.00 5.27 GRC029 68.00<	DDH012	102.30	104.40	2.10	0.33
DDH015 150.00 150.10 0.10 DDH016 156.80 158.80 2.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH018 132.00 135.80 3.80 2.11 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 0.10 DDH023 178.00 178.10 0.10 0.04 DDH025 94.00 94.10 0.10 0.04 DDH027 105.60 106.60 1.00 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.527 GRC023 110.00 113.00 3.00 5.27 GRC027 100.	DDH013	80.20	81.20	1.00	0.19
DDH016 156.80 158.80 2.00 0.19 DDH017 79.00 82.70 3.70 1.45 DDH018 132.00 135.80 3.80 2.11 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 1 DDH023 178.00 178.10 0.10 1 DDH025 94.00 94.10 0.10 1 DDH027 105.60 106.60 1.00 0.04 DH038 107.60 108.60 1.00 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.527 GRC027 100.00 101.00 1.00 0.00 GRC029	DDH015	150.00	150.10	0.10	
DDH017 79.00 82.70 3.70 1.45 DDH018 132.00 135.80 3.80 2.11 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 1 DDH023 178.00 178.10 0.10 1 DDH025 94.00 94.10 0.10 1 DDH025 94.00 94.10 0.10 1 DDH027 105.60 106.60 1.00 0.04 DH038 107.60 108.60 1.00 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.527 GRC023 110.00 113.00 3.00 5.27 GRC029 <	DDH016	156.80	158.80	2.00	0.19
DDH018 132.00 135.80 3.80 2.11 DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 0.09 DDH023 178.00 178.10 0.10 0.09 DDH025 94.00 94.10 0.10 0.04 DDH027 105.60 106.60 1.00 0.04 DDH038 107.60 108.60 1.00 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.95 GRC023 110.00 113.00 3.00 5.27 GRC029 68.00 69.00 1.00 0.00 GRC030 165.00 165.10 0.10 0.00 GRC032<	DDH017	79.00	82.70	3.70	1.45
DDH020 95.00 102.00 7.00 0.62 DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 0.09 DDH023 178.00 178.10 0.10 0.09 DDH025 94.00 94.10 0.10 0.04 DDH027 105.60 106.60 1.00 0.04 DDH038 107.60 108.60 1.00 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.95 GRC023 110.00 113.00 3.00 5.27 GRC029 68.00 69.00 1.00 0.00 GRC030 165.00 165.10 0.10 0.00	DDH018	132.00	135.80	3.80	2.11
DDH021 213.50 214.50 1.00 0.09 DDH022 185.00 185.10 0.10 DDH023 178.00 178.10 0.10 DDH025 94.00 94.10 0.10 DDH027 105.60 106.60 1.00 0.04 DDH038 107.60 108.60 1.00 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.95 GRC023 110.00 113.00 3.00 5.27 GRC029 68.00 69.00 1.00 0.00 GRC030 165.10 0.10 0.00 GRC032 126.00 127.00	DDH020	95.00	102.00	7.00	0.62
DDH022 185.00 185.10 0.10 DDH023 178.00 178.10 0.10 DDH025 94.00 94.10 0.10 DDH027 105.60 106.60 1.00 0.04 DDH038 107.60 108.60 1.00 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.95 GRC023 110.00 113.00 3.00 5.27 GRC029 68.00 69.00 1.00 0.00 GRC030 165.00 165.10 0.10 0.00 GRC032 126.00 127.00 1.00 0.08	DDH021	213.50	214.50	1.00	0.09
DDH023 178.00 178.10 0.10 DDH025 94.00 94.10 0.10 DDH027 105.60 106.60 1.00 0.04 DDH038 107.60 108.60 1.00 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.95 GRC023 110.00 113.00 3.00 5.27 GRC029 68.00 69.00 1.00 0.00 GRC030 165.00 165.10 0.10 0.00 GRC032 126.00 127.00 1.00 0.08	DDH022	185.00	185.10	0.10	
DDH025 94.00 94.10 0.10 DDH027 105.60 106.60 1.00 0.04 DDH038 107.60 108.60 1.00 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.95 GRC023 110.00 113.00 3.00 5.27 GRC029 68.00 69.00 1.00 0.00 GRC030 165.00 165.10 0.10 GR0 GRC032 126.00 127.00 1.00 0.08	DDH023	178.00	178.10	0.10	
DDH027 105.60 106.60 1.00 0.04 DDH038 107.60 108.60 1.00 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.95 GRC023 110.00 113.00 3.00 5.27 GRC027 100.00 101.00 1.00 0.00 GRC029 68.00 69.00 1.00 0.00 GRC030 165.00 165.10 0.10 0.08	DDH025	94.00	94.10	0.10	
DDH038 107.60 108.60 1.00 0.23 GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.95 GRC023 110.00 113.00 3.00 5.27 GRC027 100.00 101.00 1.00 0.00 GRC030 165.00 165.10 0.10 GRC032 GRC032 126.00 127.00 1.00 0.08	DDH027	105.60	106.60	1.00	0.04
GRC019 77.00 81.00 4.00 0.32 GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.95 GRC023 110.00 113.00 3.00 5.27 GRC027 100.00 101.00 1.00 0.00 GRC030 165.00 165.10 0.10 GRC032 GRC032 126.00 127.00 1.00 0.08	DDH038	107.60	108.60	1.00	0.23
GRC020 101.00 112.00 11.00 0.35 GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.95 GRC023 110.00 113.00 3.00 5.27 GRC027 100.00 101.00 1.00 0.00 GRC029 68.00 69.00 1.00 0.00 GRC030 165.00 165.10 0.10 GRC032	GRC019	77.00	81.00	4.00	0.32
GRC021 87.00 89.00 2.00 0.19 GRC022 99.00 104.00 5.00 0.95 GRC023 110.00 113.00 3.00 5.27 GRC027 100.00 101.00 1.00 0.00 GRC029 68.00 69.00 1.00 0.00 GRC030 165.00 165.10 0.10 GRC032	GRC020	101.00	112.00	11.00	0.35
GRC022 99.00 104.00 5.00 0.95 GRC023 110.00 113.00 3.00 5.27 GRC027 100.00 101.00 1.00 0.00 GRC029 68.00 69.00 1.00 0.00 GRC030 165.00 165.10 0.10 GRC032	GRCU21	87.00	89.00	2.00	0.19
GRC025 110.00 113.00 3.00 5.27 GRC027 100.00 101.00 1.00 0.00 GRC029 68.00 69.00 1.00 0.00 GRC030 165.00 165.10 0.10 GRC032	GRC022	99.00	104.00	5.00	0.95
GRC027 100.00 101.00 1.00 0.00 GRC029 68.00 69.00 1.00 0.00 GRC030 165.00 165.10 0.10 GRC032 126.00 127.00 1.00 0.08		100.00	101.00	3.00	5.27
GRC030 165.00 165.10 0.10 GRC032 126.00 127.00 1.00 0.08	GRC020	100.00	101.00	1.00	0.00
GRC032 126.00 127.00 1.00 0.08	GRC020	165.00	165 10	1.00 0.10	0.00
	GRC032	126.00	127.00	1.00	0.08

