

18 October 2021

Further High-Grade Intercepts Confirm Continuity at RPM Additional broad zones of high-grade intersected at the RPM North prospect, planning now underway for a Maiden Resource in line with Nova strategy of unlocking the Estelle Gold **District (Figure 3)** Drilling at RPM returns impressive results including (refer Figure 1 & 2): **RPM-006** 175m @ 1.3 g/t Au fr surface 0 144m @ 1.5 g/t Au fr surface 0 115m @ 1.8 g/t Au fr 14m 0 101m @ 2.0 q/t Au fr 34m 0 95m @ 2.1 g/t Au fr 34m 0 80m @ 2.4 g/t Au fr 37m

0

0

0

0

0

0

(RPM-006 returned an overall average grade of **1.0 g/t Au over 220m** from surface within the RPM North mineralized zone)

RPM-004

0	259m @ 0.5 g/t Au fr surface
0	34m @ 0.7 g/t Au fr 205m
0	78m @ 0.8 g/t Au fr 287m
0	43m @ 1.0 g/t Au fr 287m
0	3m @ 2.4 g/t Au fr 290m

61m @ 2.9 g/t Au fr 56m

29m @ 3.1 g/t Au fr 56m

18m @ 4.5 g/t Au fr 99m

6m @ 10.3 g/t Au fr 56m

3m @ 17.2 g/t Au fr 108m

(RPM-004 returned an overall average grade of 0.4 g/t Au over 405m from surface within the RPM North mineralized zone)

These results complement the impressive results that demonstrated the high-grade nature of the prospect from surface, released on 11 October 2021:

- **RPM-005**
- 373m @ 3.8 g/t Au fr 7m • 287m @ 4.8 g/t Au fr 7m • 241m @ 5.7 g/t Au fr 7m
- 187m @ 7.3 g/t Au fr 34m 0
- 153m @ 8.8 g/t Au fr 68m \cap

Nova Minerals Ltd is a dynamic Australian explorer and developer of its expanding flagship 4.7Moz Estelle Gold project situated in Alaska

Nova Minerals Limited ACN: 006 690 348 ASX: NVA OTC: NVAAF

Office: Suite 602, 566 St Kilda Road Melbourne, VIC, 3004 Australia

Contact:

P: +61 3 9537 1238 E: info@novaminerals.com.au W: www.novaminerals.com.au

- 132m @ 10.1 g/t Au fr 89m
- 123m @ 10.8 g/t Au fr 95m
- 98m @ 12.6 g/t Au fr 95m
- 86m @ 14.1 g/t Au fr 123m
- 3m @ 32.8 g/t Au fr 181m
- 2.6m @ 35.6 g/t Au fr 128m
- 2.4m @ 41.8 g/t Au fr 125m
- 2.4m @ 50.3 g/t Au fr 161m
- 3m @ 97.8 g/t Au fr 169m

(RPM-005 returned an overall average grade of **3.5 g/t Au over 400m** from surface within the RPM North mineralized zone)

RPM-002

128m @ 1.0 g/t Au fr 31m
42m @ 1.5 g/t Au fr 74m
12m @ 2.0 g/t Au fr 102m
6m @ 2.7 g/t Au fr 108m
3m @ 3.0 g/t Au fr 86m
3m @ 4.1 g/t Au fr 108m

(RPM-002 returned an overall average grade of **0.6 g/t Au over 274m** from surface within the RPM North mineralized zone)

RPM-001

- 37m @ 1.0 g/t Au fr 224m
- 6m @ 4.2 g/t Au fr 224m
- 3m @ 7.0 g/t Au fr 227m

(RPM-001 returned an overall average grade of **0.3 g/t Au over 326m** from surface within the RPM North mineralized zone)

- Historical (2012) diamond drill hole SE12-008 re-sampled returned results of (ASX:17 September 2019):
 - 177m @ 0.8g/t fr 4m
 - incl.120m @ 1.0g/t fr 26m
 - and 50m @ 1.8g/t fr 75m

High-grade reconnaissance rock chip samples define an expanded footprint of high priority North and South zone targets within the RPM Prospect (ASX: 22 October 2020)

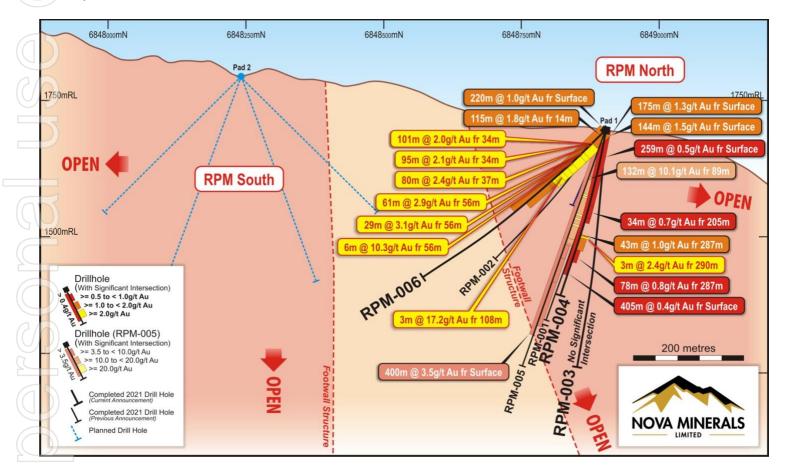
- Rock samples included high-grade gold results:
 291 g/t, 103 g/t, 13.1 g/t, 9.3 g/t, 9.0 g/t, 8.8 g/t and 5 g/t
- 2021 maiden drill program completed at RPM with all rigs moved back to Korbel Main to continue drilling for the upcoming MRE update

- Work program including infrastructure now being scheduled, with Nova designating at least two rigs at RPM for the next round of drilling to expand and prove-up RPM North and the geologically interpreted, much larger RPM South zone.
- Aggressive Infill and Extension drilling are ongoing at Korbel Main with the goal of substantially increasing the 4.7Moz Resource (ASX: 7 April 2021) and upgrading the resource in size and confidence to expedite Project Feasibility Studies.
- Geological reconnaissance crew completed field and unlocked further large high-grade targets within the Estelle Gold District (ASX: 20 September 2021 and 23 September 2021)
- Assay results pending for over 10,000m of drilling from Korbel Main
- Snow Lake Resources moving along at a rapid pace, update now due shortly

