

# 1 NOVEMBER 2021

## ASX/MEDIA RELEASE

# OUTSTANDING RESULTS UPGRADE POTENTIAL OF NORTH KANOWNA STAR CORRIDOR

More than ten high priority targets identified, with positive assays also received from Bulletin South

### Key Points:

- Final assays from exploration drilling at the North Kanowna Star Project have returned significant gold mineralisation in fresh rock, with highlights including:
  - 9m @ 2.45g/t Au from 61m in NKC210017
  - 1m @ 18.0g/t Au from 47m in NKC210001
  - 3m @ 5.63g/t Au from 69m in NKC210019
  - 1.2m @ 13.6g/t Au from 35.8m in NKD210002
  - 13m @ 1.03g/t Au from 26m in NKC210024
  - 2.4m @ 5.53g/t Au from 44.4m in NKD210003
  - 8m @ 1.65g/t Au from 32m in NKC210037
  - 7m @ 1.45g/t Au from 28m in NKC210041
  - 1m @ 2.88g/t Au from 43m in NKA210043
  - 3m @ 1.10g/t Au from 32m in NKA210041
- Latest results indicate more than ten high priority targets within the North Kanowna Star district, significantly upgrading the potential scale of the project.
- Positive results, including visible gold, from infill core drilling at Bulletin South, with best results of:
  - 22.9m @ 2.31g/t Au from 68.7m in KND210004
  - 14.6m @ 1.11g/t Au from 103.5m in KND210005
- Strategic review of the Bardoc Gold Project is ongoing.

Bardoc Gold Limited (ASX: BDC, Bardoc or the Company) is pleased to advise that recent drilling at the North Kanowna Star Project, which forms part of the Company's 3.07Moz Bardoc Gold Project near Kalgoorlie, has identified a significant mineralised corridor, with more than ten prospects now identified as high priority for further exploration.



The 100%-owned North Kanowna Star Project is located 29km south-east of the Bardoc Gold Project and has a current Mineral Resource of 32koz at the Perseverance-Wedge Deposit. These latest results have significantly upgraded the potential scale of the North Kanowna Star district, which is now considered to be comparable to the +1Moz Zoroastrian-Excelsior corridor.

### **MANAGEMENT COMMENTS**

Bardoc Gold's Executive Director, Neil Biddle, said North Kanowna Star was emerging as an exceptional longterm exploration target.

"The scale of the alteration and mineralisation across the North Kanowna Star project area is truly exceptional, extending over more than 3km in length, similar in strike to the Zoroastrian/Excelsior corridor that forms the backbone of our 3.07Moz Bardoc Gold Project.

"North Kanowna Star is emerging as a long-term exploration project, where we see an opportunity to delineate substantial new Resources with the potential to provide strong additional value to the Bardoc Gold Project.

"Our exploration team has identified more than ten high priority prospects, with technical work now underway to integrate the geological, geophysical and geochemical data to rank the prospects and develop follow-up exploration programs."

#### North Kanowna Star

The North Kanowna Star Project contains multiple prospects over a 3km strike. The presence of strong gold anomalism over such a large area makes it a highly-significant location within the local geological landscape.

The results reported in this announcement are from several prospect areas, with the most significant results including:

- 9m @ 2.45g/t Au from 61m in NKC210017
- 1m @ 18.0g/t Au from 47m in NKC210001
- 3m @ 5.63g/t Au from 69m in NKC210019
- 1.2m @ 13.6g/t Au from 35.8m in NKD210002
- 13m @ 1.03g/t Au from 26m in NKC210024
- 2.4m @ 5.53g/t Au from 44.4m in NKD210003
- 8m @ 1.65g/t Au from 32m in NKC210037
- 7m @ 1.45g/t Au from 28m in NKC210041
- 1m @ 2.88g/t Au from 43m in NKA210043
- 3m @ 1.10g/t Au from 32m in NKA210041

These results are in addition to previously reported results of:

- 15m @ 1.11g/t Au from 52m in NKA200380 (ASX Announcement 8 February 2021)
- 7m @ 1.95g/t Au from 44m in NKA200373 (ASX Announcement 8 February 2021)
- 8m @ 0.87g/t Au from 72m in NKA2000447 (ASX Announcement 8 February 2021)
- 17m @ 0.42g/t Au from 44m in NKA200369 (ASX Announcement 8 February 2021)
- 21m @ 1.56g/t Au from 36m in NKA200051 (ASX Announcement 5 November 2020)
- 15m @ 1.22g/t Au from 68m in NKA200138 (ASX Announcement 5 November 2020)



- 4m @ 3.74g/t Au from 40m in NKA200139 (ASX Announcement 5 November 2020)
- 4m @ 3.59g/t Au from 52m in NKA200200 (ASX Announcement 5 November 2020)
- 21m @ 0.86g/t Au from 52m in NKA200187 (ASX Announcement 5 November 2020)

The drilling program comprised 98 aircore holes for 5,562m; 47 RC holes for 6,205m; and three diamond core holes for 224m, with mineralisation reported in the majority of the holes drilled.

Bardoc's geology team is currently collating multi-element geochemical data and incorporating that with the geophysics and logging data from the recent drilling. This will allow the generation of an integrated geological, geophysical and geochemical model to help drive ongoing exploration programs. The North Kanowna Star area is seen as a key long-term component of future exploration within the Bardoc Project area, with multiple targets similar to those along the +1Moz Zoroastrian/ Excelsior corridor.

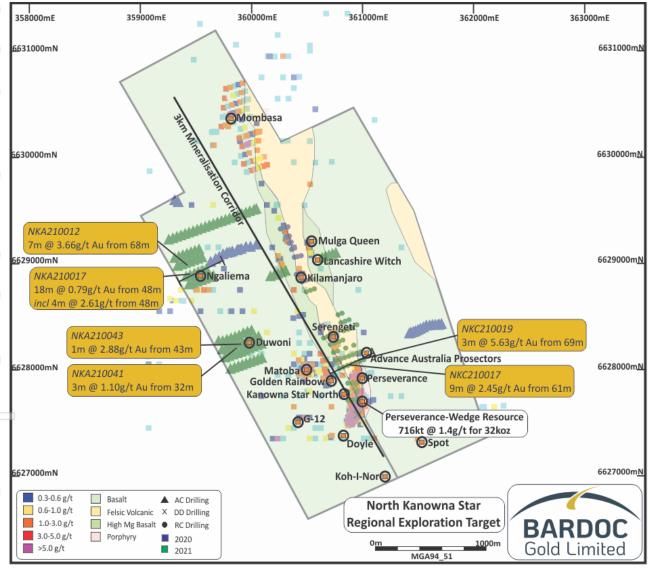



Figure 1: Prospect and drilling plan

A summary of results from each of the prospect areas drilled at North Kanowna Star is provided below.