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
GRC033	180.00	181.00	1.00	0.00
GRC034	146.00	148.00	2.00	0.00
GSD001	129.00	133.00	4.00	0.05
GSD003	132.00	134.00	2.00	2.83
Mean_Value :	76.21	78.53	2.31	0.67
Max_Value :	254.20	255.20	11.00	5.27
Min_Value :	-3.00	-2.00	0.10	0.00
No. Samples :	84.00	84.00	84.00	71.00
CHM1			<u> </u>	
AD059	5.00	7.00	2.00	0.20
AD061	15.00	16.00	1.00	2.80
ARC025	66.00	68.00	2.00	0.12
ARC046	94.00	96.00	2.00	0.03
ARC056	25.00	26.00	1.00	0.44
ARC065	46.00	48.00	2.00	0.13
ARC084	47.00	56.00	9.00	1.00
ARC085	24.00	30.00	6.00	0.02
ASD003	90.40	91.30	0.90	0.07
DDH008	108.60	109.50	0.90	0.35
DDH011	66.20	67.40	1.20	2.56
DDH020	84.40	86.90	2.50	0.10
GRC019	67.00	69.00	2.00	0.28
Mean_Value :	56.82	59.32	2.50	0.54
Max_Value :	108.60	109.50	9.00	2.80
Min_Value :	5.00	7.00	0.90	0.02
No. Samples :	13.00	13.00	13.00	13.00
CHN1				
AD052	139.90	141.50	1.60	0.09
AD058	171.00	172.00	1.00	0.06
ARC008	22.00	32.00	10.00	0.03
ARCOU9	54.00	55.00	1.00	0.37
ARC022	1.00	8.00	/.00	0.33
ARC022	108.00	112.00	4.00	7.43
ARCU25	48.00	50.00	2.00	1.07
ARCU52	35.00	37.00	2.00	1.07
	29.00	30.00	1.00	0.00
AKCUIO	54.00 26.00	00.00 27 00	12.00	0.11
	17.00	27.00 19.00	1.00	0.22
ARC107	25.00	26.00	1.00	0.55
	257.80	261.60	3.80	0.08
DDH001	72.05	72.80	0.75	0.09
DDH009	142.00	142.60	0.60	0.25
DDH011	170.60	171.30	0.70	0.16
DDH014	197.70	199.80	2.10	0.08
DDH017	45.70	47.70	2.00	0.24
GAB001	12.00	13.00	1.00	0.13
GAB009	10.00	11.00	1.00	0.02
GAB013	15.00	16.00	1.00	0.38
GAB039	13.00	14.00	1.00	0.08
GAB040	5.00	6.00	1.00	2.32
GRC015	23.00	24.00	1.00	0.06
GRC064	52.00	54.00	2.00	0.22
Mean_Value :	67.14	69.55	2.41	0.68
Max_Value :	257.80	261.60	12.00	7.43
Min_Value :	1.00	6.00	0.60	0.02
No. Samples :	26.00	26.00	26.00	26.00
CHN2				
ARC078	30.00	36.00	6.00	0.04
ARC084	36.00	40.00	4.00	0.91
ASD004	250.55	251.25	0.70	0.78
DDH017	143.60	144.60	1.00	0.61
Mean_Value :	115.04	117.96	2.93	0.43
Max_Value :	250.55	251.25	6.00	0.91
Min_Value :	30.00	36.00	0.70	0.04
No. Samples :	4.00	4.00	4.00	4.00
ALL				
Mean_Value :	79.71	85.05	5.34	1.64
Max_Value :	305.65	306.29	37.20	37.00
Min_Value :	-8.00	-4.00	0.10	0.00