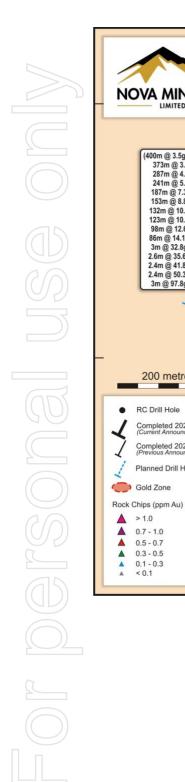
NVA CEO, Mr. Christopher Gerteisen commented: "These latest results at RPM North further confirm the discovery of another massive Intrusive Related Gold System within the Estelle Gold Project. Nova now has two: Korbel and RPM, and we believe there are many more to come as we continue to unlock the district (ASX: 20 September 2021 and 23 September 2021). The Company recently reported Bonanza Grades at RPM North Including 132m @ 10.1 g/t Au (ASX: 11 October 2021). These broad zones of extremely high-grade are believed to be just a glimpse of the geological potential at RPM. The mineralization at RPM is hosted along the intrusive contact with hornfels sediment country rocks. This contact zone appears be an ideal structural corridor where the important litho geochemical reactions are focused, enabling high-grade gold deposition. It is encouraging that we can follow these intrusive contacts in mapping for quite a distance along strike at RPM North and at the RPM South zone. RPM remains wide open, and we are confident in further intersecting this high-grade zone by stepping out in a series of 200m spaced lines to the west of holes RPM-005 and 006 as a priority in the next phase of drilling.

The continuity and tenor of these drilling intersections at RPM are certainly world-class by any measure. We are now in a position to send all of the data to independent consultants to prepare our Maiden Inferred Resource for RPM north.

We are now designing the next phase of drilling programs to commence as soon as possible in 2022, where we plan to have at least 2 drill rigs at RPM to follow up the RPM North Zone and begin to target what looks to be the much larger RPM South Zone which may converge at depth.


This intrusive-hornfels contact zone seems to be a critical site for hosting super high-grade gold mineralization, so we will also be employing the same ore deposition model at the Korbel deposit which currently is hosted entirely within the intrusive, but several similar contact zone targets have already been identified and will be followed up as a matter of priority. Korbel is already a very large bulk IRGS system in its own right, so adding a few extra high-grade sweetener zones would be an added bonus in a mining scenario (figure 3).

The drill program at Korbel will continue at full pace into the foreseeable future, and we look forward to bringing shareholders results as they become available. In time, we expect to define multiple new shallow gold resources that will further support our goal of aggressively growing the resource


inventory as we continue to move towards gold production at the Estelle Gold Project. Remember, we are on the fast-track towards production, that is our goal. We currently have 4.7Moz at the Korbel Main deposit which is expected to grow and the RPM maiden resource is to be added in the short term, representing just the beginning of our Estelle journey with our global resource base set to increase significantly in Q4 this year."

Nova Minerals Limited (**ASX: NVA, OTC: NVAAF, FSE: QM3**) is pleased to announce Further highgrade extensions at RPM North at RPM, within the Company's flagship Estelle Gold Project located in the prolific Tintina Gold Belt.

Figures 1. Cross section of RPM-004 and 005

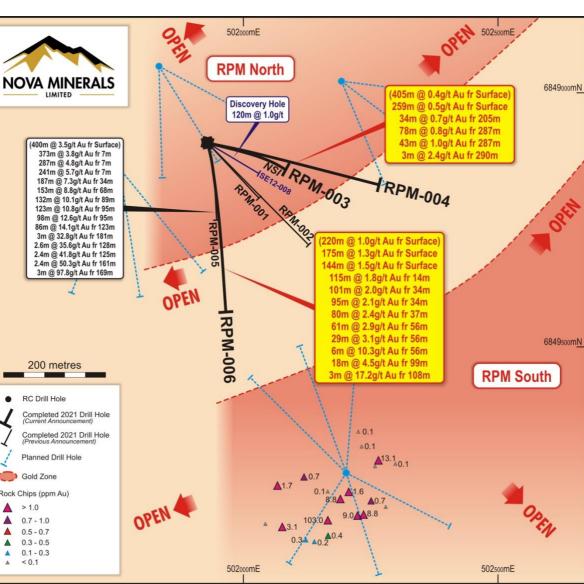


Figure 2. Plan View

Figure 3. Visualising The Estelle Gold District - Unlocked

- Located 100 miles from a major US city and port
- 4 of 15 known prospects highlighted in Figure 3 above, provide the conceptual layout of the

Table 1	Drill	Hole	Locati	ons

			ct unlocked	•	rigure s	above,	provide	e the conceptual layout
Tal	ble 1 Drill H	lole Locat	ions					
	Hole_ID	UTM_E	UTM_N	ELEV (m)	EOH (m)	AZ	DIP	Notes
	SE12-008	501928	6848900	1731	181	140	-50	Historic
	RPM-001	501929	6848902	1729	380	135	-70	ASX : 9 September 20
	RPM-002	501929	6848902	1729	370	135	-45	ASX : 9 September 20
	RPM-003	501929	6848902	1729	465	100	-70	ASX : 18 October 202
	RPM-004	501929	6848902	1729	463	100	-45	ASX : 18 October 202
	RPM-005	501929	6848902	1729	459	170	-70	ASX : 11 October 202
	RPM-006	501929	6848902	1729	431	120	-50	ASX : 18 October 202

	Inferred Mineral Resources			
Cut-off (Au g/t)	Tonnes (Millions)	Grade (g/t Au)	Ounces (Millions)	
0.10	748	0.2	5.6	
0.15	518	0.3	4.7	
0.25	234	0.4	3.0	
0.35	112	0.5	1.8	
0.45	57	0.6	1.1	

Table 2. Mineral Resource Estimate, Korbel Main deposit

Competent Person Statements

Mr Dale Schultz P.Geo., Principle of DjS Consulting, who is Nova group's Chief Geologist and COO of Nova Minerals subsidiary Snow Lake Resources Ltd., compiled and evaluated the technical information in this release and is a member of the Association of Professional Engineers and Geoscientists of Saskatchewan (APEGS), which is ROPO, accepted for the purpose of reporting in accordance with ASX listing rules. Mr Schultz has sufficient experience relevant to the style of mineralization and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Schultz consents to the inclusion in the report of the matters based on information in the form and context in which it appears.