### Ngaliema

The Ngaliema Prospect, formerly known as Maasai, is coincident with a magnetic high north-northwest trending basaltic unit on the eastern limb of a north-westerly plunging anticline. The best gold results were:

- 7m @ 3.66g/t Au from 68m in NKA210012
- 18m @ 0.79g/t Au from 48m, including 4m @ 2.61g/t Au from 48m in NKA210017
- 5m @ 1.05g/t Au from 40m in NKA210018
- 12m @ 0.64g/t Au from 44m in NKA210027

These results at Ngaliema are very encouraging as they have extended and expanded the mineralisation intersected in the Company's initial air core drill program of 2020, where results included:

8m @ 0.87g/t Au in NKA200047 (ASX announcement 8 February 2021)

The gold target zone extends over some 500m strike, with Bardoc's aircore program returning anomalous gold in 15 aircore holes. The gold is associated with some minor quartz veining, with pyrite present in some intersections. The current work program is focused on producing an integrated exploration model.

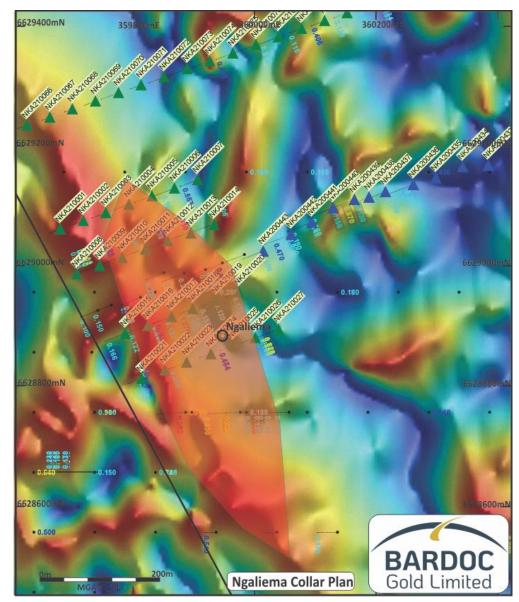



Figure 2: Ngaliema drill hole location plan, shown over air magnetics



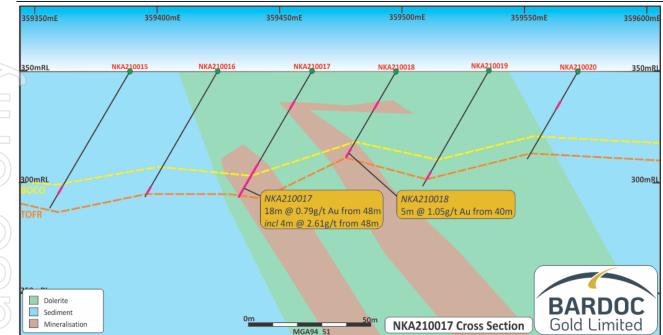



Figure 3: Ngaliema cross section

### Duwoni

A first pass aircore drilling program was completed at the Duwoni Prospect, with significant gold mineralisation returned in the bottom of hole NKA210043. The presence of gold in the bottom of the hole is important, as it commonly represents primary gold anomalism. The Duwoni Prospect is interpreted as being on the southern extension of the same basalt unit at the Ngaliema Prospect. Highlights from drilling at Duwoni included:

- 1m @ 2.88g/t Au from 43m in NKA210043
- 3m @ 1.10g/t Au from 32m in NKA210041



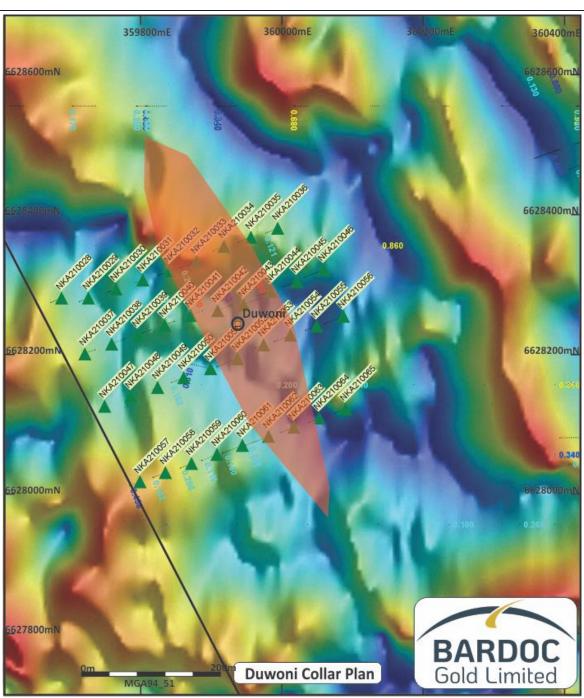



Figure 4: Duwoni drill hole location plan, shown over air magnetics

#### Perseverance Wedge

The Perseverance Wedge Deposit hosts a current **32koz Au Mineral Resource**. A small program comprising three diamond core holes for 224m was completed to collect samples for both metallurgical testwork and confirmation of rock types and densities. After modelling, this detailed density work is expected to underpin a higher Mineral Resource Estimate classification, potentially allowing the calculation of an Ore Reserve after the necessary studies have been completed.

RC drilling to the north of Perseverance Wedge has extended the gold mineralisation northwards, with this area to be incorporated in future Mineral Resource Estimates.

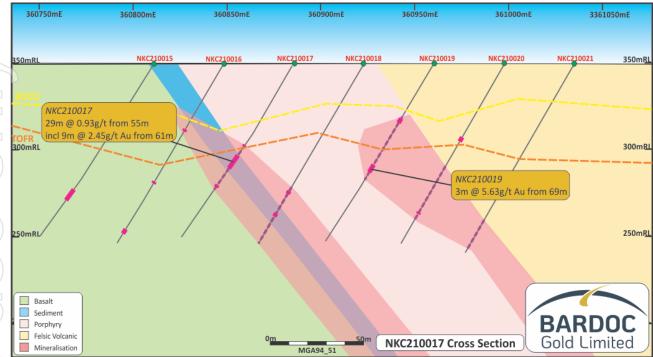



Figure 5: Perseverance Wedge cross section

### **Bulletin South**

The Bulletin South Deposit is located 8km south-southwest of the Zoroastrian/Excelsior corridor. The Bulletin South Deposit has mining approval from the Department of Mines, Industry Regulation and Safety (DMIRS) and a current open pit **Ore Reserve of 561kt @ 2.0g/t Au for 35koz Au.** The reported Mineral Resource of **849kt @ 2.1g/t Au for 57koz** of contained gold is open both along strike and at depth, indicating strong potential to grow the Resource.

Mineralisation at Bulletin South is preferentially contained within a porphyritic rock unit and is associated with pyrite and quartz stockwork veining in the footwall of a basaltic contact unit. There is very little arsenic and previous preliminary metallurgical testing has shown the ore to be free milling with recoveries of over 98% in fresh rock ore.

The diamond core drilling in this program targeted transitional and fresh rock mineralisation to enable the collection of metallurgical samples for detailed metallurgical studies of the ore zones including comminution, cyanide and lime consumption as well as XRD<sup>1</sup> and QEMSCAN<sup>2</sup>.

The two key results from this drilling were:

- 22.9m @ 2.31g/t Au from 68.7m, including 4.2m @ 5.64g/t Au from 86.8m in KND210004
- 14.6m @ 1.11g/t Au from 103.5m in KND210005

KND210004 was drilled down the plunge of the ore body and the true width of mineralisation is represented by KND210005 which was drilled close to perpendicular to the mineralisation.