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
No. Samples :	502.00	502.00	502.00	449.00

APPENDIX 5 - CHALLENGER DRILL HOLE 'HIGH GRADE' VEIN INTERCEPTS

The following listings give all drill hole vein intercepts within the Challenger deposit area - for the 'High grade veins' interpretation. Intercepts are listed by vein, from east to west. Vein intercepts may have had multiple sample intervals and the gold values are the composits of all samples within each vein.

Vein Hole	Roof (m)	Floor (m)	Thick (m)	Au (g/t)
CHALLENGER				
HIGH GRADE				
CH4				
ARC052	41.00	42.00	1.00	6.25
ARC082	18.00	24.00	6.00	0.60
DDH003	167.60	167.90	0.30	1.95
DDH011	155.00	155.90	0.90	2.13
DDH017	154.40	154.90	0.50	1.52
Mean_Value :	107.20	108.94	1.74	1.51
Max_Value :	167.60	167.90	6.00	6.25
Min_Value :	18.00	24.00	0.30	0.60
No. Samples :	5.00	5.00	5.00	5.00
CH3E				
AD046	53.65	55.65	2.00	2.80
AD049	50.00	51.00	1.00	1.10
	141.00	142.00	0.20	0.00
	205.65	142.00	0.10	0.09
AD035 AD075	20.00	21 00	0.04	2.09
	10.00	11 00	1.00	0.17
ARC004	58 00	60.00	2.00	0.71
	91 00	91 10	2.00	0.59
	79 00	81 00	2 00	1 52
ARC009	47 00	49 00	2.00	0.34
ARC022	81.00	82.00	1.00	0.34
ARC067	37.00	38.00	1.00	3.86
ARC070	38.90	39.00	0.10	0.02
ARC071	20.00	20.10	0.10	0.02
ARC072	54.00	54.10	0.10	0.00
ARC073	19.00	20.00	1.00	0.11
ARC074	35.00	36.00	1.00	0.36
ARC075	56.00	57.00	1.00	0.19
ARC076	36.00	38.00	2.00	3.09
ARC077	21.00	23.00	2.00	1.80
ARC078	-4.10	-4.00	0.10	
ARC086	26.00	28.00	2.00	0.51
ARC087	25.00	27.00	2.00	9.71
ARC088	22.90	23.00	0.10	
ARC089	44.00	49.00	5.00	0.84
ARC090	30.00	35.00	5.00	4.21
ARC091	24.00	26.00	2.00	2.15
ARC092	35.00	36.00	1.00	0.57
ARC093	18.00	21.00	3.00	1.94
ARC094	50.00	55.00	5.00	0.26
ARC095	5.00	6.00	1.00	0.03
ARCU96	34.00	39.00	5.00	5.25
ARCU97	35.00	37.00	2.00	1.4/
ARCU98	29.00	31.00	2.00	0.87
	80.90 16.00	87.00 17.00	0.10	0.06
ARC102	12.00	16.00	1.00	1.50 U 3E
ARC105	136.00	136 10	4.00 0.10	0.55
ARC106	16 00	17 00	0.10	0.00
ARC108	11 00	12 00	1 00	0.01
ARC109	48.00	49 00	1.00	2 16
ARC110	11.00	15.00	4.00	1.25
ARC111A	49.00	50.00	1.00	37.30
ARC112	15.00	16.00	1.00	2.51
ARC113	43.00	47.00	4.00	0.64
ARC126	43.00	43.10	0.10	0.02
ARC127	23.00	23.10	0.10	0.19
ARC128	49.00	49.10	0.10	0.05

