

AC DRILLING IDENTIFIES NEW GOLD PROSPECTS AT BANKAN

Predictive Discovery Limited ("Predictive" or "Company") is pleased to announce new results from regional aircore (AC) and power auger drilling at its Bankan Gold Project, located in Guinea.

HIGHLIGHTS

- Highly encouraging new assays received from 49 shallow AC holes completed within 5km of the main NE Bankan deposit and also on the Argo permit (Figures 1-2), including:
 - BKAC0027: 12m @ 1.5g/t Au from 12m, incl. 4m @ 3.3g/t Au from 16m
 - BKAC0028: 14m @ 3.4g/t Au from 20m, incl. 2m @ 15.2g/t Au to EOH
 - BKAC0032: 10m @ 1.7g/t Au from 12m, incl. 4m @ 3.9g/t Au from 14m
 - BKAC0066: 8m @ 3.3g/t Au from 6m, incl. 4m @ 6.3g/t Au from 6m
 - BKAC0016 (upgraded and re-released following re-assay of plus-100g/t Au result):

16m @ 2.3g/t Au from surface, incl. 2m @ 7.5g/t Au from 2m, and

28m @ 12.8g/t Au from 22m, incl. 6m @ 52g/t Au, incl. 1m @ 110g/t Au

- Regional exploration is ongoing with AC drilling across the Company's 356km² Bankan Project area.
- More than 90% of the Bankan Project remains untested by any drilling. Power auger drilling will resume once the dry season commences, now expected in November.
- Diamond drilling is ongoing at NE Bankan with two multi-purpose drill rigs currently drilling holes at depths between 500 and 550m below surface, exploring for extensions to the high-grade gold zone.
- Results are pending from four DD holes testing between 400 and 450m below surface, and positioned beneath the US \$1,800 optimised pit shell.

Managing Director, Paul Roberts said:

"These new results provide more confirmation of the extent of gold mineralised locations in the area surrounding NE Bankan and Bankan Creek, reinforcing our strong belief that additional resource ounces will be defined in close proximity to both ore deposits as we follow up with infill and extension drilling on new gold prospects as they emerge from the Aircore reconnaissance drill program."

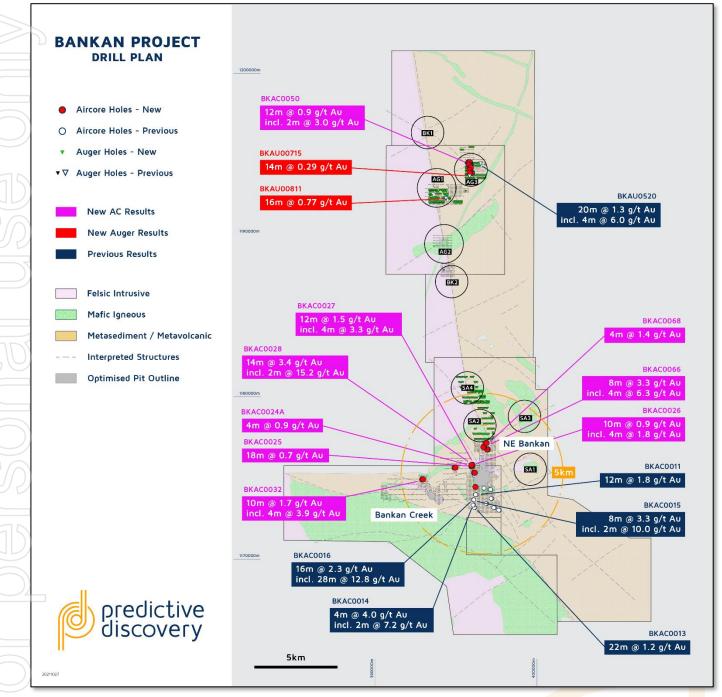


Figure 1 – Bankan Project, regional AC and power auger drilling results overlain on interpreted geology.

