

Level 11, 52 Phillip St Sydney NSW 2000 P: +61 2 8316 3997 F: +61 2 8316 3999 Info@silvermines.com.au www.silvermines.com.au

26th October 2021

Company Announcement Officer ASX Limited Exchange Centre 20 Bridge Street SYDNEY NSW 2000

Further Underground Resource Drilling Success at Bowdens

HIGHLIGHTS

Drilling to continue into 2022 with four diamond rigs operational targeting a maiden underground Mineral Resource and Scoping Study of underground mining scenarios.

Northwest and Aegean Zone results include;

- BD21003A 3.0m @ 679g/t silver equivalent (678 g/t silver, 0.01% zinc and 0.03% lead) from 306m.
- BD21025 14.0m @ 264 g/t silver equivalent (240 g/t silver, 0.07% zinc and 0.61% lead) from 322m.
- BD21016 6.3m @ 242 g/t silver equivalent (209 g/t silver, 0.47% zinc and 0.27% lead)
 from 227m.
- BD21020 9.0m @ 211 g/t silver equivalent (207 g/t silver and 0.09% lead) from 292m.
- BD21021 6.0m @ 382 g/t silver equivalent (349 g/t silver, 0.16% zinc and 0.75% lead) from 191m, and 1.0m @ 835 g/t silver equivalent (825 g/t silver, 0.03% zinc and 0.27% lead) from 265m.
- BRD21006 5.0m @ 237 g/t silver equivalent (220 g/t silver, 0.15% zinc and 0.26% lead) from 255m.

Bundarra Zone results include;

 BD21017 - 3.0m @ 278 g/t silver equivalent (44 g/t silver, 3.18% zinc, 1.92% lead and 0.15 g/t gold) from 221m.

Southern pit extensions including gold:

BD21018 - 9.8m @ 214 g/t silver equivalent (180 g/t silver, 0.14% zinc and 0.06% lead and 0.31 g/t gold) from 39m, and 4.0m @ 343 g/t silver equivalent (146 g/t silver, 0.56% zinc, 0.41% lead and 1.94 g/t gold) from 88m.

Introduction

Silver Mines Limited (ASX:SVL) ("Silver Mines" or "the Company") is pleased to announce recent assay results from the drilling program at the Bowdens Silver Project located near Mudgee in New South Wales. This program is targeting high-grade mineralised zones for potential underground mining scenarios. The mineralised zones lie directly beneath the bulk tonnage Bowdens Silver Ore Reserve currently in the final stages of approval for open-cut mine development (refer to Figure 1).

Diamond drilling continues at the Northwest Zone, the Aegean Zone, and the Bundarra Zone. The Aegean to Northwest Zone is dominated by high-grade silver vein systems comprising substantial widths, while the Bundarra Zone is dominated by wide zinc, lead and gold bearing veins with appreciable silver.

Results have been received for ten holes, BD21015 through to BD21025, with most of these holes being within the Northwest and Aegean Zones. Holes BD21015 and BD21017 were drilled to test for southern extensions to the Bundarra Zone towards BD21007. One hole, BD21018 was drilled in the south of the deposit to investigate a gravity anomaly and highlights potential to add to the current resources, notably there is a close association of silver and gold at this location in the deposit.

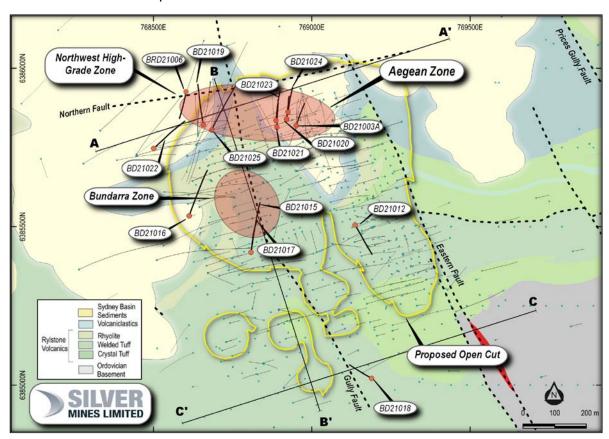


Figure 1. Reported drillhole locations and underground mining targets at the Bowdens Silver Project.

Northwest and Aegean Zones Results

The Northwest Zone starts approximately 30 metres below the base of the proposed Bowdens Silver open pit. This mineralised zone is targeted for high-grade silver underground mining scenarios with continuation and connectivity to the Aegean Zone (refer Figures 1, 2 and 3).

Both zones are defined as shallowly dipping zones 1 metre to 20 metres thick, **extending over 450 metres** east to west and continuing down plunge/dip to the northwest for at least 300 metres. This entire zone is not yet closed-off with possible extensions along the controlling faults in a north to north-westerly strike.

Mineralisation is developed in two clear horizons within the zones with the Aegean Zone being dominated by silver sulphides (acanthite), while the Northwest Zone has a silver and base metal association (zinc, lead and minor copper). Gold is associated with silver in high concentrations in the centre of the Northwest Zone.