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
ASD004	242.00	247.90	5.90	0.86
DDH011	112.00	112 10	0.10	0.00
	139.20	139 30	0.10	0.02
	111 00	111 10	0.10	0.02
	100.00	101.20	0.10	154.00
DDH014	190.90	191.20	0.30	154.98
DDH015	196.20	196.40	0.20	1.50
DDH023	217.30	217.50	0.20	0.57
DDH025	129.10	129.70	0.60	0.42
DDH038	144.00	144.30	0.30	0.23
GRC001	11.00	14.00	3.00	2.31
GRC002	27.00	30.00	3.00	0.26
GRC003	7.00	11.00	4.00	2.52
GRC004	27.00	30.00	3.00	2.27
GRC005	37.00	38.00	1.00	0.60
GRC006	29.00	33.00	4.00	4.81
GRC007	24.00	29.00	5.00	2.31
GRC008	44.00	47.00	3.00	0.80
GRC009	19.00	23.00	4.00	3.04
GRC010	61.00	63.00	2 00	1 26
GRC011	23.00	27 00	4 00	1 52
GRC012	42.00	27.00 4E.00	4.00	1.55
GRC012	42.00	45.00	3.00	1.92
GRC013	5.00	6.00	1.00	0.35
GRC014	25.00	26.00	1.00	0.35
GRC017	69.00	72.00	3.00	1.07
GRC018	71.00	75.00	4.00	1.09
GRC034	178.00	178.10	0.10	0.06
GRC037	186.00	186.10	0.10	
GRC063	112.00	114.00	2.00	0.56
GRC064	119.90	120.00	0.10	0.00
GSD004	234.00	234.10	0.10	
Mean_Value :	65.22	66.88	1.67	2.40
Max_Value :	305.65	306.29	5.90	154.98
Min_Value :	-4.10	-4.00	0.10	0.00
No. Samples :	80.00	80.00	80.00	73.00
CH3W				
AD046	41.65	43.25	1.60	2.66
AD049	44.00	47.00	3.00	1.36
AD053	121.00	121.40	0.40	0.00
ARC003	6.00	7.00	1.00	1.06
ARC004	54.00	56.00	2.00	0.78
ARC009	33.00	43.00	10.00	4.36
ARC074	32.00	34.00	2 00	0.88
ARC075	54 00	55 00	1 00	5.00
ARC076	32.00	36.00	4 00	29.15
ARC077	16.00	20.00	4.00 4.00	23.03
ARC078	-2.00	_/ 00	- 1 .00	2.24
	-3.00	2E 00	2 00	
	23.00	25.00	2.00	4.65
	20.00	22.00	2.00	4.65
ARCU89	42.00	43.00	1.00	0.08
ARC090	21.00	25.00	4.00	0.59
ARC091	20.00	22.00	2.00	0.43
ARC092	33.00	34.00	1.00	1.29
ARC093	15.00	18.00	3.00	7.23
ARC094	48.00	50.00	2.00	0.87
ARC095	0.00	1.00	1.00	0.03
ARC096	28.00	30.00	2.00	9.11
ARC097	24.00	34.00	10.00	4.35
ARC098	16.00	25.00	9.00	9.38
ARC100	86.00	86.10	0.10	0.06
ARC102	15.00	16.00	1.00	2.21
ARC104	7.00	8.00	1.00	0.07
ARC106	16.00	16.10	0.10	0.01
ARC108	7.00	8.00	1.00	0.86

0.37

67.00

68.00

1.00

ARC129

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
ARC109	38.00	41.00	3.00	1.35
ARC110 ARC111A	3.00	5.00	2.00	0.15
ARC112	13.00	40.00	2.00	0.71
ARC113	38.00	42.00	4.00	7.75
ARC126	42.00	42.10	0.10	0.01
ASD004	237.70	239.60	1.90	0.33
GRC001	7.00	8.00	1.00	1.03
GRC002	23.00	26.00	3.00	1.44
GRC003	6.00 22.00	7.00	1.00	0.63
GRC004 GRC005	32.00	36.00	4.00	12 08
GRC006	25.00	28.00	3.00	1.16
GRC007	21.00	22.00	1.00	8.08
GRC008	40.00	44.00	4.00	5.25
GRC009	10.00	13.00	3.00	1.75
GRC010	53.00	58.00	5.00	8.93
GRC011	14.00	16.00	2.00	1.74
GRC012 GRC013	1 00	34.00	4.00	4.72 2.10
GRC014	24.00	25.00	1.00	0.20
GRC016	5.00	10.00	5.00	1.52
GRC017	62.00	64.00	2.00	3.55
GRC018	66.00	68.00	2.00	0.39
GRC063	94.00	96.00	2.00	0.92
GRC064	118.00	118.10	0.10	0.00
Mean_Value :	35.41	37.94	2.53	4.58
wax_Value :	237.70	239.60	10.00	29.05
No. Samples	-5.00 54.00	-4.90 54.00	54.00	52.00
CH2E	51.00	51.00	51.00	52.00
AD039	61.00	61.10	0.10	
AD059	51.50	52.50	1.00	0.49
AD060	40.30	40.69	0.39	0.15
AD062	37.60	38.60	1.00	0.68
AD063	54.10	54.20	0.10	0.03
AD064 AD075	30.30 12.00	57.70 12.10	1.20	1.95
ARC006	85.00	85.10	0.10	0.00
ARC007	44.00	45.00	1.00	0.34
ARC008	70.00	71.00	1.00	1.44
ARC024	44.00	45.00	1.00	3.02
ARC046	140.00	141.00	1.00	0.20
ARC051	38.00	39.00	1.00	0.35
ARC052	7.00	8.00	1.00	0.01
ARC055	26.00	27.00	1.00	0.02
ARC056	78.00	79.00	1.00	0.34
ARC057	56.00	58.00	2.00	3.22
ARC058	23.00	24.00	1.00	0.22
ARC059	38.00	38.50	0.50	0.03
ARC060	48.00	49.00	1.00	0.46
ARCOS	24.00	25.00	1.00	0.04
ARC065	89.00	90.00	1.00	0.08
ARC066	59.00	60.00	1.00	0.22
ARC067	28.00	29.00	1.00	1.87
ARC068	60.00	60.10	0.10	
ARC069	32.00	33.00	1.00	0.02
ARC070	28.00	28.10	0.10	0.00
ARCU/1	9.00	10.00	1.00	0.46
	48.00 6.00	48.10 6.10	0.10	0.00
ARC081	91.00	92.00	1.00	0.00
ARC083	71.00	72.00	1.00	0.23
ARC084	89.00	89.10	0.10	0.03
ARC088	15.00	15.10	0.10	
ARC102	1.00	1.10	0.10	0.03
ARC105	129.00	129.10	0.10	0.00
ARC125	87.00	88.00	1.00	0.16