Bankan Regional Drilling

Following discovery of the NE Bankan deposit, the Company undertook a helicopter-borne magnetic and radiometric survey on a 100m-line spacing covering the entire project area. A detailed geological interpretation based on processed magnetic data over the immediate NE Bankan area showed that gold mineralisation coincides with the intersection of a series of ENE-orientated and NW orientated magnetic linears, on or close to the contact between granitic rocks and mafic volcanics.

These lithological and structural elements controlling mineralisation recognised at NE Bankan have provided a model for gold exploration across the Bankan Project with potential to host multiple "NE Bankan-style" gold discoveries.

The Company has deployed one AC and two power auger rigs to follow-up on the new targets with more than 10,000m of AC and power auger drilling completed in the past 4 months. AC and power auger are both fast and relatively cheap exploration methods, and have proven to be highly effective for making new discoveries on the Bankan Project.

In this release, the Company reports results of 49 AC holes totalling 1,655m, many within only 5km of the main NE Bankan deposit (Figure 2) along with some results from the AG3 target on the Argo permit (Figure

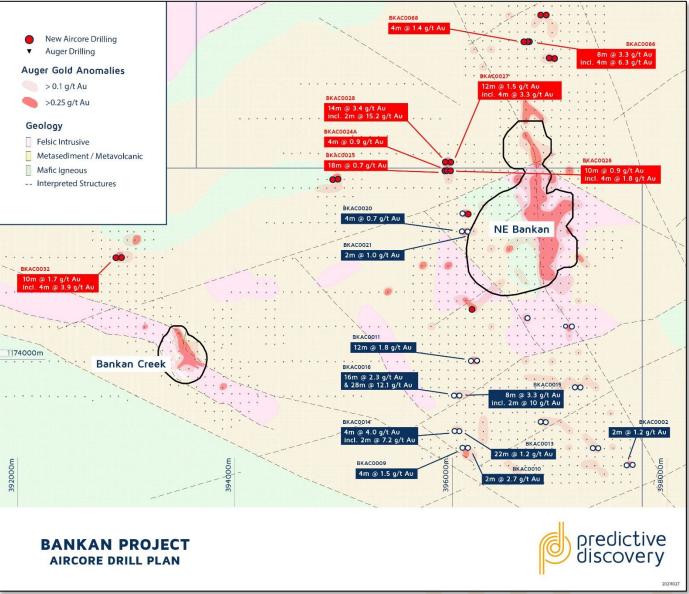


Figure 2 – NE Bankan and Bankan Creek Prospects showing AC results and previous power auger drill locations.

Page 3 of 13 predictivediscovery.com

Approximately 800m northwest of the NE Bankan deposit, two 80m spaced traverses of AC drilling were carried out to follow up plus-0.25 g/t Au auger drill anomalies which included **7m @ 4.27g/t Au from 12m** to end of hole (KKOAU1382)¹. Encouraging results were returned in most holes including best intersections (Figures 2 and 3) of:

- BKAC0027: **12m @ 1.5g/t Au** from 12m, incl. **4m @ 3.3g/t Au** from 16m
- BKAC0028: 14m @ 3.4g/t Au from 20m, incl. 2m @ 15.2g/t Au to EOH

The close proximity of these new gold results and others, both to the north and west of the NE Bankan deposit highlight the expanding potential of the Bankan Project.