Drilling in the Northwest Zone has previously intersected breccia and veined sulphides dominated by silver sulphides, sphalerite (zinc sulphide) and galena (lead sulphide) within the welded tuff of the Rylstone Volcanics (refer releases dated 4th August 2021, 27th July 2021, 14th May 2021 and 28th January 2021). Recent results from BD21025 show continued increasing width of high-grade material with **14 metres @ 264 g/t silver equivalent** (240 g/t silver, 0.07% zinc, 0.61% lead) from 322 metres. Additionally, closely spaced wedge drilling for estimation purposes confirms the lateral continuity of mineralisation with **3 metres @ 679 g/t silver equivalent** (678 g/t silver) from 306 metres in BD21003A.

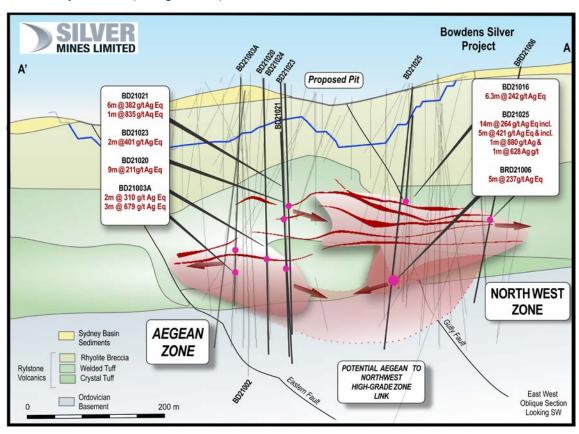


Figure 2: Section A-A' looking south through the Aegean and Northwest High-Grade Zone with mineralisation continuity and new intercepts.

Table 1. Significant intercept calculations from recent results from the Northwest High-Grade Zone and Aegean Zone.

Llala	From	То	Interval	Silver	Zinc	Lead	Gold	Silver Eq
Hole	(m)	(m)	(m)	(g/t)	(%)	(%)	(g/t)	(g/t) ¹
BD21003A	306	309	3.0	678	0.01	0.03	-	679
BD21016	227	233.3	6.3	209	0.47	0.27	-	242
BD21020	292	301	9.0	207	0.00	0.09	-	211
BD21021	191	197	6.0	349	0.16	0.75	-	382
	265	266	1.0	825	0.03	0.27	1	835
BD21023	166	168	2.0	293	0.88	1.94	1	401
BD21025	322	336	14.0	240	0.07	0.61	-	264
Incl	325	326	1.0	880	0.02	0.04	-	882
&	329	330	1.0	628	0.04	0.04	1	631
BRD21006	255	260	5.0	220	0.15	0.26	-	237

^{1.}Bowdens' reported silver equivalent is consistent with previous reports and current resource modelling based on assumptions: Ag Eq (g/t) = Ag (g/t) + 33.48*Pb (%) + 49.61*Zn (%) calculated from prices of US\$20/oz silver, US\$1.50/lb zinc, US\$1.00/lb lead, and metallurgical recoveries of 85% silver + gold, 82% zinc and 83% lead estimated from test work commissioned by Silver Mines Limited.

Bundarra Zone Results

Drill holes BD21015 and BD21017 were drilled to test southern extents of the Bundarra Zone south of the semi-massive sulphide intersection in BD17011 (refer releases dated 15th March 2017, 11th April 2017, 12th May 2017 and 7th June 2017) and west of more recent BD21007. The Bundarra Zone is a base metal (zinc and lead) dominant sulphide zone below the current silver–zinc–lead resource which represents a hotter part of the Bowdens Silver system. Gold is common in veins throughout the deeper parts of the system where mineralisation is potentially related to, or controlled by, the emplacement of the dacite intrusion into the Rylstone Volcanics and underlying Ordovician Basement sediments. A large volume below the dacite intrusion has not previously been drilled and this position represents a substantial target for proving resources for underground mining scenarios.

Significant intercepts from BD21015 include **1.0 metre** @ **513** g/t silver equivalent (126 g/t silver, 2.94% zinc, 4.47% lead and **1.14** g/t gold) from 212 metres, and **1.0 metre** @ **357** g/t silver equivalent (53 g/t silver, 2.27% zinc, 3.63% lead and **0.87** g/t gold) from 218 metres, while from BD21017 intercepts include **3.0 metres** @ **278** g/t silver equivalent (44 g/t silver, 3.18% zinc, 1.92% lead and 0.15 g/t gold) from 221 metres.

Results from BD21015 and BD21017 give the Bundarra zone a thickness of 3 to 20 metres, 200 metres of strike (northwest to southeast) and extend 120 metres (east to west).