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
AKC120 ARC128	20.00	43.00	1.00	1.40
ARC129	60.00	62.00	2.00	0.93
ASD003	129.60	130.05	0.45	0.11
ASD005	71.80	72.45	0.65	0.48
ASD006	90.20	91.00	0.80	0.38
DDH001	132.00	133.00	1.00	0.20
	141.10	141.50 190 10	0.40 0.10	0.38
DDH008	151.40	152.00	0.10	0.02
DDH009	123.80	124.30	0.50	0.00
DDH011	104.90	105.70	0.80	17.70
DDH012	130.50	131.50	1.00	0.72
DDH013	104.80	105.50	0.70	8.45
DDH014	180.80	182.80	2.00	1.8/
	184.70	185.00 185.10	1.90 0.10	0.94
DDH017	120.40	121.40	1.00	0.24
DDH018	180.00	180.10	0.10	
DDH019	217.00	217.10	0.10	
DDH020	121.40	121.60	0.20	1.16
DDH022	206.50	207.50	1.00	0.09
DDH023	208.80	209.00	0.20	0.75
	237.00 125 10	241.00 126.30	4.00	6.94 2.66
DDH025	164.20	120.30	1.20	3.60
DDH027	123.70	124.70	1.00	0.18
DDH038	131.40	132.20	0.80	2.96
GRC019	127.00	127.10	0.10	
GRC021	131.00	131.10	0.10	0.05
GRC022	139.00	140.00	1.00	0.01
GRC023	145.00	147.00	2.00	1.52
GRC030	189.00	189.10	0.10	0.00
GRC032	204.00	155.00 205.00	1.00	37.00
GRC034	171.90	172.00	0.10	0.00
GSD001	160.00	161.00	1.00	0.03
GSD003	155.00	155.10	0.10	0.00
GSD004	217.00	218.00	1.00	0.36
Mean_Value :	97.63	98.42	0.79	2.24
Max_Value :	237.00	241.00	4.00	37.00
Min_value :	1.00 78.00	1.10	0.10 78.00	0.00
СНЭМ/	76.00	78.00	70.00	00.00
ARC024	39.00	41.00	2.00	0.76
ASD005	63.00	64.00	1.00	0.12
ASD006	89.80	90.20	0.40	0.70
DDH026	159.50	160.20	0.70	4.09
Mean_Value :	87.82	88.85	1.02	1.17
Max_Value :	159.50	160.20	2.00	4.09
No Samples :	39.00	41.00	0.40 4 00	0.12 4.00
CH1F	4.00	4.00	4.00	4.00
AD039	53.00	53.50	0.50	
AD040	51.60	55.60	4.00	7.80
AD043	111.00	112.09	1.09	0.42
AD044	64.00	64.10	0.10	
AD055	278.00	279.00	1.00	0.07
AD059	40.20	46.40	6.20	1.44
AD060	29.00 49.70	50.80	2.10	2 92
	40.70	30.80	2.10	5.55 1 68
AD063	46.00	48.50	2.50	3.21
AD064	48.70	49.80	1.10	1.25
AD072	49.70	51.70	2.00	1.48
AD073	48.30	49.00	0.70	0.34
AD075	3.50	3.60	0.10	0.01
ARC005	77.00	80.00	3.00	0.57
ARCOU6	82.00	83.00	1.00	0.62
ARCOU7	34.00	35.00	1.00	1.80