Cautionary Note Regarding Forward-Looking Statements

This news release contains "forward-looking information" within the meaning of applicable securities laws. Generally, any statements that are not historical facts may contain forward-looking information, and forward looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget" "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or indicates that certain actions, events or results "may", "could", "would", "might" or "will be" taken, "occur" or "be achieved." Forward-looking information is based on certain factors and assumptions management believes to be reasonable at the time such statements are made, including but not limited to, continued exploration activities, Gold and other metal prices, the estimation of initial and sustaining capital requirements, the estimation of labour costs, the timing and amount of future exploration and development expenditures, receipt of required regulatory approvals, the availability of necessary financing for the Project, permitting and such other assumptions and factors as set out herein.

Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of the Company to be materially different from those expressed or implied by such forward-looking information, including but not limited to: risks related to changes in Gold prices; sources and cost of power and water for the Project; the estimation of initial capital requirements; the lack of historical operations; the estimation of labour costs; general global markets and economic conditions; risks associated with exploration of mineral deposits; the estimation of initial targeted mineral resource tonnage and grade for the Project; risks associated with uninsurable risks arising during the course of exploration; risks associated with currency fluctuations; environmental risks; competition faced in securing

experienced personnel; access to adequate infrastructure to support exploration activities; risks associated with changes in the mining regulatory regime governing the Company and the Project; completion of the environmental assessment process; risks related to regulatory and permitting delays; risks related to potential conflicts of interest; the reliance on key personnel; financing, capitalisation and liquidity risks including the risk that the financing necessary to fund continued exploration and development activities at the Project may not be available on satisfactory terms, or at all; the risk of potential dilution through the issuance of additional common shares of the Company; the risk of litigation.

Although the Company has attempted to identify important factors that cause results not to be as anticipated, estimated or intended, there can be no assurance that such forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. Accordingly, readers should not place undue reliance on forward-looking information. Forward looking information is made as of the date of this announcement and the Company does not undertake to update or revise any forward-looking information this is included herein, except in accordance with applicable securities laws.

This announcement has been authorised for release by the Executive Directors.

- Ends -

Further information: Christopher Gerteisen CEO and Executive Director E: <u>info@novaminerals.com.au</u> P: +61 3 9537 1238

Ian Pamensky Company Secretary E: <u>info@novaminerals.com.au</u> P: +61 414 864 746

Table 3. 2021 Program Drilling to Date List of Results (>0.5g/t) - RPM

HOLE_ID	FROM_m	TO_m	SAMPLE_ID	Au_ppm
RPM-001	38	41	B712866	0.66
RPM-001	41	44	B712867	0.62
RPM-001	69	72	B712877	0.52
RPM-001	224	227	B712938	1.43
RPM-001	227	230	B712939	6.98
RPM-001	230	233	B712941	0.60
RPM-001	248	251	B712947	0.61
RPM-001	251	255	B712948	0.90
RPM-001	255	258	B712949	0.55
RPM-001	279	282	B712958	0.69
RPM-001	294	297	B712964	1.86

RPM-002	25	28	B713962	0.67
RPM-002	28	31	B713963	0.60
RPM-002	34	37	B713965	0.62
RPM-002	37	41	B713966	1.63
RPM-002	50	53	B713971	1.32
RPM-002	59	61	B713974	0.74
RPM-002	61	62	B713975	2.20
RPM-002	74	77	B713981	0.81
RPM-002	77	80	B713982	1.14
RPM-002	80	82	B713983	0.93
RPM-002	82	83	B713984	1.39
RPM-002	83	86	B713986	1.40
RPM-002	86	89	B713987	2.98
RPM-002	89	92	B713988	1.29
RPM-002	92	95	B713989	1.13
RPM-002	95	98	B713991	1.32
RPM-002	98	102	B713992	0.64
RPM-002	102	105	B713993	1.97
RPM-002	105	108	B713994	0.77
RPM-002	108	111	B713995	4.10
RPM-002	111	114	B713996	1.24
RPM-002	114	116	B713997	0.71
RPM-002	116	119	B713998	0.66
RPM-002	124	126	B714002	0.56
RPM-002	132	135	B714005	1.10
RPM-002	135	138	B714006	2.89
RPM-002	138	141	B714007	0.98
RPM-002	145	147	B714009	0.63
RPM-002	156	159	B714014	2.12
RPM-003	38	41	B714112	0.76
RPM-004	22	25	B714287	0.56
RPM-004	31	34	B714291	0.68
RPM-004	62	65	B714302	1.16
RPM-004	71	74	B714306	0.70
RPM-004	86	89	B714312	0.59
RPM-004	205	208	B714359	0.88
RPM-004	211	214	B714362	0.51
RPM-004	214	217	B714363	0.57
RPM-004	217	220	B714364	0.98
RPM-004	220	223	B714365	0.61
RPM-004	223	226	B714366	0.58
RPM-004	226	230	B714367	0.72
RPM-004	230	233	B714368	0.62

RPM-004	233	236	B714369	0.95
RPM-004	236	239	B714371	0.50
RPM-004	281	284	B714387	0.57
RPM-004	287	290	B714389	1.05
RPM-004	290	294	B714391	2.37
RPM-004	294	297	B714392	0.95
RPM-004	297	300	B714393	1.20
RPM-004	300	303	B714394	1.24
RPM-004	303	306	B714396	0.88
RPM-004	306	309	B714397	0.97
RPM-004	309	312	B714398	0.96
RPM-004	312	315	B714399	1.10
RPM-004	315	318	B714401	0.65
RPM-004	318	321	B714402	0.63
RPM-004	321	324	B714403	0.70
RPM-004	327	330	B714405	0.71
RPM-004	333	336	B714407	0.65
RPM-004	336	339	B714408	0.52
RPM-004	351	354	B714414	0.72
RPM-004	361	364	B714417	0.90
RPM-004	364	365	B714418	0.51
RPM-005	34	37	B714476	1.40
RPM-005	41	44	B714478	0.62
RPM-005	44	47	B714479	0.51
RPM-005	62	65	B714486	0.54
RPM-005	68	71	B714488	1.84
RPM-005	74	77	B714491	0.70
RPM-005	77	80	B714492	2.35
RPM-005	80	83	B714493	0.71
RPM-005	89	92	B714496	1.74
RPM-005	92	95	B714497	1.47
RPM-005	95	98	B714498	10.10
RPM-005	100	102	D885001	0.90
RPM-005	102	105	D885002	1.20
RPM-005	105	108	D885003	0.72
RPM-005	108	111	D885004	2.29
RPM-005	111	114	D885006	3.39
RPM-005	114	117	D885007	3.05
RPM-005	117	120	D885008	4.71
RPM-005	120	123	D885009	2.24
RPM-005	123	125	D885011	15.15
RPM-005	125	127	D885012	41.80
RPM-005	127	128	D885013	7.17