Bulletin South is a significant mineralised system with a broad high-grade (2.1g/t Au) open-pitiable ore body that is included in the current DFS mine plan. The long section below highlights the scale of Bulletin South. Further exploration is required to better understand and explore the down plunge extensions of the mineralisation

<sup>&</sup>lt;sup>1</sup> X-ray diffraction

<sup>&</sup>lt;sup>2</sup> An integrated and automated mineralogy/petrography study best described as a *quantitative evaluation of minerals by scanning electron microscopy* 



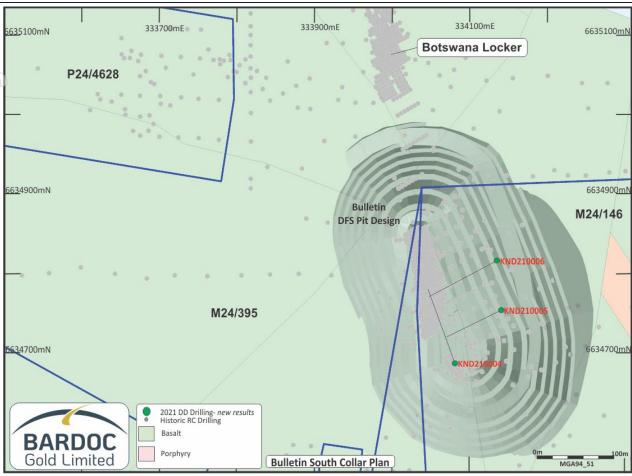



Figure 7: Bulletin South drill hole location plan, with DFS pit design

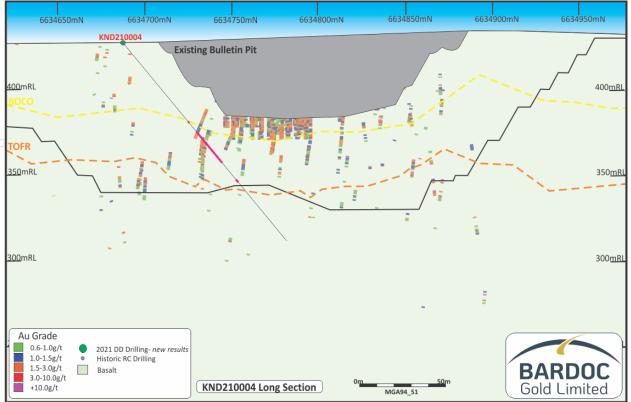



Figure 8: Long section of KND210004 looking southwest, +/- 10m



### **NEXT STEPS**

As outlined in the Company's ASX Announcement dated 27 September 2021, the Company has initiated a strategic review of the development strategy for the 3.07Moz Bardoc Gold Project. This strategic review is continuing, being managed by Executive Director Neil Biddle.

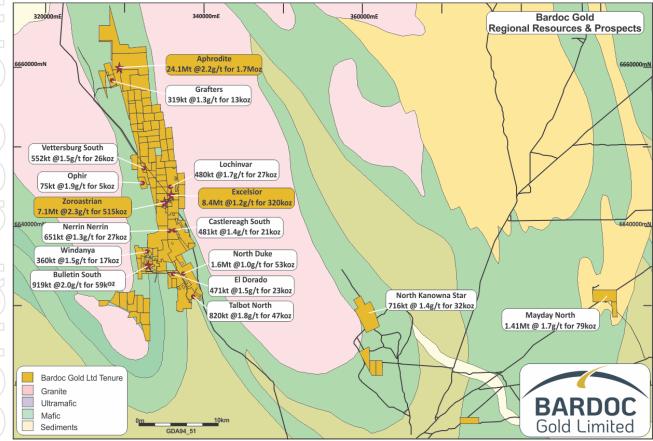
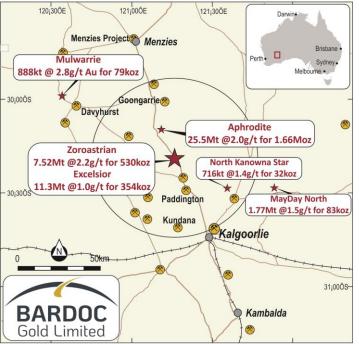




Figure 9: Bardoc Gold Project, tenement location plan.



### **BARDOC GOLD PROJECT – BACKGROUND**

#### Figure 10: Bardoc Gold Project Regional Location

The Bardoc Gold Project runs contiguously north for 40km in the Eastern Goldfields. There are four main deposits and a multitude of smaller projects within the 250km2 landholding, providing a large Resource base and excellent exploration potential within the prolific Norseman-Wiluna greenstone belt and junction of the Bardoc Tectonic Zone (BTZ) and the Black Flag Fault (BFF).

These two deep-seated crustal structures host many multi-million-ounce deposits, including the world- renowned Golden Mile in Kalgoorlie.