^{2.} Silver equivalent updated to also include significant gold credit assuming the same recovery as silver, with gold:silver price ratio of 80:1 based on the approximate price ratio: Ag Eq $(g/t) = Ag (g/t) + 33.48^{\circ}Pb (\%) + 49.61^{\circ}Zn (\%) + 80^{\circ}Au (g/t)$. Intercepts calculated using a 90g/t Ag Eq cut-off and 3 metre internal dilution factor, with highest individual assay results highlighted as included within overall intercept.

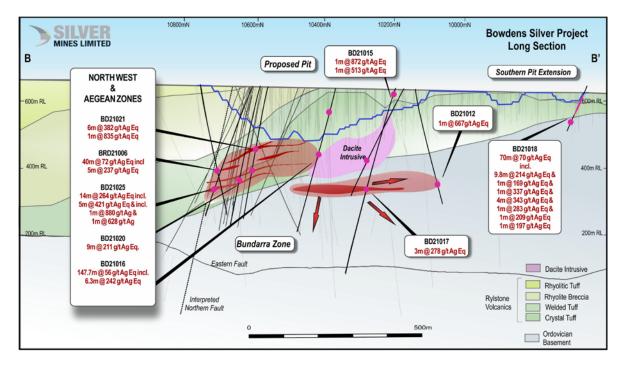


Figure 4. Bowdens Silver Project Long Section looking east.

Table 2. Significant intercept calculations from recent results from the Bundarra Zone.

Llala	From	То	Interval	Silver	Zinc	Lead	Gold	Silver Eq
Hole	(m)	(m)	(m)	(g/t)	(%)	(%)	(g/t)	(g/t) ²
BD21015	29	30	1.0	640	3.32	2.01	0.06	872
	212	213	1.0	126	2.94	4.47	1.14	422
	218	219	1.0	53	2.27	3.63	0.87	287
BD21017	221	224	3.0	44	3.18	1.92	0.15	266

^{1.}Bowdens' reported silver equivalent is consistent with previous reports and current resource modelling based on assumptions: Ag Eq (g/t) = Ag (g/t) + 33.48*Pb (%) + 49.61*Zn (%) calculated from prices of US\$20/oz silver, US\$1.50/lb zinc, US\$1.00/lb lead, and metallurgical recoveries of 85% silver + gold, 82% zinc and 83% lead estimated from test work commissioned by Silver Mines Limited.

Bowdens Southern Pit Extensions

Drill hole, BD21018, has been completed to test an area of the deposit currently outside of the open pit Mineral Resource and where the Company has identified the potential to add significant zones of shallow mineralisation. This area was identified with a focus on an association between high-grade silver and gold, with potential similarities to the Northwest Zone and gold being associated with silver in the centre of the zone.

BD21018 was drilled to intercept the mineralising structures at a more optimal angle and returned significant shallow silver and gold mineralisation. Intercepts include **9.8 metres** @ **214 g/t silver equivalent** (180 g/t silver, 0.14% zinc, 0.06% lead **and 0.31 g/t gold**) from 39

Page 5

^{2.} Silver equivalent updated to also include significant gold credit assuming the same recovery as silver, with gold:silver price ratio of 80:1 based on the approximate price ratio: Ag Eq $(g/t) = Ag (g/t) + 33.48^{\circ}$ Pb $(\%) + 49.61^{\circ}$ Zn $(\%) + 80^{\circ}$ Au(g/t). Intercepts calculated using a 90g/t Ag Eq cut-off and 3 metre internal dilution factor, with highest individual assay results highlighted as included within overall intercept.

metres as well as **4.0 metres** @ **343 g/t silver equivalent** (146 g/t silver, 0.56% zinc, 0.41% lead **and 1.94 g/t gold**) from 88 metres.

Mineralisation is hosted in the base of the Rylstone Volcanic sequence, within fractures in the welded tuff and crystal tuff units, with mineralisation particularly focussed at the contact between the Rylstone Volcanics and the Ordovician Basement units. Drilling to the south of this hole is shallow and limited in extent confirming the main Bowdens Resource remains open to the south and with potential for significant upgrades around the edges of the current Mineral Resource.

Table 3. Significant interce	nt calculations for	rom recent recults	from the Doudon	Couthorn Dit drilling
rubie 3. Significant interce	ot caicaiations n	ioni recent results	HOIH THE DOWNERS	Southern Pit urilling.