RPM-005	128	131	D885014	35.60
RPM-005	131	133	D885015	24.50
RPM-005	133	134	D885016	14.30
RPM-005	134	136	D885017	1.01
RPM-005	136	139	D885018	21.70
RPM-005	139	142	D885019	0.72
RPM-005	142	145	D885020	0.59
RPM-005	145	148	D885021	10.10
RPM-005	151	154	D885023	1.50
RPM-005	157	159	D885025	1.01
RPM-005	159	161	D885026	10.10
RPM-005	161	163	D885027	50.30
RPM-005	163	166	D885028	4.25
RPM-005	166	169	D885029	1.08
RPM-005	169	172	D885031	97.80
RPM-005	172	175	D885032	10.10
RPM-005	175	177	D885033	2.05
RPM-005	178	178	D885035	13.60
RPM-005	178	181	D885036	21.60
RPM-005	181	184	D885037	32.80
RPM-005	184	187	D885038	1.49
RPM-005	191	194	D885041	22.10
RPM-005	194	197	D885042	3.16
RPM-005	197	200	D885043	2.08
RPM-005	203	206	D885046	9.66
RPM-005	206	209	D885047	5.84
RPM-005	209	212	D885048	2.55
RPM-005	212	215	D885049	0.94
RPM-005	215	218	D885051	3.49
RPM-005	218	221	D885052	1.68
RPM-005	230	233	D885056	0.61
RPM-005	245	248	D885062	0.70
RPM-005	334	337	D885097	0.79
RPM-005	361	362	D885108	1.00
RPM-005	398	401	D885126	0.78
RPM-006	14	16	D885161	0.63
RPM-006	16	20	D885162	0.96
RPM-006	34	37	D885168	0.51
RPM-006	37	38	D885169	3.66
RPM-006	38	41	D885171	1.29
RPM-006	41	44	D885172	0.54
RPM-006	44	47	D885173	0.63
RPM-006	49	51	D885175	0.54