#### **GLOBAL RESOURCE – BARDOC GOLD PROJECT**

| Deposit         Type         Cut-Off         MEXSURE         INDECATE         NUMERE         INDECATE         OUNCES         TOTAL RESOUCE         ASX<br>Report           Aphrodite         OP         various         -         -         -         13,458         1.5         666         5,321         1.3         229         18,780         1.5         895           Aphrodite         UG         1.7         -         -         -         4,156         3.7         497         2,571         3.3         271         6,726         3.6         768         20002         1,663         -         -         -         -         -         4,156         3.7         497         2,571         3.3         271         6,726         3.6         768         -         -         -         -         4,156         3.7         497         2,571         3.3         271         6,726         3.6         768         -         -         -         -         4,156         3.7         497         2,571         3.3         2,01         1,612         4,0         2,275,18           Aphrodite         OP         0.3         -         -         3,987         1.8         2,1         1,612 |         |          |     |       |    |        |       |       |        |        |       |        |       |       |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-----|-------|----|--------|-------|-------|--------|--------|-------|--------|-------|-------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cut-Off |          | ME  | ASURE | D  | IND    | CATED |       | IN     | FERRED | )     | τοται  | RESOU | RCES  | Original<br>ASX |
| Deposit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Туре    | (g/t Au) |     |       |    |        |       |       |        |        |       |        |       |       | Report<br>Date  |
| Aphrodite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ОР      | various  | -   | -     | -  | 13,458 | 1.5   | 666   | 5,321  | 1.3    | 229   | 18,780 | 1.5   | 895   |                 |
| Aphrodite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG      | 1.7      | -   | -     | -  | 4,156  | 3.7   | 497   | 2,571  | 3.3    | 271   | 6,726  | 3.6   | 768   |                 |
| Aphrodite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOTAL   |          | -   | -     | -  | 17,614 | 2.1   | 1,163 | 7,892  | 2.0    | 500   | 25,506 | 2.0   | 1,663 |                 |
| Zoroastrian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ОР      | 0.3      | -   | -     | -  | 3,987  | 1.8   | 231   | 1,918  | 1.5    | 90    | 5,904  | 1.7   | 321   | 22/5/18         |
| Zoroastrian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UG      | 1.6      | -   | -     | -  | 800    | 4.7   | 120   | 812    | 3.4    | 90    | 1,612  | 4.0   | 209   | 30/9/20         |
| Zoroastrian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TOTAL   |          | -   | -     | -  | 4,787  | 2.3   | 351   | 2,730  | 2.0    | 180   | 7,516  | 2.2   | 530   |                 |
| Excelsior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ОР      | 0.3      | -   | -     | -  | 9,645  | 1.0   | 313   | 1,685  | 0.8    | 41    | 11,330 | 1.0   | 354   |                 |
| Mayday North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ОР      | 0.5      | -   | -     | -  | 1,303  | 1.6   | 66    | 431    | 1.2    | 17    | 1,778  | 1.5   | 83    | 30/9/20         |
| Talbot North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ОР      | 0.4      | -   | -     | -  | 698    | 1.8   | 40    | 123    | 1.8    | 7     | 820    | 1.8   | 47    | 30/9/19         |
| Bulletin South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ОР      | 0.4      | 152 | 2.2   | 11 | 546    | 2.1   | 36    | 150    | 2.1    | 10    | 849    | 2.1   | 57    | 30/9/19         |
| Duke North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ОР      | 0.4      | -   | -     | -  | 851    | 1.0   | 28    | 795    | 1.0    | 25    | 1,646  | 1.0   | 53    | 30/9/19         |
| Lochinvar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ОР      | 0.4      | -   | -     | -  | 423    | 1.8   | 24    | 57     | 1.6    | 3     | 480    | 1.7   | 27    | 19/2/14         |
| El Dorado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ОР      | 0.5      | -   | -     | -  | 203    | 1.4   | 9     | 383    | 1.5    | 18    | 586    | 1.5   | 28    |                 |
| El Dorado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UG      | 2.0      | -   | -     | -  | -      | -     | -     | 51     | 6.5    | 11    | 51     | 6.5   | 11    |                 |
| El Dorado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOTAL   |          | -   | -     | -  | 203    | 1.4   | 9     | 434    | 2.1    | 29    | 637    | 1.9   | 39    | 30/9/20         |
| North Kanowna Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ОР      | 0.5      | -   | -     | -  | 157    | 1.6   | 8     | 559    | 1.3    | 24    | 716    | 1.4   | 32    | 9/9/19          |
| South Castlereagh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ОР      | 0.5      | -   | -     | -  | 111    | 1.6   | 6     | 369    | 1.3    | 15    | 481    | 1.4   | 21    | 30/9/19         |
| Mulwarrie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ОР      | 0.5      | -   | -     | -  | -      | -     | -     | 881    | 2.8    | 79    | 881    | 2.8   | 79    | 13/11/18        |
| Nerrin Nerrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ОР      | 0.5      | -   | -     | -  | -      | -     | -     | 651    | 1.3    | 26    | 651    | 1.3   | 26    | 30/9/19         |
| Vettersburg South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ОР      | 0.6      | -   | -     | -  | -      | -     | -     | 552    | 1.5    | 26    | 552    | 1.5   | 26    | 11/12/13        |
| Windanya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ОР      | 0.6      | -   | -     | -  | -      | -     | -     | 360    | 1.5    | 17    | 360    | 1.5   | 17    | 11/12/13        |
| Grafters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ОР      | 0.5      | -   | -     | -  | -      | -     | -     | 319    | 1.3    | 14    | 319    | 1.3   | 14    | 30/9/19         |
| Ophir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ОР      | 0.6      | -   | -     | -  | -      | -     | -     | 75     | 1.9    | 5     | 75     | 1.9   | 5     | 11/12/13        |
| TOTAL RESO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | URCES   |          | 152 | 2.3   | 11 | 36,338 | 1.7   | 2,044 | 18,063 | 1.8    | 1,018 | 54,597 | 1.8   | 3,073 |                 |

Note: Differences may occur due to rounding. Full details of the Mineral Resource estimate were provided in the Company's ASX Announcement dated 29 March 2021.

#### **Global Reserve – Bardoc Gold Project**

|                        |        | PROBABLE |       |        | TOTAL |       |  |  |
|------------------------|--------|----------|-------|--------|-------|-------|--|--|
| PROJECT                | Tonnes | Grade    | Gold  | Tonnes | Grade | Gold  |  |  |
|                        | (kt)   | (g/t)    | (koz) | (kt)   | (g/t) | (koz) |  |  |
| Excelsior OP           | 5,690  | 1.11     | 203   | 5,690  | 1.1   | 203   |  |  |
| Zoroastrian North OP   | 365    | 2.10     | 25    | 365    | 2.1   | 25    |  |  |
| Zoroastrian Central OP | 276    | 1.78     | 16    | 276    | 1.8   | 16    |  |  |
| Zoroastrian South OP   | 417    | 1.80     | 24    | 417    | 1.8   | 24    |  |  |
| Bulletin South OP      | 561    | 1.95     | 35    | 561    | 2.0   | 35    |  |  |
| Aphrodite Stage 1 OP   | 1,050  | 1.82     | 61    | 1,050  | 1.8   | 61    |  |  |
| Aphrodite Stage 2 OP   | 2,916  | 1.80     | 168   | 2,916  | 1.8   | 168   |  |  |
| Mayday OP              | 622    | 1.62     | 32    | 622    | 1.6   | 32    |  |  |
| Zoroastrian UG         | 839    | 3.63     | 98    | 839    | 3.6   | 98    |  |  |
| Aphrodite UG           | 3,139  | 3.41     | 344   | 3,139  | 3.4   | 344   |  |  |
| TOTAL                  | 15,874 | 2.0      | 1,007 | 15,874 | 2.0   | 1,007 |  |  |

Note: Differences may occur due to rounding. Full details of the Mining Reserve were provided in the Company's ASX Announcement dated 29 March 2021.



#### DISCLAIMERS AND FORWARD-LOOKING STATEMENTS

This announcement contains forward looking statements. Forward looking statements are often, but not always, identified by the use of words such as "seek", "target", "anticipate", "forecast", "believe", "plan", "estimate", "expect" and "intend" and statements that an event or result "may", "will", "should", "could" or "might" occur or be achieved and other similar expressions.

The forward-looking statements in this announcement are based on current expectations, estimates, forecasts and projections about Bardoc and the industry in which they operate. They do, however, relate to future matters and are subject to various inherent risks and uncertainties. Actual events or results may differ materially from the events or results expressed or implied by any forward-looking statements. The past performance of Bardoc is no guarantee of future performance.

None of Bardoc's directors, officers, employees, agents or contractors makes any representation or warranty (either express or implied) as to the accuracy or likelihood of fulfilment of any forward-looking statement, or any events or results expressed or implied in any forward-looking statement, except to the extent required by law. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as at the date of this announcement.

#### Approved for release by Neil Biddle - Executive Director

#### For further information contact:

| 1 | INVESTORS:  |                         | MEDIA:        |                           |
|---|-------------|-------------------------|---------------|---------------------------|
|   | Neil Biddle | Bardoc Gold Limited     | Nicholas Read | Read Corporate            |
|   | Telephone:  | (08) 6215 0090          | Telephone:    | 0419 929 046              |
|   | Email:      | admin@bardocgold.com.au | Email:        | info@readcorporate.com.au |

#### **COMPETENT PERSON'S STATEMENT**

#### **Exploration Results**

Information in this announcement that relates to exploration results and mineral resources is based on information compiled by Mr. Bradley Toms who is the Exploration Manager of Bardoc Gold Limited. Mr. Toms is a Member of The Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking, to qualify as Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Toms consents to the inclusion in the document of the information in the form and context in which it appears.