Llele	From	То	Interval	Silver	Zinc	Lead	Gold	Silver Eq
Hole	(m)	(m)	(m)	(g/t)	(%)	(%)	(g/t)	(g/t) ²
BD21018	39	48.8	9.8	180	0.14	0.06	0.31	214
	63	64	1.0	127	0.26	0.10	0.32	169
	72	73	1.0	236	0.44	0.28	0.87	337
	88	92	4.0	146	0.56	0.41	1.94	343
	98	99	1.0	54	1.14	0.98	1.75	283
	105	106	1.0	68	0.87	1.91	0.42	209
	143	144	1.0	38	1.88	0.29	0.70	197

^{1.}Bowdens' reported silver equivalent is consistent with previous reports and current resource modelling based on assumptions: Ag Eq (g/t) = Ag (g/t) + 33.48*Pb (%) + 49.61*Zn (%) calculated from prices of US\$20/oz silver, US\$1.50/lb zinc, US\$1.00/lb lead, and metallurgical recoveries of 85% silver + gold, 82% zinc and 83% lead estimated from test work commissioned by Silver Mines I imited

2. Silver equivalent updated to also include significant gold credit assuming the same recovery as silver, with gold:silver price ratio of 80:1 based on the approximate price ratio: Ag Eq $(g/t) = Ag (g/t) + 33.48^{\circ}Pb (\%) + 49.61^{\circ}Zn (\%) + 80^{\circ}Au (g/t)$. Intercepts calculated using a 90g/t Ag Eq cut-off and 3 metre internal dilution factor, with highest individual assay results highlighted as included within overall intercept. Intercepts are outside of current reserve.

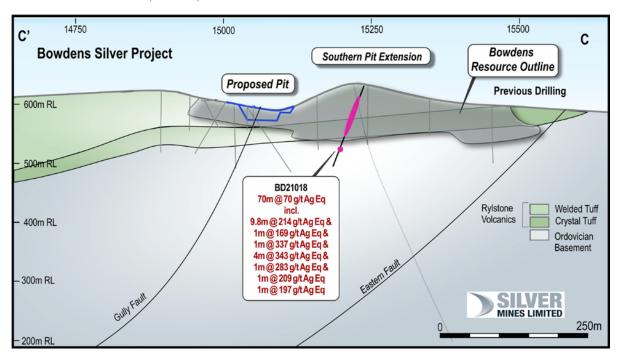


Figure 5. Bowdens Silver Southern Extensions looking north.

Silver Mines Limited

Expanded Program

The Company currently has four drilling rigs on-site undertaking an expanded program of 30,000 metres of diamond drilling. Targets include high-grade veins and feeder zones outside of the current open pit Ore Reserve in the north, central and southern parts of the Bowdens Silver Deposit. In the south of the deposit for example, limited previous diamond drilling is available to inform an interpretation of vein orientations and textures and, as such, this are area will be tested to target higher-grade veins in the near surface.

The drilling to target resources beneath the current open pit Ore Reserve for underground mining scenarios will continue until at least the end of 2021. Drilling will continue into 2022 with four diamond rigs to continue to test for system extensions to the Bowdens Silver Deposit.

About the Bowdens Silver Project

The Bowdens Silver Project is located in central New South Wales, approximately 26 kilometres east of Mudgee (refer to Figure 6). The consolidated project area comprises 2,007 km² (496,000 acres) of titles covering approximately 80 kilometres of strike of the highly mineralised Rylstone Volcanics. Multiple target styles and mineral occurrences have potential throughout the district including analogues to Bowdens Silver, high-grade silver-lead-zinc epithermal and volcanogenic massive sulphide (VMS) systems and copper-gold targets.

Bowdens Silver is the largest undeveloped silver deposit in Australia with substantial resources and a considerable body of high-quality technical work already completed. The projects boast outstanding logistics for future mine development.

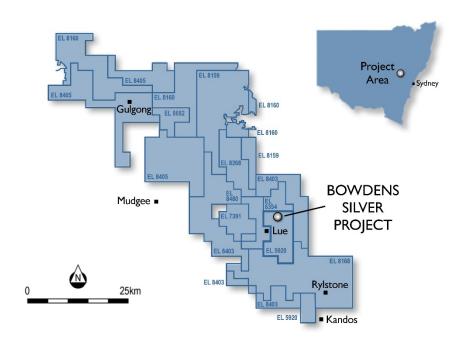


Figure 6: Silver Mines Limited tenement holdings in the Mudgee district.

This document has been authorised for release to the ASX by the Company's Managing Director, Mr Anthony McClure.

Further information:

Anthony McClure Managing Director Silver Mines Limited +61 2 8316 3997 Angela East
Associate Director
M+C Partners
+61 428 432 025

Competent Persons Statement

The information in this report that relates to mineral exploration from the Bowdens Silver Project is based on information compiled by the Bowdens Silver team and reviewed by Darren Holden who is an advisor to the Company. Dr Holden is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC code). Dr Holden consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Table 4. Drill collar locations for new results.