RPM-006 51 53 D885176 0.91 RPM-006 53 56 D885177 0.70 RPM-006 59 62 D885178 15.05 RPM-006 59 62 D885179 5.52 RPM-006 65 68 D885182 1.79 RPM-006 71 74 D885183 0.80 RPM-006 74 77 D885185 1.78 RPM-006 74 77 D885186 1.81 RPM-006 80 83 D885187 1.14 RPM-006 91 93 D885198 1.08 RPM-006 91 93 D885199 1.81 RPM-006 102 105 D885199 1.81 RPM-006 102 105 D885201 1.29 RPM-006 103 111 D885203 1.65 RPM-006 117 120 D885203 0.56 RPM-006 123 126					
RPM-006 56 59 D885178 15.05 RPM-006 59 62 D885179 5.52 RPM-006 65 68 D885182 1.79 RPM-006 67 D885183 0.80 RPM-006 71 74 D885185 1.78 RPM-006 74 77 D885185 1.78 RPM-006 74 77 D885185 1.78 RPM-006 77 80 D885186 1.81 RPM-006 84 85 D885189 1.08 RPM-006 91 93 D885194 0.57 RPM-006 102 105 D885199 1.81 RPM-006 102 105 D885201 1.29 RPM-006 111 114 D885202 17.20 RPM-006 114 117 D885205 0.56 RPM-006 123 126 D885207 0.55 RPM-006 126 129 <td< td=""><td>RPM-006</td><td>51</td><td>53</td><td>D885176</td><td>0.91</td></td<>	RPM-006	51	53	D885176	0.91
RPM-006 59 62 D885179 5.52 RPM-006 65 68 D885182 1.79 RPM-006 67 1 D885183 0.80 RPM-006 71 74 D885185 1.78 RPM-006 74 77 D885185 1.78 RPM-006 80 83 D885186 1.81 RPM-006 84 85 D885189 1.08 RPM-006 91 93 D885194 0.57 RPM-006 99 102 D885198 2.08 RPM-006 102 105 D885199 1.81 RPM-006 102 105 D885202 17.20 RPM-006 111 114 D885203 1.65 RPM-006 117 120 D885204 3.20 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 67 <td< td=""><td>RPM-006</td><td>53</td><td>56</td><td>D885177</td><td>0.70</td></td<>	RPM-006	53	56	D885177	0.70
RPM-006 65 68 D885182 1.79 RPM-006 61 71 74 D885183 0.80 RPM-006 71 74 D885185 1.78 RPM-006 74 77 D885185 1.78 RPM-006 74 77 D885185 1.81 RPM-006 80 83 D885187 1.14 RPM-006 84 85 D885189 1.08 RPM-006 91 93 D885194 0.57 RPM-006 102 105 D885198 2.08 RPM-006 102 105 D885199 1.81 RPM-006 105 108 D885201 1.29 RPM-006 111 114 D885203 1.65 RPM-006 117 120 D885204 3.20 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 <t< td=""><td>RPM-006</td><td>56</td><td>59</td><td>D885178</td><td>15.05</td></t<>	RPM-006	56	59	D885178	15.05
RPM-006 68 71 D885183 0.80 RPM-006 71 74 D885184 0.76 RPM-006 74 77 D885185 1.78 RPM-006 77 80 D885186 1.81 RPM-006 80 83 D885187 1.14 RPM-006 91 93 D885198 1.08 RPM-006 91 93 D885198 2.08 RPM-006 102 105 D885199 1.81 RPM-006 102 105 D885199 1.81 RPM-006 105 108 D885201 1.29 RPM-006 108 111 D885203 1.65 RPM-006 114 117 D885203 1.65 RPM-006 123 126 D885207 0.55 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 57	RPM-006	59	62	D885179	5.52
RPM-006 71 74 D885184 0.76 RPM-006 74 77 D885185 1.78 RPM-006 77 80 D885186 1.81 RPM-006 80 83 D885187 1.14 RPM-006 84 85 D885189 1.08 RPM-006 91 93 D885198 2.08 RPM-006 102 105 D885199 1.81 RPM-006 102 105 D885199 1.81 RPM-006 105 108 D885201 1.29 RPM-006 108 111 D885203 1.65 RPM-006 114 117 D885203 1.65 RPM-006 114 117 D885203 0.56 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 57 60 SE128-011 0.53 SE12-008 57	RPM-006	65	68	D885182	1.79
RPM-006 74 77 D885185 1.78 RPM-006 77 80 D885186 1.81 RPM-006 80 83 D885187 1.14 RPM-006 84 85 D885189 1.08 RPM-006 91 93 D885194 0.57 RPM-006 99 102 D885199 1.81 RPM-006 102 105 D885199 1.81 RPM-006 105 108 D885201 1.29 RPM-006 105 108 D885202 17.20 RPM-006 111 114 D885203 1.65 RPM-006 117 120 D885204 3.20 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 26 28 SE128-011 0.53 SE12-008 67 69 SE128-028 0.93 SE12-008 74	RPM-006	68	71	D885183	0.80
RPM-006 77 80 D885186 1.81 RPM-006 80 83 D885187 1.14 RPM-006 84 85 D885189 1.08 RPM-006 91 93 D885194 0.57 RPM-006 99 102 D885198 2.08 RPM-006 102 105 D885199 1.81 RPM-006 102 105 D885201 1.29 RPM-006 108 111 D885202 17.20 RPM-006 114 117 D885203 1.65 RPM-006 114 117 D885205 0.56 RPM-006 1123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 26 28 SE128-011 0.53 SE12-008 57 60 SE128-024 1.93 SE12-008 67 69 SE128-028 0.93 SE12-008 72 <td>RPM-006</td> <td>71</td> <td>74</td> <td>D885184</td> <td>0.76</td>	RPM-006	71	74	D885184	0.76
RPM-006 80 83 D885187 1.14 RPM-006 84 85 D885189 1.08 RPM-006 91 93 D885194 0.57 RPM-006 99 102 D885198 2.08 RPM-006 102 105 D885199 1.81 RPM-006 102 105 D885201 1.29 RPM-006 108 111 D885202 17.20 RPM-006 108 111 D885203 1.65 RPM-006 114 117 D885204 3.20 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 26 28 SE128-011 0.53 SE12-008 44 47 SE128-024 1.93 SE12-008 67 69 SE128-025 0.61 SE12-008 67 69 SE128-032 1.06 SE12-008 72 </td <td>RPM-006</td> <td>74</td> <td>77</td> <td>D885185</td> <td>1.78</td>	RPM-006	74	77	D885185	1.78
RPM-0068485D8851891.08RPM-0069193D8851940.57RPM-00699102D8851982.08RPM-006102105D8851991.81RPM-006105108D8852011.29RPM-006108111D88520217.20RPM-006111114D8852031.65RPM-006114117D8852043.20RPM-006114117D8852050.56RPM-006123126D8852070.55RPM-006126129D8852080.64SE12-0082628SE128-0110.53SE12-0085760SE128-0241.93SE12-0085760SE128-0241.93SE12-0086769SE128-0280.93SE12-0087274SE128-0310.58SE12-0087580SE128-0341.43SE12-0088284SE128-0341.43SE12-0088790SE128-0372.09SE12-0089790SE128-0391.97SE12-0089797SE128-0492.09SE12-00897100SE128-0492.09SE12-00897100SE128-0430.96SE12-008103105SE128-0430.96SE12-008101103SE128-0451.34SE12-008101103SE128-0470.86<	RPM-006	77	80	D885186	1.81