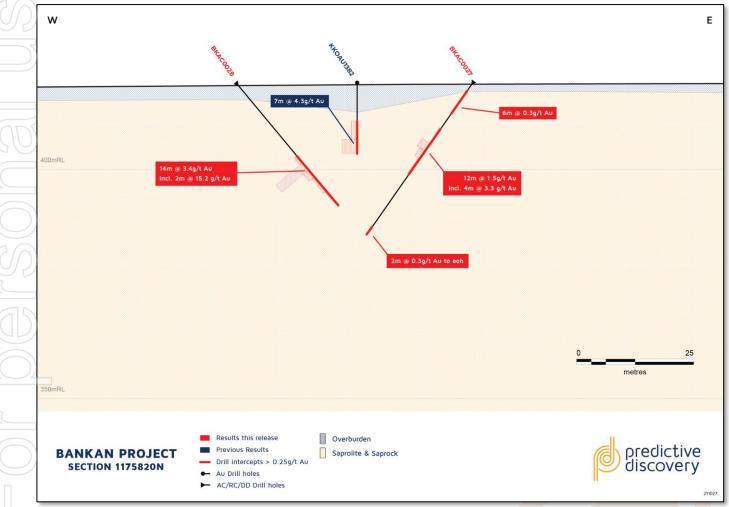


Figure 3 – Cross Section 117582ON showing new holes BKAC0027 - BKAC0028 testing the previously reported power auger anomaly.

In the Bankan Creek area, a pair of scissor holes (BKAC0032-33) were drilled east and west respectively to test the orientation of mineralisation beneath an auger gold intercept of 4m @ 1.7g/t Au from 8m (KKOAU1222²), approximately 150m northwest of Bankan Creek. Both holes intersected encouraging oxide

¹ ASX Announcement - SUBSTANTIAL OXIDE GOLD ZONE EMERGING AT NE BANKAN PROJECT - 5 March 2021

² ASX Announcement - HIGH GRADE DRILL RESULTS EXTEND BANKAN CREEK GOLD DISCO<mark>VER</mark>Y TO NORTH - 11 February 2021

Page 4 of 13 predictivediscovery.com

gold mineralisation with a best result of **10m @ 1.7g/t Au** from 12m in BKAC0032 which includes **4m @ 3.9g/t Au** from 14m. Further drilling is required to follow up this and other AC drill results.

Several regional power auger grids were completed on new exploration targets including AG3 at Argo, and SA2 and SA4 (Figure 1), before drilling was suspended due to wet ground conditions. A total of 385 holes for 7,996m were completed with significant results reported in Table 2.

Better results received at Argo include 16m @ 0.8g/t Au from surface in BKAU0811. In addition, AC hole BKAC0050 at AG3 intersected 12m @ 0.9g/t Au from 4m in saprolite with quartz veining. Assessment of these targets based on these new drill results is ongoing.

Full results and a complete explanation of the methods followed in drilling and assaying the reported holes can be found in Tables 1-3.

- END -

Predictive advises that it is not aware of any new information or data that materially affects the exploration results or mineral resource estimate contained in this announcement.

This announcement is authorised for release by Predictive Managing Director, Paul Roberts.

For further information visit our website at <u>www.predictivediscovery.com</u> or contact:

PAUL ROBERTS

Managing Director Phone: +61 402 857 249 Email: paul.roberts@predictivediscovery.com

COMPETENT PERSONS STATEMENT

The exploration results reported herein are based on information compiled by Mr Paul Roberts (Fellow of the Australian Institute of Geoscientists). Mr Roberts is a full-time employee of the company and has sufficient experience relevant to the style of mineralisation and type of deposits being considered to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Roberts consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Project Background

The Bankan gold camp is situated in north-east Guinea in West Africa. The project is 550km by road from Guinea's capital Conakry within the region of Upper Guinea and is 10km west of the regional administrative centre of Kouroussa (Figure 4). In September 2021 the Company reported its maiden Mineral Resource Estimate for the Bankan Project, resulting in an Inferred Resource of **72.8Mt** averaging **1.56g/t Au** for **3.65**

Page 5 of 13 predictivediscovery.com

million ounces of gold³, 91% of which came from NE Bankan, all for a very low resource discovery cost of \$4/oz.

The Bankan project area covers 356km² in four exploration permits, Kaninko, Saman, Bokoro and Argo. Three permits are held by wholly owned subsidiaries of Predictive. The fourth, Argo, is held in a joint venture with the owners of local company Argo Mining SARLU, through which the Company has the right to acquire a 100% equity interest at decision to mine.