#### **Mineral Resources**

The Company confirms it is not aware of any new information or data that materially affects the information included in the 29 March 2021 Definitive Feasibility Study and that all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed when referring to its resource announcement made on 29 March 2021.

#### Ore Reserves – Open Pit & Underground

The information referred to in this announcement has been extracted from the Definitive Feasibility Report and Ore Reserve Statement dated 29 March 2021 and available to view on www.bardocgold.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the Ore Reserves Statement and that all material assumptions and technical parameters underpinning the estimates in the Ore Reserves Statement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the Ore Reserves Statement.



### **APPENDIX 1**

#### **DRILL HOLE LOCATION TABLES**

### North Kanowna Star Collar Locations

Only completed holes, with assay results received, are reported. All holes are drilled at -60° dip with an azimuth towards 250° (magnetic). AC is air core, RC is reverse circulation, DD is diamond core

| Hole_ID   | Collar<br>MGAZ51_East m | Collar<br>MGAZ51_North m | Collar RL m | Hole<br>Type | Hole Depth<br>m |
|-----------|-------------------------|--------------------------|-------------|--------------|-----------------|
| NKA210001 | 359280                  | 6629063                  | 350         | AC           | 38              |
| NKA210002 | 359318                  | 6629077                  | 350         | AC           | 45              |
| NKA210003 | 359355                  | 6629090                  | 350         | AC           | 50              |
| NKA210004 | 359393                  | 6629104                  | 350         | AC           | 50              |
| NKA210005 | 359431                  | 6629118                  | 350         | AC           | 62              |
| NKA210006 | 359468                  | 6629131                  | 350         | AC           | 68              |
| NKA210007 | 359506                  | 6629145                  | 350         | AC           | 62              |
| NKA210008 | 359307                  | 6628988                  | 350         | AC           | 63              |
| NKA210009 | 359345                  | 6629002                  | 350         | AC           | 66              |
| NKA210010 | 359382                  | 6629015                  | 350         | AC           | 75              |
| NKA210011 | 359420                  | 6629029                  | 350         | AC           | 75              |
| NKA210012 | 359457                  | 6629043                  | 350         | AC           | 75              |
| NKA210013 | 359495                  | 6629056                  | 350         | AC           | 66              |
| NKA210014 | 359533                  | 6629070                  | 350         | AC           | 63              |
| NKA210015 | 359387                  | 6628889                  | 350         | AC           | 72              |
| NKA210016 | 359424                  | 6628902                  | 350         | AC           | 66              |
| NKA210017 | 359463                  | 6628917                  | 350         | AC           | 66              |
| NKA210018 | 359498                  | 6628930                  | 350         | AC           | 45              |
| NKA210019 | 359537                  | 6628944                  | 350         | AC           | 60              |
| NKA210020 | 359574                  | 6628958                  | 350         | AC           | 46              |
| NKA210021 | 359414                  | 6628814                  | 350         | AC           | 48              |
| NKA210022 | 359452                  | 6628828                  | 350         | AC           | 62              |
| NKA210023 | 359488                  | 6628841                  | 350         | AC           | 64              |
| NKA210024 | 359528                  | 6628855                  | 350         | AC           | 41              |
| NKA210025 | 359564                  | 6628869                  | 350         | AC           | 46              |
| NKA210026 | 359601                  | 6628882                  | 350         | AC           | 50              |
| NKA210027 | 359639                  | 6628896                  | 350         | AC           | 73              |
| NKA210028 | 359688                  | 6628282                  | 350         | AC           | 34              |
| NKA210029 | 359726                  | 6628282                  | 350         | AC           | 28              |
| NKA210030 | 359765                  | 6628295                  | 350         | AC           | 24              |
| NKA210031 | 359803                  | 6628308                  | 350         | AC           | 21              |
| NKA210032 | 359841                  | 6628321                  | 350         | AC           | 35              |
| NKA210033 | 359879                  | 6628334                  | 350         | AC           | 51              |
| NKA210034 | 359918                  | 6628356                  | 350         | AC           | 33              |
| NKA210035 | 359956                  | 6628369                  | 350         | AC           | 40              |
| NKA210036 | 359994                  | 6628382                  | 350         | AC           | 37              |
| NKA210037 | 359721                  | 6628202                  | 350         | AC           | 31              |

| NKA210038 | 359759 | 6628216 | 350 | AC | 39 |
|-----------|--------|---------|-----|----|----|
| NKA210039 | 359796 | 6628229 | 350 | AC | 40 |
| NKA210040 | 359834 | 6628243 | 350 | AC | 30 |
| NKA210041 | 359871 | 6628257 | 350 | AC | 36 |
| NKA210042 | 359909 | 6628264 | 350 | AC | 45 |
| NKA210043 | 359946 | 6628272 | 350 | AC | 66 |
| NKA210044 | 359984 | 6628292 | 350 | AC | 37 |
| NKA210045 | 360021 | 6628306 | 350 | AC | 40 |
| NKA210046 | 360059 | 6628323 | 350 | AC | 60 |
| NKA210047 | 359749 | 6628127 | 350 | AC | 4  |
| NKA210048 | 359786 | 6628141 | 350 | AC | 4  |
| NKA210049 | 359824 | 6628154 | 350 | AC | 15 |
| NKA210050 | 359861 | 6628168 | 350 | AC | 38 |
| NKA210051 | 359899 | 6628181 | 350 | AC | 56 |
| NKA210052 | 359937 | 6628195 | 350 | AC | 63 |
| NKA210053 | 359974 | 6628215 | 350 | AC | 26 |
| NKA210054 | 360012 | 6628229 | 350 | AC | 51 |
| NKA210055 | 360049 | 6628242 | 350 | AC | 34 |
| NKA210056 | 360087 | 6628256 | 350 | AC | 59 |
| NKA210057 | 359799 | 6628019 | 350 | AC | 32 |
| NKA210058 | 359835 | 6628032 | 350 | AC | 39 |
| NKA210059 | 359872 | 6628045 | 350 | AC | 35 |
| NKA210060 | 359908 | 6628058 | 350 | AC | 47 |
| NKA210061 | 359944 | 6628071 | 350 | AC | 62 |
| NKA210062 | 359981 | 6628084 | 350 | AC | 70 |
| NKA210063 | 360017 | 6628097 | 350 | AC | 40 |
| NKA210064 | 360053 | 6628110 | 350 | AC | 34 |
| NKA210065 | 360090 | 6628123 | 350 | AC | 34 |
| NKA210066 | 359225 | 6629236 | 350 | AC | 31 |
| NKA210067 | 359263 | 6629249 | 350 | AC | 28 |
| NKA210068 | 359300 | 6629263 | 350 | AC | 27 |
| NKA210069 | 359338 | 6629276 | 350 | AC | 40 |
| NKA210070 | 359376 | 6629290 | 350 | AC | 61 |
| NKA210071 | 359413 | 6629303 | 350 | AC | 37 |
| NKA210072 | 359451 | 6629316 | 350 | AC | 57 |
| NKA210073 | 359489 | 6629330 | 350 | AC | 63 |
| NKA210074 | 359526 | 6629343 | 350 | AC | 64 |
| NKA210075 | 359564 | 6629356 | 350 | AC | 69 |
| NKA210076 | 359602 | 6629370 | 350 | AC | 75 |
| NKA210077 | 359639 | 6629383 | 350 | AC | 67 |
| NKA210078 | 359677 | 6629397 | 350 | AC | 43 |
| NKA210079 | 359715 | 6629410 | 350 | AC | 48 |
| NKA210080 | 359752 | 6629423 | 350 | AC | 47 |
| NKA210081 | 359790 | 6629437 | 350 | AC | 43 |
| NKA210082 | 359828 | 6629450 | 350 | AC | 46 |
| NKA210083 | 359865 | 6629464 | 350 | AC | 46 |
| NKA210084 | 359903 | 6629477 | 350 | AC | 47 |