RPM-006 91 93 D885194 0.57 RPM-006 99 102 D885198 2.08 RPM-006 102 105 D885199 1.81 RPM-006 105 108 D885201 1.29 RPM-006 105 108 D885201 1.29 RPM-006 101 114 D885202 17.20 RPM-006 111 114 D885203 1.65 RPM-006 111 114 D885205 0.56 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 26 28 SE128-011 0.53 SE12-008 26 28 SE128-024 1.93 SE12-008 67 69 SE128-025 0.61 SE12-008 72 74 SE128-023 1.06 SE12-008 72 74 SE128-033 0.79 SE12-008 <td< td=""><td>RPM-006</td><td>80</td><td>83</td><td>D885187</td><td>1.14</td></td<>	RPM-006	80	83	D885187	1.14
RPM-006 99 102 D885198 2.08 RPM-006 102 105 D885199 1.81 RPM-006 105 108 D885201 1.29 RPM-006 108 111 D885202 17.20 RPM-006 111 114 D885203 1.65 RPM-006 114 117 D885204 3.20 RPM-006 1123 126 D885205 0.56 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 26 28 SE128-011 0.53 SE12-008 44 47 SE128-024 1.93 SE12-008 67 69 SE128-028 0.93 SE12-008 67 69 SE128-032 1.06 SE12-008 72 74 SE128-032 1.06 SE12-008 82 84 SE128-033 0.79 SE12-008	RPM-006	84	85	D885189	1.08
RPM-006 102 105 D885199 1.81 RPM-006 105 108 D885201 1.29 RPM-006 108 111 D885202 17.20 RPM-006 111 114 D885203 1.65 RPM-006 114 117 D885204 3.20 RPM-006 114 117 D885205 0.56 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 26 28 SE128-011 0.53 SE12-008 44 47 SE128-024 1.93 SE12-008 60 62 SE128-024 1.93 SE12-008 67 69 SE128-028 0.93 SE12-008 72 74 SE128-031 0.58 SE12-008 75 80 SE128-032 1.06 SE12-008 87 90 SE128-033 0.79 SE12-008	RPM-006	91	93	D885194	0.57
RPM-006 105 108 D885201 1.29 RPM-006 108 111 D885202 17.20 RPM-006 111 114 D885203 1.65 RPM-006 114 117 D885204 3.20 RPM-006 117 120 D885205 0.56 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 26 28 SE128-011 0.53 SE12-008 57 60 SE128-024 1.93 SE12-008 67 69 SE128-028 0.93 SE12-008 67 69 SE128-031 0.58 SE12-008 72 74 SE128-032 1.06 SE12-008 75 80 SE128-033 0.79 SE12-008 82 84 SE128-037 2.09 SE12-008 87 90 SE128-037 2.09 SE12-008	RPM-006	99	102	D885198	2.08
RPM-006 108 111 D885202 17.20 RPM-006 111 114 D885203 1.65 RPM-006 114 117 D885204 3.20 RPM-006 117 120 D885205 0.56 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 26 28 SE128-011 0.53 SE12-008 44 47 SE128-024 1.93 SE12-008 57 60 SE128-024 1.93 SE12-008 67 69 SE128-025 0.61 SE12-008 67 69 SE128-031 0.58 SE12-008 72 74 SE128-032 1.06 SE12-008 80 82 SE128-033 0.79 SE12-008 87 90 SE128-036 2.19 SE12-008 87 90 SE128-037 2.09 SE12-008	RPM-006	102	105	D885199	1.81
RPM-006 111 114 D885203 1.65 RPM-006 114 117 D885204 3.20 RPM-006 117 120 D885205 0.56 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 26 28 SE128-011 0.53 SE12-008 44 47 SE128-024 1.93 SE12-008 57 60 SE128-024 1.93 SE12-008 67 69 SE128-025 0.61 SE12-008 67 69 SE128-028 0.93 SE12-008 72 74 SE128-031 0.58 SE12-008 75 80 SE128-032 1.06 SE12-008 82 84 SE128-034 1.43 SE12-008 87 90 SE128-037 2.09 SE12-008 87 90 SE128-037 2.09 SE12-008	RPM-006	105	108	D885201	1.29
RPM-006 114 117 D885204 3.20 RPM-006 117 120 D885205 0.56 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 26 28 SE128-011 0.53 SE12-008 44 47 SE128-018 0.82 SE12-008 57 60 SE128-024 1.93 SE12-008 67 69 SE128-025 0.61 SE12-008 67 69 SE128-028 0.93 SE12-008 72 74 SE128-031 0.58 SE12-008 75 80 SE128-032 1.06 SE12-008 82 84 SE128-033 0.79 SE12-008 80 82 SE128-034 1.43 SE12-008 84 87 SE128-037 2.09 SE12-008 87 90 SE128-037 2.09 SE12-008	RPM-006	108	111	D885202	17.20
RPM-006 117 120 D885205 0.56 RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 26 28 SE128-011 0.53 SE12-008 44 47 SE128-018 0.82 SE12-008 57 60 SE128-024 1.93 SE12-008 60 62 SE128-025 0.61 SE12-008 67 69 SE128-028 0.93 SE12-008 72 74 SE128-031 0.58 SE12-008 75 80 SE128-032 1.06 SE12-008 82 84 SE128-033 0.79 SE12-008 80 82 SE128-034 1.43 SE12-008 84 87 SE128-034 1.43 SE12-008 87 90 SE128-037 2.09 SE12-008 90 92 SE128-037 2.09 SE12-008	RPM-006	111	114	D885203	1.65
RPM-006 123 126 D885207 0.55 RPM-006 126 129 D885208 0.64 SE12-008 26 28 SE128-011 0.53 SE12-008 44 47 SE128-013 0.82 SE12-008 57 60 SE128-024 1.93 SE12-008 60 62 SE128-025 0.61 SE12-008 67 69 SE128-028 0.93 SE12-008 72 74 SE128-031 0.58 SE12-008 75 80 SE128-032 1.06 SE12-008 75 80 SE128-033 0.79 SE12-008 82 84 SE128-033 0.79 SE12-008 80 82 SE128-033 1.43 SE12-008 84 87 SE128-034 1.43 SE12-008 87 90 SE128-037 2.09 SE12-008 90 92 SE128-038 1.07 SE12-008	RPM-006	114	117	D885204	3.20
RPM-006126129D8852080.64SE12-0082628SE128-0110.53SE12-0084447SE128-0180.82SE12-0085760SE128-0241.93SE12-0086062SE128-0250.61SE12-0086769SE128-0280.93SE12-0087274SE128-0310.58SE12-0087580SE128-0321.06SE12-0088082SE128-0330.79SE12-0088284SE128-0341.43SE12-0088487SE128-0362.19SE12-0088790SE128-0372.09SE12-0089092SE128-0381.07SE12-0089797SE128-0402.09SE12-0089597SE128-0419.63SE12-008100103SE128-0430.96SE12-008103105SE128-0430.96SE12-008105108SE128-0470.86SE12-008111112SE128-0480.61SE12-008111112SE128-0480.61SE12-008111112SE128-0501.64	RPM-006	117	120	D885205	0.56
SE12-0082628SE128-0110.53SE12-0084447SE128-0180.82SE12-0085760SE128-0241.93SE12-0086062SE128-0250.61SE12-0086769SE128-0280.93SE12-0087274SE128-0310.58SE12-0087580SE128-0321.06SE12-0087580SE128-0330.79SE12-0088284SE128-0341.43SE12-0088284SE128-0362.19SE12-0088790SE128-0372.09SE12-0089092SE128-0381.07SE12-0089295SE128-0391.97SE12-00897100SE128-0402.09SE12-00897100SE128-0419.63SE12-008100103SE128-0430.96SE12-008103105SE128-0451.34SE12-008105108SE128-0470.86SE12-008111112SE128-0480.61SE12-008111112SE128-0501.64	RPM-006	123	126	D885207	0.55