Gold mineralisation in the central portion of the NE Bankan prospect is strongly controlled by a major, northtrending west-dipping shear zone (the "hangingwall shear zone"), with most gold mineralisation including the high-grade zone located immediately below that shear zone within the felsic intrusive. Resource modelling indicates that the deep high-grade gold intercepts form a coherent body of high-grade mineralisation at a 3g/t Au cut-off grade. Depth extensions to the high-grade gold zone will increase potential for underground mining and are expected to add significantly to the Company's resource inventory.

Figure 4 - Predictive Discovery's 100%-owned Guinea Portfolio of gold projects

³ASX Announcement - 3.65 MILLION OUNCE BANKAN MAIDEN MINERAL RESOURCE ESTIMATE (30 September 2021)

Page 6 of 13 predictivediscovery.com

TABLE 1 – BANKAN PROJECT AIRCORE RESULTS

	Hole No.	UTM 29N East	UTM 29N North	RL	Hole azimuth	Dip	Max depth	0.2	0.25g/t gold cut-off		Comments	Licence
\supset)							From	Interval	Au g/t		
10	BKAC0016	396028	1173664	428	90	-55	50	0.0	16.0	2.32	Incl. 2m @ 7.52 g/t Au from 2m	Kaninko
) 1					1		22.0	28.0	12.83	Incl. 6m @ 52.1 g/t Au from 26m which includes 2m @110g/t Au. ASX Announcement 23/09/2021, now updated with >100g/t Au re-assay.	
	BKAC0023	396156	1175341	431	270	-55	42	NSR				Kaninko
	BKAC0024	395941	1175741	419	90	-55	22	4.0	2.0	0.44	Abandoned, redrilled as BKAC0024A	Kaninko
Y)							20.0	2.0	0.61	Mineralised to end of hole	
	BKAC0024A	395941	1175740	419	90	-55	50	2.0	4.0	0.97		Kaninko
								14.0	10.0	0.32		
)							30.0	2.0	1.26		
$\overline{\cap}$	BKAC0025	395961	1175742	420	90	-55	30	12.0	18.0	0.74	Incl. 12m @ 0.92g/t Au from 18m to end of hole	Kaninko
	BKAC0026	395993	1175741	421	270	-55	28	8.0	10.0	0.89	Incl. 4m @ 1.79g/t Au from 12m	Kaninko
10								24.0	2.0	0.34		
\square	BKAC0027	395995	1175820	419	270	-55	40	2.0	6.0	0.34		Saman
5)							12.0	12.0	1.45	Incl. 4m @ 3.29g/t Au from 16m	
								38.0	2.0	0.29		
	BKAC0028	395944	1175821	418	90	-50	34	20.0	14.0	3.43	Incl. 2m @ 15.2g/t Au from 22m. Mineralised to end of hole	Saman
	BKAC0029	396190	1174462	418	90	-55	23	NSR				Kaninko
	BKAC0030	394905	1175660	439	90	-55	50	10.0	2.0	1.22		Kaninko
Ī	BKAC0031	394955	1175664	436	270	-50	42	12.0	2.0	0.46		Kaninko
	BKAC0032	392904	1174939	414	90	-50	26	12.0	10.0	1.73	Incl. 4m @3.91g/t Au from 14m	Kaninko
Ī	BKAC0033	392957	1174940	413	270	-55	23	18.0	2.0	0.47		Kaninko
Ī	BKAC0034	395799	1194521	416	270	-50	28	NSR				Ar <mark>go</mark>
-	BKAC0035	395822	1194519	416	270	-50	16	6.0	2.0	5.56		Argo
F	BKAC0036	395851	1194521	417	270	-50	18	8.0	2.0	0.49		Argo
F							1	16.0	2.0	0.29		Ar <mark>go</mark>