Target	Hole ID	GDA94 East	GDA94 North	RL (m)	Dip	Azimuth (grid)	Depth (m)	Drill Type	Comment
Bundarra	BD21012	769137	6385505	629	-70	146.6	328	Core	Assays complete
Bundarra	BD21015	768808	6385419	606	-60	10	327.7	Core	Assays complete
NW Zone	BD21016	768613	6385534	645	-70	20	449.7	Core	Assays complete
Bundarra	BD21017	768808	6385419	606	-75	10	402.9	Core	Assays complete
Bowdens South	BD21018	769189	6385021	630	-65	300	159.7	Core	Assays complete
NW Zone	BD21019	768658	6385821	626	-70	348	351.9	Core	Assays complete
Aegean	BD21003A*	768951	6385819	656	-78	21	339.9	Core	Assays complete
Aegean	BD21020	768920	6385840	649	-78	5	385.1	Core	Assays complete
Aegean	BD21021	768890	6385814	638	-78	5	387.9	Core	Assays complete
Aegean	BD21022	768501	6385747	656	-70	47	386	Core	Assays complete
Aegean	BD21023	768887	6385835	639	-76	5	413.2	Core	Assays complete
Aegean	BD21024	768925	6385862	650	-77	5	399.6	Core	Assays complete
NW Zone	BD21025	768684	6385805	618	-65	25	390.6	Core	Partial assays
NW Zone	BRD21006	768603	6385926	637	-80	190	377.9	RC with diamond tail	Partial assays

^{*}Wedged from BD21003 at 123m Depth.

Table 5. Summary of all recent drilling intercepts.

Hole	From	То	Interval	Silver	Zinc	Lead	Gold	Silver Eq
. 10.0	(m)	(m)	(m)	(g/t)	(%)	(%)	(g/t)	(g/t)
BD21003A	136	137	1.0	150	0.54	1.20	-	217¹
	143	144	1.0	157	0.25	0.12	-	173 ¹
	148	149	1.0	132	0.55	0.11	-	163 ¹
	173	174	1.0	211	0.57	1.01	-	273¹
	179	180	1.0	106	0.48	0.47	-	145 ¹
	253	273	20.0	98	0.04	0.05	-	101 ¹
	280	282	2.0	90	0.06	0.09	-	96¹
	306	309	3.0	678	0.01	0.03	-	679 ¹
BD21012	3	183	180.0	12	0.50	0.31	-	47 ²
incl	6	10	4.0	20	1.76	0.80	0.02	136 ³
&	17	21	4.0	13	1.79	0.76	0.02	129 ³
&	26	27	1.0	30	3.03	0.87	0.03	212 ³
&	34	35	1.0	24	0.82	115	0.04	106 ³
&	86.62	92	5.38	25	2.21	0.74	0.02	161 ³
&	114	117	3.0	24	1.27	0.70	0.02	113 ³
&	140	141	1.0	98	0.98	1.90	0.13	220
&	157	160	3.0	38	0.59	0.66	0.04	93 ³
&	170	171	1.0	74	0.52	0.55	0.11	127 ³
	278	279	1.0	50	2.46	0.81	5.85	667 ³
BD21015	10	125	115.0	43	0.37	0.16	0.18	66 ³
incl	11	14	3.0	77	0.61	0.25	-	115
&	18	20	2.0	181	0.66	0.22	-	222
&	29	30	1.0	640	3.32	2.01	0.01	872
&	38	42	4.0	133	0.62	0.43	0.00	178
&	47	48	1.0	86	0.80	0.18	0.00	132
&	64	71	7.0	104	0.47	0.19	0.00	134 ¹
&	78	91	13.0	85	0.81	0.39	0.00	139¹
	159	160	1.0	49	3.72	0.52	0.08	256 ³
	207	208	1.0	32	2.04	1.22	0.57	220 ³
	212	213	1.0	126	2.94	4.47	1.14	513 ³
	218	219	1.0	53	2.27	3.63	0.87	357 ³
	243	244	1.0	28	1.23	1.15	0.45	163 ³
	288	290	2.0	15	2.67	0.71	1.46	288 ³
	297	298	1.0	15	1.32	0.67	0.02	105 ³
	308	316	8.0	43	1.25	0.40	0.95	195 ³
BD21016	121	291	170.0	30	0.30	0.20	0.14	75 ³