SE12-008 44 47 SE128-018 0.82 SE12-008 57 60 SE128-024 1.93 SE12-008 60 62 SE128-025 0.61 SE12-008 67 69 SE128-028 0.93 SE12-008 72 74 SE128-031 0.58 SE12-008 75 80 SE128-032 1.06 SE12-008 75 80 SE128-033 0.79 SE12-008 82 84 SE128-034 1.43 SE12-008 82 84 SE128-036 2.19 SE12-008 84 87 SE128-037 2.09 SE12-008 87 90 SE128-037 2.09 SE12-008 92 95 SE128-038 1.07 SE12-008 92 95 SE128-039 1.97 SE12-008 97 100 SE128-041 9.63 SE12-008 97 100 SE128-042 1.27 SE12-008 <td>RPM-006</td> <td>126</td> <td>129</td> <td>D885208</td> <td>0.64</td>	RPM-006	126	129	D885208	0.64
SE12-0085760SE128-0241.93SE12-0086062SE128-0250.61SE12-0086769SE128-0280.93SE12-0087274SE128-0310.58SE12-0087580SE128-0321.06SE12-0088082SE128-0330.79SE12-0088284SE128-0341.43SE12-0088284SE128-0362.19SE12-0088790SE128-0372.09SE12-0088790SE128-0372.09SE12-0089092SE128-0381.07SE12-0089295SE128-0391.97SE12-00897100SE128-0402.09SE12-00897100SE128-0421.27SE12-008100103SE128-0430.96SE12-008105108SE128-0470.86SE12-008111112SE128-0470.86SE12-008111112SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	26	28	SE128-011	0.53
SE12-0086062SE128-0250.61SE12-0086769SE128-0280.93SE12-0087274SE128-0310.58SE12-0087580SE128-0321.06SE12-0088082SE128-0330.79SE12-0088284SE128-0341.43SE12-0088487SE128-0362.19SE12-0088487SE128-0372.09SE12-0088790SE128-0381.07SE12-0089092SE128-0381.07SE12-0089295SE128-0391.97SE12-00897100SE128-0419.63SE12-00897100SE128-0421.27SE12-008103105SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008111112SE128-0480.61SE12-008111112SE128-0480.61SE12-008111112SE128-0480.61SE12-008111112SE128-0501.64	SE12-008	44	47	SE128-018	0.82
SE12-0086769SE128-0280.93SE12-0087274SE128-0310.58SE12-0087580SE128-0321.06SE12-0088082SE128-0330.79SE12-0088284SE128-0341.43SE12-0088284SE128-0362.19SE12-0088487SE128-0362.19SE12-0088790SE128-0372.09SE12-0089092SE128-0381.07SE12-0089295SE128-0391.97SE12-0089597SE128-0402.09SE12-00897100SE128-0419.63SE12-008100103SE128-0421.27SE12-008103105SE128-0430.96SE12-008105108SE128-0470.86SE12-008111112SE128-0480.61SE12-008112117SE128-0501.64	SE12-008	57	60	SE128-024	1.93
SE12-0087274SE128-0310.58SE12-0087580SE128-0321.06SE12-0088082SE128-0330.79SE12-0088284SE128-0341.43SE12-0088487SE128-0362.19SE12-0088790SE128-0372.09SE12-0088790SE128-0372.09SE12-0089092SE128-0381.07SE12-0089295SE128-0391.97SE12-0089597SE128-0402.09SE12-00897100SE128-0419.63SE12-008100103SE128-0421.27SE12-008103105SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008111112SE128-0480.61SE12-008111112SE128-0501.64	SE12-008	60	62	SE128-025	0.61
SE12-0087580SE128-0321.06SE12-0088082SE128-0330.79SE12-0088284SE128-0341.43SE12-0088487SE128-0362.19SE12-0088790SE128-0372.09SE12-0089092SE128-0381.07SE12-0089092SE128-0391.97SE12-0089295SE128-0402.09SE12-0089597SE128-0402.09SE12-00897100SE128-0419.63SE12-008100103SE128-0421.27SE12-008100103SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008112117SE128-0501.64	SE12-008	67	69	SE128-028	0.93
SE12-0088082SE128-0330.79SE12-0088284SE128-0341.43SE12-0088487SE128-0362.19SE12-0088790SE128-0372.09SE12-0089092SE128-0381.07SE12-0089295SE128-0391.97SE12-0089295SE128-0402.09SE12-0089597SE128-0402.09SE12-00897100SE128-0419.63SE12-008100103SE128-0421.27SE12-008103105SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	72	74	SE128-031	0.58
SE12-0088284SE128-0341.43SE12-0088487SE128-0362.19SE12-0088790SE128-0372.09SE12-0089092SE128-0381.07SE12-0089295SE128-0391.97SE12-0089597SE128-0402.09SE12-0089597SE128-0419.63SE12-00897100SE128-0419.63SE12-008100103SE128-0421.27SE12-008103105SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	75	80	SE128-032	1.06
SE12-0088487SE128-0362.19SE12-0088790SE128-0372.09SE12-0089092SE128-0381.07SE12-0089295SE128-0391.97SE12-0089597SE128-0402.09SE12-00897100SE128-0419.63SE12-00897100SE128-0421.27SE12-008100103SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	80	82	SE128-033	0.79
SE12-0088790SE128-0372.09SE12-0089092SE128-0381.07SE12-0089295SE128-0391.97SE12-0089597SE128-0402.09SE12-00897100SE128-0419.63SE12-008100103SE128-0421.27SE12-008100103SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	82	84	SE128-034	1.43
SE12-0089092SE128-0381.07SE12-0089295SE128-0391.97SE12-0089597SE128-0402.09SE12-00897100SE128-0419.63SE12-008100103SE128-0421.27SE12-008103105SE128-0430.96SE12-008103105SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	84	87	SE128-036	2.19
SE12-0089295SE128-0391.97SE12-0089597SE128-0402.09SE12-00897100SE128-0419.63SE12-008100103SE128-0421.27SE12-008103105SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	87	90	SE128-037	2.09
SE12-0089597SE128-0402.09SE12-00897100SE128-0419.63SE12-008100103SE128-0421.27SE12-008103105SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	90	92	SE128-038	1.07
SE12-00897100SE128-0419.63SE12-008100103SE128-0421.27SE12-008103105SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	92	95	SE128-039	1.97
SE12-008100103SE128-0421.27SE12-008103105SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	95	97	SE128-040	2.09
SE12-008103105SE128-0430.96SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	97	100	SE128-041	9.63
SE12-008105108SE128-0451.34SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	100	103	SE128-042	1.27
SE12-008111112SE128-0470.86SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	103	105	SE128-043	0.96
SE12-008112117SE128-0480.61SE12-008117120SE128-0501.64	SE12-008	105	108	SE128-045	1.34
SE12-008 117 120 SE128-050 1.64	SE12-008	111	112	SE128-047	0.86
	SE12-008	112	117	SE128-048	0.61
SE12-008 122 125 SE128-052 2.15	SE12-008	117	120	SE128-050	1.64
	SE12-008	122	125	SE128-052	2.15