| NKA210085 359941 | 6629490 | 350 | AC | 51  |
|------------------|---------|-----|----|-----|
| NKA210086 359978 | 6629504 | 350 | AC | 52  |
| NKA210087 360016 | 6629517 | 350 | AC | 51  |
| NKA210088 360038 | 6629525 | 350 | AC | 49  |
| NKA210089 360170 | 6628891 | 350 | AC | 31  |
| NKA210090 360205 | 6628904 | 350 | AC | 46  |
| NKA210091 360240 | 6628917 | 350 | AC | 59  |
| NKA210092 360275 | 6628930 | 350 | AC | 34  |
| NKA210093 360310 | 6628943 | 350 | AC | 56  |
| NKA210094 360650 | 6629066 | 350 | AC | 31  |
| NKA210095 360682 | 6629078 | 350 | AC | 23  |
| NKA210096 360713 | 6629089 | 350 | AC | 41  |
| NKA210097 360745 | 6629101 | 350 | AC | 34  |
| NKA210098 360777 | 6629112 | 350 | AC | 29  |
| NKC210001 360545 | 6628862 | 350 | RC | 120 |
| NKC210002 360503 | 6628740 | 350 | RC | 138 |
| NKC210003 360541 | 6628754 | 350 | RC | 120 |
| NKC210004 360578 | 6628767 | 350 | RC | 120 |
| NKC210005 360798 | 6628524 | 350 | RC | 120 |
| NKC210006 360835 | 6628538 | 350 | RC | 120 |
| NKC210007 360825 | 6628449 | 350 | RC | 126 |
| NKC210008 360863 | 6628462 | 350 | RC | 126 |
| NKC210009 360900 | 6628476 | 350 | RC | 126 |
| NKC210010 360852 | 6628374 | 350 | RC | 120 |
| NKC210011 360890 | 6628387 | 350 | RC | 120 |
| NKC210012 360928 | 6628401 | 350 | RC | 120 |
| NKC210013 360930 | 6627880 | 350 | RC | 132 |
| NKC210014 360970 | 6627880 | 350 | RC | 180 |
| NKC210015 360811 | 6628018 | 350 | RC | 120 |
| NKC210016 360849 | 6628032 | 350 | RC | 120 |
| NKC210017 360887 | 6628046 | 350 | RC | 120 |
| NKC210018 360924 | 6628059 | 350 | RC | 120 |
| NKC210019 360962 | 6628073 | 350 | RC | 120 |
| NKC210020 360999 | 6628087 | 350 | RC | 120 |
| NKC210021 361037 | 6628100 | 350 | RC | 126 |
| NKC210022 360890 | 6627880 | 350 | RC | 172 |
| NKC210023 360970 | 6627800 | 350 | RC | 222 |
| NKC210024 360970 | 6627720 | 350 | RC | 174 |
| NKC210025 360930 | 6627720 | 350 | RC | 130 |
| NKC210026 360890 | 6627720 | 350 | RC | 110 |
| NKC210027 360784 | 6628093 | 350 | RC | 120 |
| NKC210028 360822 | 6628107 | 350 | RC | 132 |
| NKC210029 360859 | 6628121 | 350 | RC | 114 |
| NKC210030 360897 | 6628134 | 350 | RC | 126 |
| NKC210031 360934 | 6628148 | 350 | RC | 123 |
|                  |         |     |    |     |
| NKC210032 360972 | 6628162 | 350 | RC | 138 |



| NKC210034 | 360890    | 6627800    | 350 | RC | 132  |
|-----------|-----------|------------|-----|----|------|
| NKC210035 | 360729    | 6628244    | 350 | RC | 120  |
| NKC210036 | 360767    | 6628257    | 350 | RC | 120  |
| NKC210037 | 360805    | 6628271    | 350 | RC | 120  |
| NKC210038 | 360842    | 6628285    | 350 | RC | 126  |
| NKC210039 | 360664.41 | 6628305.21 | 350 | RC | 120  |
| NKC210040 | 360702.00 | 6628318.89 | 350 | RC | 120  |
| NKC210041 | 360739.59 | 6628332.57 | 350 | RC | 154  |
| NKC210042 | 360777.18 | 6628346.25 | 350 | RC | 144  |
| NKC210043 | 360756.72 | 6628168.54 | 350 | RC | 158  |
| NKC210044 | 360794.31 | 6628182.22 | 350 | RC | 138  |
| NKC210045 | 360869.49 | 6628209.58 | 350 | RC | 150  |
| NKC210046 | 360944.66 | 6628236.94 | 350 | RC | 150  |
| NKC210047 | 360973    | 6628429    | 350 | RC | 138  |
| NKD210001 | 361000    | 6627720    | 348 | DD | 90.3 |
| NKD210002 | 360980    | 6627580    | 349 | DD | 73.8 |
| NKD210003 | 360961    | 6627849    | 351 | DD | 60.3 |
|           |           |            |     |    |      |

### **Bulletin South Collar Locations**

| ) | Hole_ID   | Collar<br>MGAZ51_East<br>m | Collar<br>MGAZ51_North<br>m | Collar RL<br>m | Collar Dip | Collar Azi<br>Magnetic | Hole Type | Hole Depth<br>m |
|---|-----------|----------------------------|-----------------------------|----------------|------------|------------------------|-----------|-----------------|
|   | KND210004 | 334079.543                 | 6634684.785                 | 427.270        | -49.6      | 344.9                  | Core      | 151.80          |
|   | KND210005 | 334140.029                 | 6634750.488                 | 427.634        | -63        | 239.0                  | Core      | 147.40          |
|   | KND210006 | 334134.060                 | 6634816.433                 | 427.575        | -58        | 237.9                  | Core      | 165.40          |



### **APPENDIX 2**

#### SIGNIFICANT INTERSECTIONS TABLES

#### North Kanowna Star Air Core

Significant Intersections >= 1m@ 0.10g/t Au, Intersections >=5 grammetres are in bold. Maximum 8m internal downhole dilution. No upper cuts applied, 4m composite samples are collected over the entire length of the drill hole. Drill holes in the collar table but not this table have "No Significant Assays".