	BKAC0037	395841	1194517	417	270	-50	4	NSR			Abandoned	Argo
\geq	BKAC0038	395900	1194361	417	270	-50	38	0.0	2.0	0.45		Argo
	ВКАС0039	395876	1194359	417	270	-50	13	NSR				Argo
_	BKAC0040	395852	1194360	417	270	-50	17	NSR				Argo
	BKAC0041	395826	1194359	417	270	-50	14	NSR				Argo
7	BKAC0042	395801	1194359	416	270	-50	34	NSR				Argo
	BKAC0043	395773	1194357	416	270	-50	13	NSR				Argo
	BKAC0044	395899	1194198	414	270	-50	24	12.0	2.0	0.43		Argo
5	BKAC0045	395875	1194200	414	270	-50	15	12.0	2.0	1.09		Argo
2	BKAC0046	395852	1194204	414	270	-50	10	NSR				Argo
\cap	BKAC0047	395747	1194519	415	270	-50	36	NSR				Argo
Ľ	BKAC0048	395773	1194515	415	270	-50	36	NSR				Argo
)	BKAC0049	395853	1194519	416	270	-50	50	4.0	2.0	0.27		Argo
	BKAC0050	395824	1194519	416	270	-50	38	4.0	12.0	0.86	Incl. 2m@ 3.02 g/t Au from 4m	Argo
	BKAC0051	395876	1194358	417	270	-50	45	16.0	2.0	0.38		Argo
D	BKAC0052	395849	1194361	417	270	-50	43	NSR				Argo
9	BKAC0053	395817	1194359	417	270	-50	40	NSR				Argo
	BKAC0054	395783	1194361	416	270	-50	38	36.0	2.0	0.69	Mineralised to end of hole	Argo
7	BKAC0055	395877	1194200	414	270	-50	41	NSR				Argo
2	BKAC0056	395854	1194201	414	270	-50	43	NSR				Argo
	BKAC0057	395900	1194202	414	270	-50	44	NSR				Argo
E	BKAC0058	395800	1194041	415	270	-50	36	NSR				Argo
	BKAC0059	395826	1194043	414	270	-50	41	NSR				Argo
5	BKAC0060	395972	1193885	411	270	-50	28	26.0	2.0	0.27		Argo
	BKAC0061	395952	1193884	412	270	-50	44	36.0	2.0	0.42		Ar <mark>go</mark>
	BKAC0062	395853	1193881	414	270	-50	41	8.0	2.0	0.83		Ar <mark>go</mark>
_	BKAC0063	395831	1193880	415	270	-50	50	20.0	2.0	0.53		Ar <mark>go</mark>
	BKAC0064	396953	1176777	414	270	-55	50	NSR				Sama
	BKAC0065	396902	1176781	415	90	-55	46	6.0	2.0	0.64		Sama
								16.0	2.0	0.41		
2	/							22.0	2.0	0.29		
	BKAC0066	396720	1176932	420	270	-55	27	6.0	8.0	3.31	Incl. 4m @ 6.29g/t Au from 6m	Sama
	BKAC0067	396705	1176932	420	270	-55	43	NSR				Sama
	BKAC0068	396669	1176931	421	90	-55	41	10.0	4.0	1.3 9		Sama
								18.0	6.0	0.80		
		1	1	n				40.0	1.0	0.31		
	BKAC0069	396824	1177178	425	90	-55	50	NSR				Sama
	BKAC0070	396876	1177178	424	270	-55	50	40.0	2.0	0. <mark>40</mark>		Sama

Page 8 of 13 predictivediscovery.com

Note: Some AC holes contain a few damp to wet samples.

TABLE 2 – POWER AUGER SIGNIFICANT RESULTS – BANKAN PROJECT

Hole numbers	Northing (WGS84- 29N)	Easting (WGS84 – 29N)	RL	Hole dips	Azimuth	Hole Depth	From	Interval	Au (ppb)
KKOAU1640 – 1856, 217 holes totalling 4,648m.	Refer to Figure 1 for most sample locations.	Refer to Figure 1 for most sample locations	386 – 430 See notes	All vertical	Not relevant to vertical holes	The holes were 4-20m deep with an average depth of 19m. Some holes stopped short of the target depth because they encountered wet samples at shallow depths	Not relevant to the samples described in this report	Not relevant to the samples described in this report	See notes and Figure 1
BKAU0671 – 0680, & BKAU0690- 0856, 168 holes totalling 3,348m	Refer to Figure 1 for most sample locations	Refer to Figure 1 for most sample locations	378- 430 See notes	All vertical	Not relevant to vertical holes	The holes were 8-30m deep with an average depth of 19m. Some holes stopped short of the target depth because they encountered wet samples at shallow depths	Not relevant to the samples described in this report	Not relevant to the samples described in this report	See notes and Figure 1
BKAU0715	395822	1193680	385	-90	0	14	0	14	292
BKAU0811	394302	1192241	381	-90	0	16	0	16	765 Incl.7m @1.63g/t from 9m