Hole	From	То	Interval	Silver	Zinc	Lead	Gold	Silver Eq
	(m)	(m)	(m)	(g/t)	(%)	(%)	(g/t)	(g/t)
incl	121	122	1.0	51	0.71	0.12	0.00	91 ¹
&	128	129	1.0	270	0.65	0.92	0.00	333¹
&	135	136	1.0	76	0.98	0.69	0.00	148¹
&	144	145	1.0	50	0.25	2.20	0.00	136¹
&	175	179	4.0	59	0.64	0.36	0.00	103¹
&	185	186	1.0	29	0.70	1.09	0.00	100¹
&	193	199	6.0	22	1.03	0.42	0.00	87 ¹
&	206	209	3.0	224	1.51	1.15	0.01	338 ¹
&	217	218	1.0	93	0.06	0.09	0.00	99 ¹
&	227	233.3	6.3	209	0.48	0.27	0.01	243 ³
&	256	261	5.0	64	0.35	0.18	0.01	89 ³
&	278	279	1.0	165	0.47	0.24	0.01	197³
&	287	288	1.0	32	0.85	0.65	0.03	98 ³
	304.7	307.2	2.5	24	1.75	0.92	0.08	147 ³
	326	328	2.0	27	1.80	1.23	0.06	163 ³
	338	339	1.0	21	2.24	1.40	0.18	193 ³
	349	350	1.0	14	0.99	0.91	0.10	102 ³
	354	361	7.0	21	1.28	0.98	0.15	129 ³
	368	377	9.0	15	1.10	0.78	0.09	103³
	392	393	1.0	12	1.59	0.37	0.08	109 ³
	404	405	1.0	16	1.31	0.59	0.04	104 ³
	427	437	10.0	17	0.76	0.72	0.09	85 ³
BD21017	4	76	72.0	47	0.30	0.13	0.10	70 ³
incl	8	9	1.0	138	0.43	0.20	-	166¹
&	15	18	3.0	195	1.17	0.39	-	266¹
&	36	37	1.0	245	0.71	0.49	-	297¹
&	53	58	5.0	183	1.40	0.68	-	275 ¹
&	63	65	2.0	74	0.49	0.17	-	104 ¹
&	71	73.5	2.5	74	0.76	0.32	-	123 ¹
	103	107	4.0	45	0.67	0.38	0.02	93 ³
	221	224	3.0	44	3.18	1.92	0.15	278³
	265	271	6.0	19	1.87	0.15	0.26	138 ³
	292	293	1.0	13	1.70	0.06	0.11	109 ³
	358	365	7.0	15	2.19	0.67	0.05	150 ³
	379	382	3.0	18	2.55	0.26	0.08	159 ³
	397	398	1.0	16	2.02	0.07	0.02	120 ³
BD21018	36	106	70.0	51	0.16	0.12	0.36	68 ³

								Silver
Hole	From	То	Interval	Silver	Zinc	Lead	Gold	Eq
	(m)	(m)	(m)	(g/t)	(%)	(%)	(g/t)	(g/t)
incl	39	48.8	9.8	180	0.14	0.06	0.31	214 ³
&	63	64	1.0	127	0.26	0.10	0.32	169 ³
&	72	73	1.0	236	0.44	0.28	0.87	337³
&	88	92	4.0	146	0.56	0.41	1.94	343 ³
&	98	99	1.0	54	1.14	0.98	1.75	283 ³
&	105	106	1.0	68	0.87	1.91	0.42	209 ³
	143	144	1.0	38	1.88	0.29	0.70	197³
BD21019		no significant assays						
BD21020	72	90	18.0	67	0.17	0.17	-	81 ²
incl	80	86	6.0	141	0.29	0.39	-	169 ¹
	111	123	12.0	153	0.28	0.56	-	186¹
	129	135	6.0	184	0.48	0.80	-	235¹
	292	301	9.0	207	0.00	0.09	-	211 ¹
BD21021	39	129	90.0	42	0.22	0.13	-	58 ²
incl	39	40	1.0	109	0.14	0.05	-	118 ¹
&	50	51	1.0	88	0.22	0.09	-	102 ¹
&	57	62	5.0	52	0.54	0.20	-	85 ¹
&	82	85	3.0	290	0.38	0.64	-	330¹
&	89	100	11.0	107	0.2	0.22	-	124 ¹
&	117	118	1.0	191	2.04	0.76	-	318¹
&	128	129	1.0	98	0.20	0.38	-	120 ¹
	185	186	1.0	89	0.03	0.17	-	96 ¹
	191	197	6.0	349	0.16	0.75	-	382 ¹
	249	250	1.0	177	0.10	0.59	-	201 ¹
	265	266	1.0	825	0.03	0.27	-	835 ¹
BD21022	292	293	1.0	84	0.98	0.80	-	159 ¹
	299	303	4.0	63	0.03	0.43	0.02	81 ³
	316	317	1.0	116	0.02	0.28	0.04	129 ³
BD21023	39	53	14.0	23	0.18	0.11	-	36 ²
incl	52	53	1.0	222	0.62	0.39	-	266¹
	71	88	17.0	21	0.10	0.09	-	29 ²
incl	83	84	1.0	140	0.16	0.47	-	164 ¹
	103	105	2.0	270	0.17	0.67	-	300¹
	166	168	2.0	293	0.88	1.94	-	401 ¹
	218	219	1.0	80	0.17	0.89	-	118 ¹
BD21024	107	120	13.0	6	0.08	0.06	-	43 ²
incl	116	118	2.0	133	0.05	0.12	-	140¹

Hole	From	То	Interval	Silver	Zinc	Lead	Gold	Silver Eq
	(m)	(m)	(m)	(g/t)	(%)	(%)	(g/t)	(g/t)
BD21025	271	273	2.0	161	0.05	0.01	-	163 ¹
	280.6	282	1.4	122	0.02	0.01	-	123 ¹
	287	291	4.0	107	0.02	0.02	-	108 ¹
	322	336	14.0	240	0.07	0.61	-	264 ¹
incl	325	326	1.0	880	0.02	0.04	-	882 ¹
&	329	330	1.0	628	0.04	0.04	-	631 ¹
BRD21006	245	246	1.0	93	0.22	0.1	-	108 ¹
	255	260	5.0	220	0.15	0.26	-	237 ¹