|           |                                                                                                                                                                                                                                                                                                                                                | - · -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _         |                                                                                                                                                                                                                                                                                                                                                | • —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Au_Calc_ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210007 |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210008 |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | 32                                                                                                                                                                                                                                                                                                                                             | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | 48                                                                                                                                                                                                                                                                                                                                             | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210009 | 44                                                                                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210010 | 56                                                                                                                                                                                                                                                                                                                                             | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210011 | 60                                                                                                                                                                                                                                                                                                                                             | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210012 | 70                                                                                                                                                                                                                                                                                                                                             | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| including | 70                                                                                                                                                                                                                                                                                                                                             | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NKA210014 | 44                                                                                                                                                                                                                                                                                                                                             | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210015 | 60                                                                                                                                                                                                                                                                                                                                             | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210016 | 60                                                                                                                                                                                                                                                                                                                                             | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210017 | 16                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | 50                                                                                                                                                                                                                                                                                                                                             | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| including | 51                                                                                                                                                                                                                                                                                                                                             | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210018 | 0                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | 16                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | 42                                                                                                                                                                                                                                                                                                                                             | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210019 | 0                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | 52                                                                                                                                                                                                                                                                                                                                             | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210020 | 16                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210022 | 52                                                                                                                                                                                                                                                                                                                                             | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210023 | 52                                                                                                                                                                                                                                                                                                                                             | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210025 | 41                                                                                                                                                                                                                                                                                                                                             | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210027 | 46                                                                                                                                                                                                                                                                                                                                             | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| including | 46                                                                                                                                                                                                                                                                                                                                             | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | 60                                                                                                                                                                                                                                                                                                                                             | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210033 | 40                                                                                                                                                                                                                                                                                                                                             | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210036 | 36                                                                                                                                                                                                                                                                                                                                             | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210040 | 24                                                                                                                                                                                                                                                                                                                                             | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210041 | 33                                                                                                                                                                                                                                                                                                                                             | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210042 | 40                                                                                                                                                                                                                                                                                                                                             | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210043 | 64                                                                                                                                                                                                                                                                                                                                             | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NKA210050 | 36                                                                                                                                                                                                                                                                                                                                             | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | NKA210010<br>NKA210011<br>NKA210012<br>including<br>NKA210014<br>NKA210015<br>NKA210016<br>NKA210017<br>including<br>NKA210018<br>NKA210018<br>NKA210020<br>NKA210020<br>NKA210022<br>NKA210023<br>NKA210023<br>NKA210025<br>NKA210025<br>NKA210027<br>including<br>NKA210033<br>NKA210036<br>NKA210040<br>NKA210041<br>NKA210042<br>NKA210043 | NKA210006         40           NKA210007         48           60         60           NKA210008         12           32         48           NKA210009         44           NKA210010         56           NKA210011         60           NKA210012         70           including         70           NKA210014         44           NKA210015         60           NKA210016         60           NKA210017         16           NKA210018         0           including         51           NKA210019         0           including         52           NKA210020         16           NKA210023         52           NKA210023         52           NKA210025         41           NKA210027         46           including         46           including         46           NKA210033         40           NKA210041         33           NKA210042         40           NKA210043         64 | NKA210006         40         44           NKA210007         48         52           60         61           NKA210008         12         16           32         41           48         56           NKA210009         44         52           NKA210010         56         59           NKA210011         60         75           NKA210012         70         75           including         70         72           NKA210014         44         48           NKA210015         60         64           NKA210016         60         64           NKA210017         16         20           S5         S5         S6           NKA210018         0         4           16         20         42           45         45         S6           NKA210019         0         4           16         20         42           NKA210020         16         20           NKA210021         52         56           NKA210022         52         56           NKA210025         41         45 <tr< td=""><td>NKA210006         40         44         4           NKA210007         48         52         4           NKA210008         12         16         4           NKA210008         12         16         4           NKA210009         44         52         8           NKA210010         56         59         3           NKA210010         56         59         3           NKA210011         60         75         15           NKA210012         70         75         5           including         70         72         2           NKA210015         60         64         4           NKA210015         60         64         4           NKA210016         60         64         4           NKA210017         16         20         4           NKA210018         0         4         4           NKA210018         0         4         4           NKA210019         0         4         4           NKA210020         16         20         4           NKA210020         16         20         4           NKA210023         52</td></tr<> | NKA210006         40         44         4           NKA210007         48         52         4           NKA210008         12         16         4           NKA210008         12         16         4           NKA210009         44         52         8           NKA210010         56         59         3           NKA210010         56         59         3           NKA210011         60         75         15           NKA210012         70         75         5           including         70         72         2           NKA210015         60         64         4           NKA210015         60         64         4           NKA210016         60         64         4           NKA210017         16         20         4           NKA210018         0         4         4           NKA210018         0         4         4           NKA210019         0         4         4           NKA210020         16         20         4           NKA210020         16         20         4           NKA210023         52 |

| NKA210051 | 55 | 56 | 1  | 0.51 |
|-----------|----|----|----|------|
| NKA210057 | 24 | 26 | 2  | 1.65 |
| NKA210058 | 32 | 36 | 4  | 0.14 |
| NKA210059 | 24 | 28 | 4  | 0.26 |
| NKA210060 | 32 | 36 | 4  | 0.12 |
| NKA210061 | 48 | 52 | 4  | 0.10 |
| NKA210062 | 52 | 64 | 12 | 0.12 |
| NKA210075 | 54 | 56 | 2  | 0.67 |
| NKA210077 | 56 | 64 | 8  | 0.22 |
| NKA210078 | 40 | 42 | 2  | 0.12 |
| NKA210079 | 42 | 47 | 5  | 0.33 |
| NKA210080 | 40 | 44 | 4  | 0.13 |
| NKA210081 | 36 | 43 | 7  | 0.13 |
| NKA210082 | 32 | 36 | 4  | 0.13 |
| NKA210083 | 32 | 36 | 4  | 0.21 |
| NKA210086 | 34 | 51 | 17 | 0.29 |
| NKA210088 | 40 | 44 | 4  | 0.31 |
| NKA210092 | 0  | 4  | 4  | 0.40 |
|           | 16 | 20 | 4  | 0.27 |
| NKA210092 | 32 | 34 | 2  | 0.33 |
| NKA210093 | 20 | 32 | 12 | 0.25 |
| NKA210096 | 40 | 41 | 1  | 0.13 |

### North Kanowna Star RC and Core

Significant Intersections >= 1m@ 0.50g/t Au, Intersections >=10 grammetres are in bold. Maximum 8m internal downhole dilution. No upper cuts applied, 4m composite samples are collected over the entire length of the drill hole. Drill holes in the collar table but not this table have "No Significant Assays".