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
ARC008	58.90	59.00	0.10	0.04
ARC011	77.00	82.00	5.00	1.07
ARC024	34.00	37.00	3.00	1.13
ARC025	101.00	102.00	1.00	F 02
ARC046	133.00	136.00	3.00	5.03
ARCUSI ARCOS2	32.00	33.00	1.00	2.70
ARC052	16.00	10.00	2.00	2.59
ARCOSS ARCOSS	15.00	17.00	2.00	2.50
ARCOSS	55.00	61.00	6.00	4.09
ARC057	48.00	52.00	4 00	3 29
ARC058	6.00	7 00	1.00	1 11
ARC059	26.00	27.00	1.00	0.05
ARC060	42.00	43.00	1.00	0.57
ARC061	15.00	16.00	1.00	1.46
ARC062	20.00	21.00	1.00	2.28
ARC063	47.00	48.00	1.00	2.97
ARC065	76.00	77.50	1.50	1.90
ARC066	47.00	50.00	3.00	0.97
ARC067	19.00	20.00	1.00	1.37
ARC068	44.00	49.00	5.00	0.77
ARC069	26.00	27.00	1.00	1.30
ARC070	25.00	26.00	1.00	0.44
ARC071	5.00	6.00	1.00	0.30
ARC072	39.90	40.00	0.10	0.01
ARC073	-2.10	-2.00	0.10	
ARCO81	88.00	90.00	2.00	1.87
ARC083	65.00	66.00	1.00	1.87
ARC084	75.00	79.00	4.00	7.26
ARC085	/0.00	/3.00	3.00	1.81
ARCU88	11.00	12.00	1.00	0.71
ARCIUS	122.00 82.00	124.00 92.00	2.00	0.05
ARC125	31.00	21 10	0.10	2.50
	157.60	159 70	2 10	0.04
ASD001	123 55	125.00	2.10	1.83
	53.00	53.40	0.40	1.05
ASD005	79.90	80.70	0.80	1.58
DDH001	122.00	127.00	5.00	3.43
DDH002	198.10	199.20	1.10	0.36
DDH003	136.80	139.20	2.40	3.95
DDH006	184.00	185.00	1.00	0.26
DDH007	109.50	112.80	3.30	11.46
DDH008	147.40	148.50	1.10	0.28
DDH009	113.50	116.60	3.10	26.70
DDH010	141.50	144.50	3.00	1.07
DDH011	100.50	102.40	1.90	0.76
DDH012	127.60	128.60	1.00	12.70
DDH013	100.60	101.90	1.30	0.94
DDH014	173.60	174.60	1.00	8.20
DDH015	171.90	175.00	3.10	12.46
	1/7.70	1/8.60	0.90	0.37
	105.80	110.50	4.70	2.38
	157.20	158.20	1.00	1.47
	200.40	200.50	0.10	רד ר
	224 20 TT9.00	120.20	2.20	2.72
	224.3U 107 10	223.20	0.90 5 10	1.05
DDH023	201 00	202.30	1 00	1 07
DDH024	233.90	235.90	2.00	2.89
DDH025	121.40	122.30	0.90	0.78
DDH026	155.90	156.00	0.10	0.04
DDH027	118.60	119.70	1.10	0.24
DDH038	126.20	127.20	1.00	0.24
GAB003	16.90	17.00	0.10	0.00
GRC019	109.00	116.00	7.00	7.00
GRC020	145.00	148.00	3.00	0.63
GRC021	125.00	127.00	2.00	3.00
GRC022	122.00	125.00	3.00	12.39
GRC023	127.00	135.00	8.00	6.28

0.20

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
GRC029	81.00	82.00	1.00	0.30
GRC030	184.00	185.00	1.00	1.19
GRC032	143.00	144.00	1.00	0.12
GRC033	193.00	197.00	4.00	0.54
GRC034	164.00	167.00	3.00	0.97
GSD001	156.00	157.00	2.00	0.72
GSD003	205.00	206.00	2.00	2.01
Mean Value :	Q1 11	96.37	1.00	3.45
Max Value :	278.00	279.00	8.00	26.70
Min Value :	-2.10	-2.00	0.10	0.00
No. Samples :	96.00	96.00	96.00	91.00
CH1M				
AD039	45.45	49.35	3.90	6.56
AD040	44.60	50.60	6.00	2.52
AD043	105.00	109.05	4.05	3.19
AD044	60.00	60.10	0.10	
AD055	274.00	275.00	1.00	0.34
AD059	36.00	37.40	1.40	5.15
AD060	24.90	25.00 49.70	0.10	2 16
AD062	23.00	27.80	2.70	2.40
AD063	38.00	41 00	3.00	0.23
AD064	43.00	43.80	0.80	0.20
AD072	46.70	47.70	1.00	1.54
AD073	46.00	46.40	0.40	20.65
AD075	3.00	3.10	0.10	0.01
ARC005	64.00	74.00	10.00	2.71
ARC006	71.00	78.00	7.00	1.44
ARC007	24.00	30.00	6.00	3.08
ARCO08	58.40	58.50	0.10	0.04
ARCU11	67.00	69.00 22.00	2.00 E 00	17.37
ARC024 ARC025	92.00	93.00	1.00	2 22
ARC046	125.00	132.00	7.00	10.98
ARC051	24.00	30.00	6.00	1.09
ARC052	-4.00	-3.90	0.10	
ARC053	12.00	13.00	1.00	1.82
ARC055	13.00	14.00	1.00	1.32
ARC056	49.00	54.00	5.00	2.08
ARC057	39.00	45.00	6.00	1.13
ARC058	3.00	5.00	2.00	0.82
ARC059	22.00	22.10	0.10	
ARCUBU	36.00	36.10	2.00	151
ARC062	16.00	19.00	2.00	0.55
ARC063	44.00	47.00	3.00	0.92
ARC065	70.00	74.00	4.00	0.85
ARC066	40.00	43.00	3.00	1.98
ARC067	13.50	15.00	1.50	2.02
ARC068	42.00	44.00	2.00	4.37
ARC069	22.00	24.00	2.00	0.31
ARC070	17.00	23.00	6.00	2.07
ARC071	0.00	1.00	1.00	0.71
ARCU72	36.00	36.10	0.10	0.01
ARC075 ARC081	-2.50 76.00	-2.20	5.00	10.84
ARC083	53.00	56.00	3.00	1.63
ARC084	72.00	73.00	1.00	1.06
ARC085	63.00	69.00	6.00	1.51
ARC088	6.00	7.00	1.00	0.10
ARC105	118.00	120.00	2.00	3.22
ARC125	73.00	75.00	2.00	5.37
ARC128	30.30	30.40	0.10	0.00
ASD001	151.45	154.30	2.85	1.92
ASD003	114.00	122.00	8.00	2.69
ASD005	47.10	52.00	4.90	4.11
	118 00	121 00	2.55 2.00	1 24
DDH002	195.40	195.70	0.30	1.24