^{1.}Bowdens' reported silver equivalent is consistent with previous reports and current resource modelling based on assumptions: Ag Eq (g/t) = Ag (g/t) + 33.48*Pb (%) + 49.61*Zn (%) calculated from prices of US\$20/oz silver, US\$1.50/lb zinc, US\$1.00/lb lead, and metallurgical recoveries of 85% silver + gold, 82% zinc and 83% lead estimated from test work commissioned by Silver Mines Limited.

- 2. Intercepts calculated using a 30g/t Ag Eq cut-off and 10 metre internal dilution factor, with highest individual assay results highlighted as included within overall intercept.
- 3. Silver equivalent updated to also include significant gold credit assuming the same recovery as silver, with gold:silver price ratio of 80:1 based on the approximate price ratio: Ag Eq $(g/t) = Ag (g/t) + 33.48^{\circ}$ Pb $(\%) + 49.61^{\circ}$ Zn $(\%) + 80^{\circ}$ Au(g/t). Intercepts calculated using a 90g/t Ag Eq cut-off and 3 metre internal dilution factor, with highest individual assay results highlighted as included within overall intercept. Intercepts are outside of current reserve.

Level 11, 52 Phillip St Sydney NSW 2000 P: +61 2 8316 3997 F: +61 2 8316 3999 Info@silvermines.com.au www.silvermines.com.au

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay.') In other cases, more explanation may be required such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Sampling taken continuously downhole from PQ and HQ diameter diamond core. PQ size core – all samples taken as nominal 1 or 2 metre intervals, or as otherwise defined by logged geology intervals, from quarter cut core. HQ size core – all samples taken as nominal 1 metre intervals where mineralisation observed from half cut core, or as composite 2 metre samples of quarter core, or as otherwise defined by logged geology intervals and from the same side of the core where downhole orientations permit. Samples vary in weight but are generally between 2 and 4 kilograms of material. Each sample was sent for multi-element assay using ICP technique (ME-ICP61) with the entire sample pulverized and homogenized with a 25g extract taken for assay. Samples from BD21007 were analysed using method ME-MS61. Select samples were also sent for gold using fire assay technique (Au-AA25 or Au-AA23) with a 30g sample taken for assay. Assays are considered representative of the sample collected. RC Drilling Sampling collected on 1.0 metre intervals from a rotary cone splitter. Samples vary in weight but are generally between 2 and 5 kilograms of material. Each sample was sent for multi-element assay using MS technique (ME-MS61) with the entire sample split and homogenized with a 25g extract taken for assay.

Silver Mines Limited

Criteria	JORC Code explanation	Commentary			
		Assays are considered representative of the sample collected			
Drilling	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary)	Diamond Drilling			
techniques	air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling undertaken using PQ and HQ diamond core rig with triple tube used. All core, excluding PQ size, where unbroken ground allows, is oriented by drilling team and an orientation line drawn along the base of the hole. 			
		RC Drilling			
		 RC drilling utilised a 5.5 inch (137.5mm) hammer. 			
Drill sample	Method of recording and assessing core and chip sample	Diamond Drilling			
recovery	 recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery is estimated at greater than 98%. Some zones, (less than 5%) were broken core with occasional clay zones where sample loss may have occurred. However, this is not considered to have materially affected the results. No significant relationship between sample recovery and grade exists. 			
		RC Drilling			
		 Sample recovery are weighed by the laboratory on receipt. No significant relationship between sample recovery and grade exists. 			
Logging	Whether core and chip samples have been geologically and	Diamond Drilling			
	 geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 All diamond core is logged using lithology, alteration, veining, mineralisation and structure, including geotechnical structure. All core is photographed using both a wet and dry image. In all cases the entire hole is logged by a geologist. 			
	The total length and percentage of the relevant intersections	RC Drilling			
	logged.	 RC chip samples are logged using lithology, alteration, veining and mineralisation. In all cases, the entire hole is logged by a geologist. 			