laterite – which is partly transported) to the end of each hole in Kaninko and Saman, and from 0m at Argo (no transported regolith issue identified to date). The RL range for the power auger grid in the project areas are shown above in metres. Individual RLs are not reported in this announcement because they are not relevant to interpreting auger drill data of this type.

> Page 9 of 13 predictivediscovery.com

TABLE 3 - JORC CODE – AC & POWER AUGER DRILLING

Criteria	JORC Code Explanation	Commentary
Sampling Technique	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Samples assayed were Aircore (AC) drill chips/core and Power Auger (Auger). Auger: In all the power auger drill holes reported here, 2kg composite samples were collected for every 4m downhole interval. AC: Individual one metre samples were collected from the cyclone and weighed. Each sample was then riffle split producing a 1kg split sample. Two metre composite samples weighing approximately 2kg were submitted to the assay laboratory by combining the individual 1kg riffle split sample from each metre into a single bag. All samples were dried, crushed and pulverised at the SGS laboratory in Bamako to produce a 50g fire assay charge with Au analysed by FAA505. Duplicate samples were retained for re-assay. Sampling was supervised by qualified geologists.
Drilling	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	AC: Drilling company is IPGS (Industry Petroleum and Gas of Senegal) Drill type is Aircore using a 3.5 inch diameter coring blade. Where hard layers including quartz veins were encountered the blade was switched to a face sampling AC/RC hammer bit. Auger: Power auger drilling was carried out by ADS (African Drilling Services) using 4WD-mounted power auger rig.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Each 1 metre drill sample was weighed. AC: Sample recoveries were in general high and no unusual measures were taken t maximise sample recovery. Where samples became too wet or sample recovery a quality decreased holes were stopped. Significant sample bias is not expected with riffle splitting of saprolitic materials. Auger: Sample recovery is not assessed for power auger drilling as it is a geochemia method. In general, however, recoveries are good because the hole has to be clear by the screw-type rods in order for the drill rods to advance downwards.

Logging	Whether core and chip samples have been geologically and geotechnical logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean/Trench, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All drill samples were logged systematically for lithology, weathering and alteration and minor minerals. Minor minerals are estimated quantitively. None of the samples will not be used in a Mineral Resource estimation.
Sub-Sampling Technique and Sample Preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	AC: The samples were collected by riffle splitting samples from large bags collected directly from the cyclone on the drill rig. Sample condition is generally dry or moist, however some samples are wet. Auger: Each 4m to 5m interval in the composite interval was subsampled using a scoop. No field duplicates were collected. One field duplicate was taken and assayed every 50 samples. The sampling methods are considered adequate for an AC and Auger drilling program of this type.
Quality of Assay Data and Laboratory Tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	All samples were assayed by SGS technique FAA505 for gold with a detection limit of Sppb Au. All samples with gold values exceeding 10g/t Au were re-assayed using SGS method FAA515 with a detection limit of 0.01g/t Au. Field duplicates, standards and blank samples were each submitted for every 15 samples on a rotating basis for Ac drilling but not Auger drilling. Duplicate and standards analyses were all returned were within acceptable limits of expected values.
Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes The verification of significant intersections by either independent or alternative company personnel. Discuss any adjustment to assay data	At this stage, the intersections have not been verified independently. No twin holes have been drilled for Auger. For AC some abandoned shallow AC blade holes were redrilled with AC Hammer within 5m radius. These may be considered twin holes in part. No adjustment is assay data has been made.
Location of Data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used Quality and adequacy of topographic control	Drill hole collar locations were recorded at the completion of each hole by hand- held GPS. Positional data was recorded in projection WGS84 UTM Zone 29N. Relative height levels (RL) are relative to Above Mean Sea Level (AMSL) and assigned by draping collars on DTM surface determined from aerial geophysical survey. Hole locations may be re-surveyed using a digital GPS system later.