114.00

115.00

1.00

GRC027

Vein	Roof	Floor	Thick	Au
HOIE	(m)	(m)	(m)	(g/t)
DDH005	177.80	178.90	1.10	14.25
DDH007	94.50	109.50	15.00	3.53
DDH008	135.20	144.40	9.20	4.86
DDH009	99.40	104.40	5.00	2.00
DDH010	132.50	140.50	8.00	3.23
DDH011	93.50	96.70	3.20	21.57
DDH012	120.70	127.60	6.90	1.32
	98.50 161 20	99.00 163.60	2 40	0.39
DDH015	167.60	169.90	2.30	0.40
DDH016	163.30	171.30	8.00	0.26
DDH017	98.20	103.90	5.70	3.72
DDH018	149.10	156.20	7.10	2.53
DDH019	206.20	206.30	0.10	
DDH020	114.10	116.10	2.00	2.79
	221.40	223.40	2.00	0.70
DDH023	194.40	198.50	4.10	0.57
DDH024	230.10	231.00	0.90	0.88
DDH025	112.50	114.40	1.90	13.10
DDH026	155.40	155.50	0.10	0.04
DDH027	115.10	115.80	0.70	0.06
DDH038	122.50	123.50	1.00	0.10
GAB003	16.40	16.50	0.10	0.00
GRC019 GRC020	96.00 126.00	137.00	7.00	3.03 1.90
GRC021	108.00	123.00	15.00	2.07
GRC022	114.00	116.00	2.00	3.17
GRC023	118.00	126.00	8.00	13.48
GRC027	111.00	112.00	1.00	0.72
GRC029	79.00	81.00	2.00	1.93
GRC030	179.00	180.00	1.00	0.90
GRC032	139.00	142.00	5.00	0.87
GRC034	157.00	192.00	1.00	0.46
GSD001	145.00	153.00	8.00	1.86
GSD003	139.00	147.00	8.00	2.40
GSD004	201.00	204.00	3.00	1.69
Mean_Value :	88.10	91.56	3.46	3.64
Max_Value :	274.00	275.00	15.00	21.57
Min_Value :	-4.00	-3.90	0.10	0.00
No. Samples :	96.00	96.00	96.00	89.00
	/13 50	13 70	0.20	25.00
AD040	41.57	42.60	1.03	2.98
AD043	97.35	98.00	0.65	1.53
AD044	53.15	56.28	3.13	0.33
AD055	273.00	274.00	1.00	2.81
AD059	31.00	32.00	1.00	2.10
AD060	22.00	23.00	1.00	1 22
	37.00 10.00	38.00 21 00	2.00	1.32 2.17
AD062	32.00	21.00 33.00	2.00 1.00	0.32
AD064	38.80	40.50	1.70	6.42
AD072	42.70	43.70	1.00	0.69
AD073	43.00	43.10	0.10	
AD075	2.70	2.80	0.10	0.01
ARC005	54.00	62.00	8.00	2.20
ARCUU6	64.00	65.00	1.00	0.14
	18.00	23.00 58.10	5.00	0.44
ARC011	56.00	56.10 56.10	10.10	0.04
ARC024	24.00	26.00	2.00	3.80
ARC025	88.00	92.00	4.00	1.47
ARC046	119.00	124.00	5.00	5.04
ARC051	22.00	23.00	1.00	1.51
ARC052	-8.00	-7.90	0.10	
ARC053	9.00	10.00	1.00	0.41
ARCUSS	9.00	10.00	1.00	0.25