SE12-008	134	136	SE128-056	0.60
SE12-008	142	144	SE128-059	0.76
SE12-008	144	146	SE128-060	1.09
SE12-008	164	167	SE128-067	0.60
SE12-008	167	170	SE128-068	0.61
SE12-008	170	173	SE128-070	0.57
SE12-008	173	175	SE128-071	0.51
SE12-008	178	181	SE128-073	0.56

Appendix 2. The following tables are provided to ensure compliance with the JORC Code (2012) requirements for the reporting of the exploration results for the Estelle Gold Project – Alaska

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

	Criteria	JORC Code	Commentary
99		explanation	
	Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to 	• Core is systematically logged from collar to EOH characterizing rock type, mineralization and alteration. Oriented core measurements are taken where appropriate. Geotechnical measurements such as recoveries and RQDs are taken at 10-foot (3.05 m) intervals. Samples are taken each 10 feet (3.05m) unless there is a change in lithology. In these cases samples are broken to lithologic boundaries. Samples are then half cut with one of the half cuts being sent to the ALS lab in Fairbanks Alaska for processing.
		measures taken	

to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. • Aspects of the determination of mineralisation that are Material to the Public Report. · In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse Au that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.

Drilling techniques	• Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	• HQ diamond core triple tube, down hole surveys every 150 feet (~50m), using a Reflex ACT-III tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material 	 Core is processed in the Fairbanks ALS laboratory Core processing room. Recoveries were recorded for all holes, into a logging database to 3cm on a laptop computer by a qualified geologist using the drillers recorded depth against the length of core recovered. No significant core loss was observed. Triple tube HQ to maximise core recovery. No known relationship between sample recovery and grade. As no samples have been taken as yet, no assay results are reported, visual results only.

Logger	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections 	Core logging is carried out by project partner qualified geologists using a project specific logging procedure. Data recorded includes, but is not limited to, lithology, structure, RQD, recovery, alteration, sulphide mineralogy and presence of visible gold. This is supervised by senior geologists familiar with the mineralisation style and nature. Inspection of the drill core by Nova Minerals Chief Geologist is monitored remotely using photographs and logs. Rock codes have been set up specifically for the project. Logging is to a sufficient level of detail to support appropriate Mineral Resource estimation and mining studies. • Drill logging is both qualitative by geological features and quantitative by geotechnical parameters in nature. Photographs are taken of all cores trays, (wet) of whole core prior to cutting.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation 	• Samples are taken each 10 feet (3.05m) unless there is a change in lithology. In these cases samples are broken to lithologic boundaries. Samples are then half cut with one of the half cuts being sent to the ALS lab in Fairbanks Alaska for processing. Three different types of SRM are inserted each 20 samples. Duplicates of the reject are taken each 20 samples. One blank is inserted each 40 samples. Data is plotted and evaluated to see if the samples plot within accepted tolerance. If any "out of control" samples are note, the laboratory is notified.

Quality of assay	technique. • Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. • Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second- half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled. • The nature,	Samples are tested for gold using ALS Fire Assay
data and laboratory tests	 quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, 	Au-ICP21 technique. This technique has a lower detection limit of 0.001 g/t with an upper detection limit of 10 g/t. If samples have grades in excess of 10 g/t then Au-AA25 is used to determine the over detect limit. Au-AA25 has a detection limit of 0.01 g/t and an upper limit of 100 g/t. Three different types of SRM are inserted each 20 samples. Duplicates of the reject are taken each 20 samples. One blank is inserted each 40 samples. Data is plotted and evaluated to see if the samples plot within accepted tolerance. If any "out of control" samples are note, the laboratory is notified.

		LIMITED
Verification of sampling and assaying	reading times, calibrations factors applied and their derivation, etc. • Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. •The verification of significant intersections by either independent or alternative company personnel. •The use of twinned holes. Documentation of primary data, data entryprocedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data.	• Assay data intercepts are compiled and calculated by the CP and then verified by corporate management prior to the release to the public.

Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	• All maps and locations are in UTM grid (NAD83 Z5N) and have been measured by hand-held GPS with a lateral accuracy of ±4 metres and a vertical accuracy of ±10 metres.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether 	• Drill holes have been spaced in a radial pattern such that all dimensions of the resource model is tested. Future geo-stats will be run on the data to determine if addition infill drilling will be required to confirm continuity.
	sample compositing has been applied.	

Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. The measures taken to ensure sample security 	The relationship between the drilling orientation and the orientation of key mineralised structures has not been confirmed. A secure chain of custody protocol has been established with the site geologist locking samples in secure shipping container at site until loaded on to aircraft and shipped to the secure restricted access room at Fairbanks ALS Laboratory for core processing by Nova Minerals staff geologists.
Audits or Reviews	• The results of any audits or reviews of sampling techniques and data.	 No review has been undertaken at this time.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral	 Type, reference name/number, location and 	The Estelle project is
tenement and	ownership including agreements or material	comprised of 324km2
land tenure	issues with third parties such as joint ventures,	State of Alaska mining
status	partnerships, overriding royalties, native title	claims
	interests, historical sites, wilderness or national	• The mining claims are
5	park and environmental settings.	wholly owned by AKCM
D .	The security of the tenure held at the time of	(AUST) Pty Ltd. (an
$\widehat{}$	reporting along with any known impediments to	incorporated Joint venture
2	obtaining a licence to operate in the area.	(JV Company between Nova Minerals Ltd and AK
7		Minerals Pty Ltd) via 100%
Ð		ownership of Alaskan
		incorporate company AK
		Custom Mining LLC.
57		AKCM (AUST) Pty Ltd is
\bigcirc		owned 85% by Nova
		Minerals Ltd, 15% by AK
		Minerals Pty Ltd. AK
		Minerals Pty Ltd holds a
2		2% NSR (ASX
6		Announcement: 20
Ð		November 2017) • Nova owns 85% of the
		project through the joint
6		venture agreement.
\bigcirc		The Company is not
		aware of any other
))		impediments that would
		prevent an exploration or
		mining activity.
Exploration	 Acknowledgment and appraisal of exploration by 	 Geophysical, Soil testing,
done by other	other parties.	and drilling was completed
parties		by previous operators in
		the past. Nova Minerals
Goology	Deposit type, geological sotting and style of	has no access to this data.
Geology	 Deposit type, geological setting and style of mineralisation. 	Nova Minerals is primarily exploring for Intrusion
		Related Gold System
		(IRGS) type deposit within
		the Estelle Project

Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high-grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be clearly stated. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Not Applicable Not Applicable Not Applicable Raw assay information was reported without any aggregation All intercepts are at calculated using weighted average The overall mineralized zone is defined by geological boundaries, as such no strict consideration of cut-off, internal dilution, etc. is used to calculated overall average grade of this zone. Significant intercepts at RPM reported as included within the overall geologic mineralized zone are calculated using 0.1g/t cog, <6m internal waste, avg grade >0.5g/t Au as general criteria.
between mineralisation widths and intercept lengths	 the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to 	

		this effect (eg 'down hole length, true width not known').	
Ē			
	Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• Plan view Map in Figure 1 shows the location of the RPM prospect with respect to other prospects within the Estelle Project.
\mathcal{G}	\bigcirc		
	Balanced Reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high- grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• Does not apply. All Nova results have been disclosed to the ASX via news releases.
I D D D L	Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other substantive exploration data has been collected
	Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Diamond drilling is ongoing. Project planned is for over 50,000 metres in 2021 across Korbel Valley and RPM.