Page 11 of 13 predictivediscovery.com

Data Spacing and	Data spacing for reporting of	AC: The drill holes were designed to followup previously defined >0.25g/t Au
Distribution	Exploration Results Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve	auger soil anomalies. Holes were either drilled heel to toe along traverses, or as scissor pairs in opposite directions at each target. Hole target depths and spacing were nominally 50m or as modified for heel to toe coverage. The intention of the drilling is to obtain a complete sample of the oxidised gold mineralisation and provide some indication of gold mineralisation orientations. All holes were angle drilled at 50 or 55 degrees.
	estimation procedure(s) and classifications applied. Whether sample compositing has been applied	The adequacy of the current drill hole spacing for Mineral Resource estimation is not yet known as an appropriate understanding of mineralisation and continuity has not yet been established
		Auger: Holes were located on 320m x 80m and 80m x 80m grids. This type of drilling is not appropriate for the calculation of any Mineral Resource estimate.
Orientation of Data in Relation to Geological Structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the	There is very limited outcrop in the area but based on the Bankan NE deposit to th north, and east west line orientation with holes inclined to the west and east was considered most likely to test the target anomalies.
	orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	
Sample Security	The measures taken to ensure sample security	Large samples are stored in guarded location close to the nearby Bankan Village.
		Samples were split and sealed (tied off in calico or plastic bags) at the drill site. All samples picked for analyses are placed in clearly marked bags and were stored securely on site before being picked up and transported to Bamako by SGS truck.
		Coarse rejects and pulps will be eventually recovered from SGS in Bamako and stored at Predictive's field office in Kouroussa.
Audits or Reviews	The results of any audits or reviews of sampling techniques and data	No reviews or audits of sampling techniques were conducted.
	Section 2 Report	ing of Exploration Results
Mineral Tenement and Land Tenure Status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Bankan Gold Project comprises 4 exploration permits, Kaninko (PDI 100%), Saman (PDI 100%), Bokoro (PDI 100%) and Argo JV (right to earn 100% in JV with local partner). Permits are held by Predictive subsidiaries in Guinea or in a joint venture structure. Parts of the Kaninko and Saman permits overlap the outermost buffer zone (or "transitional area") of the Upper Niger National Park.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	Predictive is not aware of any significant previous gold exploration over the permit.
Geology	Deposit type, geological setting and style of mineralisation.	The geology of the permits consists of mafic volcanics and intrusives, granitic rocks and minor metasediments.
Drill Hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole 	See the accompanying notes and Tables in this release.
	 down hole length and interception depth hole length 	

	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	All mineralised intervals are reported on a weighted average basis. AC: Drill sampling was in two metre composites intervals. Up to 2m (down-hole) of internal waste is included for results reported at the 0.25g/t Au cut-off grade. Auger: Kaninko and Saman area gold results are averaged from 4m depth to end of hole. This removes the effect of false transported anomalies in laterite. For the Argo area, no transported effects have been noted to date therefore gold results are averaged from surface to end of hole.
Relationship Between Mineralisation Widths and Intercept Lengths	These relationships are particularly important in the reporting of Exploration Results If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	True widths have not been estimated as the overall orientation of mineralised zones is not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate map and cross sections are included in this release.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting of the drill results is provided in Table 1.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All other exploration data on this area has been reported previously by PDI.
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or large scale step out drilling. Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The AC results form part of an ongoing regional exploration drill program to follow up power auger drilling soil anomalies. Regional power auger drilling is also ongoing testing new target areas.

Page 13 of 13 predictivediscovery.com