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
ARC056	47.00	48.00	1.00	2.49
ARC057	37.00	39.00	2.00	1.02
ARC058	2.00	3.00	1.00	0.23
ARC059	17.00	19.00	2.00	2.73
ARC060	31.00 6.00	33.00	2.00	2.20
ARC062	13.00	1/ 00	1.00	0.87
ARC063	32.00	36.00	4.00	0.15
ARC065	63.00	70.00	7.00	7.26
ARC066	36.00	38.00	2.00	0.41
ARC067	11.00	13.50	2.50	1.00
ARC068	33.00	35.00	2.00	1.16
ARC069	18.00	19.00	1.00	0.07
ARC070	10.00	12.00	2.00	0.19
ARC071	-5.00	-4.90	0.10	0.01
ARCU72	33.00	33.10	0.10	0.01
ARC075 ARC081	-2.50	-2.40 71 50	1 50	22 90
ARC083	50.00	51.00	1.00	0.65
ARC084	66.00	69.00	3.00	5.21
ARC085	60.00	61.00	1.00	0.57
ARC088	0.00	1.00	1.00	0.89
ARC105	112.00	113.00	1.00	0.53
ARC125	66.00	69.00	3.00	1.61
ARC128	30.00	30.10	0.10	0.00
ASD001	145.10	148.10	3.00	7.08
ASD003	108.50	111.80	3.30	0.75
	57.00 60.00	45.00	8.00 6.10	1.10
DDH001	116.00	117.00	1 00	3 02
DDH002	192.90	193.10	0.20	1.22
DDH003	120.80	124.80	4.00	1.44
DDH006	174.60	175.70	1.10	7.62
DDH007	87.60	90.50	2.90	7.50
DDH008	132.30	134.40	2.10	32.84
DDH009	85.20	91.70	6.50	5.47
DDH010	128.70	131.50	2.80	8.04
	90.60	90.80	0.20	0.06
	85.20	86 10	0.00	0.29
DDH013	158.20	159.20	1.00	2.24
DDH015	162.80	163.80	1.00	0.06
DDH016	160.50	162.30	1.80	0.33
DDH017	88.30	97.20	8.90	5.56
DDH018	138.60	141.30	2.70	6.60
DDH019	206.00	206.10	0.10	
DDH020	107.00	111.20	4.20	3.24
DDH021	217.50	218.40	0.90	0.15
	100.00	109.20	2.10	1.50
DDH023	225.60	226.20	0.60	2.26
DDH025	106.30	107.30	1.00	0.11
DDH026	155.00	155.10	0.10	0.04
DDH027	109.70	110.80	1.10	0.09
DDH038	120.50	121.50	1.00	0.28
GAB003	16.00	16.10	0.10	0.00
GRC019	91.00	93.00	2.00	1.90
GRC020	122.00	126.00	4.00	4.37
GRC021	102.00	107.00	5.00	4.41
GRC022	11/ 00	117.00	4.00	4.33
GRC023	107.00	109.00	3.00 2.∩∩	2.12 1 93
GRC029	78.00	79.00	2.00	2.47
GRC030	178.00	179.00	1.00	0.80
GRC032	133.00	134.00	1.00	0.40
GRC033	184.00	186.00	2.00	0.58
GRC034	153.00	155.00	2.00	8.40
GSD001	139.00	141.00	2.00	10.80
GSD003	135.00	136.00	1.00	1.20
GSD004	195.00	196.00	1.00	29.50

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
Mean_Value :	83.35	85.40	2.06	3.71
Max_Value :	273.00	274.00	10.00	32.84
Min_Value :	-8.00	-7.90	0.10	0.00
No. Samples :	96.00	96.00	96.00	90.00
CHOE				
AD056	200.00	201.25	1.25	1.66
AD059	28.00	29.00	1.00	0.67
AD061	31.00	32.00	1.00	0.60
AD073	26.90	27.90	1.00	0.59
ARC007	13.00	14.00	1.00	2.93
ARC024	19.00	20.00	1.00	1.01
ARC046	112.00	113.00	1.00	1.90
ARC051	14.00	15.00	1.00	0.03
ARC056	43.00	45.00	2.00	1.93
ARC057	34.00	35.00	1.00	1.59
ARC062	8.00	9.00	1.00	1.83
ARC081	64.00	65.00	1.00	1.89
ARC084	57.00	59.00	2.00	1.59
ARC085	44.00	46.00	2.00	1.69
ASD001	137.70	138.30	0.60	1.33
ASD003	101.70	102.20	0.50	0.51
DDH006	172.80	173.70	0.90	0.76
DDH007	73.50	76.80	3.30	3.58
DDH009	78.40	79.40	1.00	1.11
DDH012	102.30	103.40	1.10	0.52
DDH017	81.60	82.70	1.10	3.75
DDH018	133.90	135.80	1.90	3.97
DDH020	100.30	102.00	1.70	0.72

Vein	Roof	Floor	Thick	Au
Hole	(m)	(m)	(m)	(g/t)
GRC019	79.00	80.00	1.00	0.57
GRC020	107.00	108.00	1.00	0.94
GRC022	102.00	103.00	1.00	3.05
GRC023	111.00	113.00	2.00	7.71
GSD003	132.00	134.00	2.00	2.83
Mean_Value :	78.82	80.12	1.30	2.18
Max_Value :	200.00	201.25	3.30	7.71
Min_Value :	8.00	9.00	0.50	0.03
No. Samples :	28.00	28.00	28.00	28.00
CHOW				
ARC046	108.00	109.00	1.00	3.33
ARC057	32.00	33.00	1.00	2.76
ASD003	96.25	97.05	0.80	1.31
DDH009	73.40	74.40	1.00	0.64
DDH017	79.00	79.50	0.50	1.70
DDH020	95.00	96.70	1.70	1.36
GRC020	104.00	105.00	1.00	1.05
GRC022	99.00	100.00	1.00	0.69
Mean_Value :	85.83	86.83	1.00	1.58
Max_Value :	108.00	109.00	1.70	3.33
Min_Value :	32.00	33.00	0.50	0.64
No. Samples :	8.00	8.00	8.00	8.00
ALL				
Mean_Value :	80.83	82.85	2.02	3.42
Max_Value :	305.65	306.29	15.00	154.98
Min_Value :	-8.00	-7.90	0.10	0.00
No. Samples :	545.00	545.00	545.00	508.00