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core were taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance, results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Selective sub-sampling based on geology to a maximum size of 2 metres and a minimum of 0.3 metres. All core is cut using a Corewise core saw with core rotated 10 degrees to the orientation line to preserve the orientation for future reference. For HQ core the half of the core without the orientation line is removed, bagged and sent to the laboratory for assay. Sample sizes are considered appropriate for the rock type, style of mineralisation, the thickness and consistency of the intersections and assay ranges expected at Bowdens. RC Drilling RC samples are collected from a rotary cone splitter at a 12% split. Both a primary and a secondary sample are collected from the splitter (total of 24% split) with the primary sample being sent for laboratory assay and the secondary sample being kept as a library record. The cyclone/splitter system is checked periodically throughout each hole and cleaned when necessary. To assess the representation of material sampled, a duplicate 12% split sample is collected from a secondary – sample chute on the opposite side of the rotary cone splitter at the rate of 1/20.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Samples dispatched to ALS Global in Orange NSW for sample preparation and analysis. Some sample batches were then on shipped to ALS Global in Adelaide, Brisbane and Townsville due to the high volume within the Orange Lab. Site standards and blanks are inserted at a rate of 8 per 100 samples, and duplicates are inserted at a rate of 5 per 100 samples to check quality control. Laboratory standards and blanks are inserted every 25 samples.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections calculated by Bowdens Silver geologists. All geological logging is entered digitally before inputting into a Maxwell Geoservices database schema. Primary assay data is sent electronically from the laboratory to the SVL database administrator and then entered into the geological database for validation. All assays matched with the logging sheets and loaded directly from the output provided by the laboratory with no manual entry of assays undertaken. No adjustments were made or required to be made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The collar position is initially surveyed using hand-held GPS with accuracy of +- 3 metres. Down hole surveys collected every 30 metres using an electronic downhole reflex survey camera. The terrain includes steep hills and ridges with a digital elevation model derived from a combination of locally flown LIDAR and publically available point cloud data. All collars recorded in MGA94 zone 55.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	The drilling results relate to exploration drilling of the Northwest, Aegean and Bundarra Zones. Drilling is not defined to a set spacing.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill orientation was designed to intersect the projection of the major structural controls to the Deposit. An interpretation of the mineralisation has indicated that no sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	 All samples bagged on site under the supervision of the senior geologist with sample bags tied with cable ties before being driven by site personnel to the laboratory in Orange, NSW (~200 kilometres

Criteria	JORC Code explanation	Commentary
		from the site)
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	The drilling campaign and drill work includes on-going internal auditing with advice taken on process from external advisors.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Bowdens Resource is located wholly within Exploration Licence No 5920, held wholly by Silver Mines Limited and is located approximately 26 kilometres east of Mudgee, New South Wales. The tenement is in good standing. The project has a 2.0% Net Smelter Royalty which reduces to 1.0% after the payment of US\$5 million over 100% of EL5920 The project has a 0.85% Gross Royalty over 100% of EL5920.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Bowdens project was previously managed by Kingsgate Consolidated and Silver Standard Ltd, however the new results under this table are based on work conducted solely by Silver Mines/Bowdens Silver.
Geology	Deposit type, geological setting and style of mineralisation.	 The Bowdens Deposit is a low sulphidation epithermal base-metal and silver system hosted in Permian aged Volcanic rocks. Mineralisation includes veins, shear veins and breccia zones within tuff and ignimbrite rocks. Mineralisation is overall shallowly dipping (~15 degrees to the north) with high-grade zones preferentially following a volcanic dome. There are several vein orientations within the broader mineralised zones including some areas of stock-work veins. The mineralisation reported in this release is hosted in the main Rylstone Volcanics which unconformably overlie the Ordovician Coomber Formation (sediments). The mineralization reported in this

Silver Mines Limited

Criteria	JORC Code explanation	Commentary
		report is related to Bowdens and represents a higher-temperature zone.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; and hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All information is included in Tables 1 through 5 of this report above.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intersection calculation are weighted to sample length. The average sample represents 1 metre of drill core. Reported intersections for underground mining scenarios are based on a cut off of 90g/t silver equivalent with a 3 metre internal dilution factor. Reported intersections for shallow open pit mining scenarios are based on a cut off of 30g/t silver equivalent with a 10 metre internal dilution factor. No top cutting of data or grades was undertaken in the reporting of these results.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Mineralisation is both stratabound and vein hosted. The stratigraphy dips moderately to the north within the volcanics and moderately to the west in the basement units, while the majority of mineralised vein dip west. Some individual veins intersected were sub-parallel (~10 to 20 degrees to core axes). However, given the stratigraphic controls on the zone, the drilling width is estimated to be 100 to 140% of true width for stratabound mineralized zone.
Diagrams	Appropriate maps and sections (with scales) and tabulations of	Maps and cross sections provided in the body of this report.

ABN: 45 107 452 942

Criteria	JORC Code explanation	Commentary
	intercepts should be included for any significant discovery being reported These should include, but not be limited to, a plan view drill hole collar locations and appropriate sectional views.	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting Exploration Results. 	Drilling is on-going with further results expected.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results bulk density, groundwater, geotechnical and rock characteristics and potential deleterious or contaminating substances. 	
Further work	 The nature and scale of planned further work (e.g. tests for later extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 This report relates to a drill program that is designed to test the extension and explore for further zones of high-grade silver situated beneath the Bowdens Silver Deposit. Drilling is on-going with further results pending.