| Hole_ID   | Depth_From | Depth_To | Width | Grade g/t Au |
|-----------|------------|----------|-------|--------------|
| NKC210001 | 47         | 48       | 1     | 18.00        |
|           | 65         | 70       | 5     | 0.61         |
|           | 74         | 75       | 1     | 0.53         |
| NKC210002 | 117        | 121      | 4     | 0.76         |
|           | 126        | 127      | 1     | 0.92         |
| NKC210004 | 55         | 56       | 1     | 0.65         |
| NKC210005 | 110        | 111      | 1     | 0.95         |
| NKC210006 | 42         | 43       | 1     | 2.92         |
|           | 78         | 79       | 1     | 0.61         |
|           | 101        | 103      | 2     | 0.77         |
| NKC210008 | 56         | 62       | 6     | 1.23         |
|           | 87         | 89       | 2     | 0.74         |
| NKC210009 | 44         | 45       | 1     | 0.57         |
| NKC210010 | 83         | 84       | 1     | 0.51         |
| NKC210010 | 116        | 117      | 1     | 2.50         |
| NKC210012 | 103        | 108      | 5     | 1.47         |
| NKC210013 | 44         | 45       | 1     | 1.56         |

|           | 86  | 89  | 3  | 2.30 |
|-----------|-----|-----|----|------|
|           | 97  | 99  | 2  | 0.62 |
| NKC210014 | 20  | 21  | 1  | 4.27 |
|           | 24  | 26  | 2  | 2.97 |
|           | 33  | 35  | 2  | 1.98 |
|           | 40  | 41  | 1  | 0.58 |
| NKC210015 | 86  | 87  | 1  | 0.60 |
|           | 91  | 92  | 1  | 3.02 |
| NKC210016 | 44  | 45  | 1  | 3.81 |
|           | 111 | 112 | 1  | 0.62 |
| NKC210017 | 55  | 56  | 1  | 1.59 |
|           | 61  | 70  | 9  | 2.45 |
|           | 83  | 84  | 1  | 1.08 |
|           | 88  | 89  | 1  | 0.59 |
| NKC210018 | 85  | 86  | 1  | 0.72 |
|           | 100 | 104 | 4  | 0.79 |
| NKC210019 | 33  | 34  | 1  | 0.58 |
|           | 37  | 41  | 4  | 0.62 |
|           | 69  | 72  | 3  | 5.63 |
| NKC210020 | 49  | 54  | 5  | 0.61 |
|           | 99  | 100 | 1  | 0.68 |
| NKC210022 | 24  | 25  | 1  | 0.72 |
|           | 47  | 48  | 1  | 0.76 |
|           | 53  | 59  | 6  | 0.75 |
|           | 110 | 116 | 6  | 1.00 |
|           | 123 | 129 | 6  | 0.92 |
|           | 166 | 168 | 2  | 4.44 |
| NKC210023 | 33  | 41  | 8  | 0.99 |
|           | 54  | 55  | 1  | 0.71 |
|           | 122 | 123 | 1  | 0.83 |
|           | 133 | 137 | 4  | 0.91 |
| 1         | 164 | 166 | 2  | 0.77 |
|           | 172 | 173 | 1  | 0.53 |
|           | 187 | 188 | 1  | 0.68 |
| NKC210024 | 26  | 39  | 13 | 1.03 |
|           | 141 | 145 | 4  | 1.63 |
|           | 150 | 151 | 1  | 0.87 |
| NKC210026 | 61  | 62  | 1  | 0.75 |
| NKC210027 | 24  | 26  | 2  | 1.26 |
|           | 96  | 98  | 2  | 0.74 |
| NKC210028 | 23  | 24  | 1  | 0.59 |
|           | 42  | 44  | 2  | 3.18 |
|           | 100 | 101 | 1  | 0.65 |
|           | 108 | 110 | 2  | 0.89 |
| NKC210029 | 56  | 60  | 4  | 1.27 |
|           | 77  | 78  | 1  | 4.83 |
|           | 81  | 82  | 1  | 0.72 |

| NKC210030 | 72  | 73  | 1 | 0.50 |
|-----------|-----|-----|---|------|
|           | 82  | 85  | 3 | 0.71 |
|           | 104 | 105 | 1 | 1.27 |
| )         | 108 | 109 | 1 | 0.62 |
|           | 117 | 119 | 2 | 0.61 |
| NKC210031 | 93  | 94  | 1 | 1.48 |
|           | 107 | 108 | 1 | 0.54 |
|           | 110 | 112 | 2 | 0.59 |
| NKC210032 | 51  | 55  | 4 | 0.92 |
|           | 60  | 61  | 1 | 0.52 |
|           | 124 | 126 | 2 | 1.02 |
| NKC210033 | 42  | 43  | 1 | 1.38 |
|           | 48  | 49  | 1 | 0.62 |
|           | 69  | 75  | 6 | 1.10 |
|           | 84  | 88  | 4 | 0.65 |
| NKC210034 | 64  | 65  | 1 | 0.58 |
|           | 70  | 71  | 1 | 1.95 |
|           | 79  | 80  | 1 | 0.52 |
|           | 90  | 91  | 1 | 0.58 |
|           | 97  | 102 | 5 | 1.06 |
| NKC210035 | 40  | 42  | 2 | 2.35 |
|           | 59  | 60  | 1 | 0.66 |
| NKC210036 | 32  | 36  | 4 | 0.85 |
|           | 76  | 78  | 2 | 0.55 |
| NKC210037 | 32  | 40  | 8 | 1.65 |
|           | 82  | 84  | 2 | 0.94 |
|           | 99  | 100 | 1 | 0.82 |
| NKC210038 | 68  | 71  | 3 | 0.83 |
|           | 76  | 77  | 1 | 0.71 |
| NKC210039 | 25  | 26  | 1 | 0.66 |
|           | 70  | 72  | 2 | 0.97 |
| NKC210040 | 22  | 24  | 2 | 0.79 |
|           | 100 | 102 | 2 | 0.57 |
| NKC210041 | 28  | 35  | 7 | 1.45 |
| NKC210042 | 36  | 40  | 4 | 0.54 |
|           | 46  | 47  | 1 | 0.53 |
|           | 53  | 54  | 1 | 1.97 |
|           | 138 | 139 | 1 | 0.54 |
| NKC210043 | 93  | 94  | 1 | 0.73 |
|           | 103 | 104 | 1 | 1.21 |
|           | 107 | 108 | 1 | 0.62 |
|           | 130 | 131 | 1 | 0.88 |
| NKC210044 | 31  | 32  | 1 | 2.06 |
|           | 39  | 41  | 2 | 1.24 |
|           | 49  | 51  | 2 | 0.68 |
|           | 68  | 69  | 1 | 0.69 |
|           | 101 | 102 | 1 | 0.63 |

| NKC210045 | 74    | 75    | 1    | 0.79  |
|-----------|-------|-------|------|-------|
|           | 86    | 87    | 1    | 6.15  |
|           | 108   | 109   | 1    | 0.56  |
| NKC210046 | 76    | 78    | 2    | 1.52  |
|           | 116   | 118   | 2    | 0.54  |
| NKD210001 | 15    | 16    | 1    | 2.25  |
|           | 19    | 20    | 1    | 2.96  |
|           | 27    | 28    | 1    | 0.57  |
|           | 44.4  | 46.8  | 2.4  | 5.53  |
|           | 50.5  | 53.3  | 2.8  | 3.09  |
|           | 59    | 61    | 2    | 0.68  |
| NKD210002 | 31    | 32    | 1    | 0.53  |
|           | 35.8  | 37    | 1.2  | 13.60 |
|           | 43    | 47    | 4    | 0.53  |
|           | 63.55 | 64.85 | 1.3  | 0.77  |
| NKD210003 | 19    | 20.13 | 1.13 | 1.99  |
|           | 24.49 | 30.78 | 6.29 | 2.10  |
|           | 39    | 40    | 1    | 0.69  |
|           | 47    | 48.94 | 1.94 | 0.66  |

### **Bulletin South Core**

Significant Intersections >= 1m@ 0.50g/t Au, Intersections >=10 grammetres are in bold. Maximum 8m internal downhole dilution. No upper cuts applied, 4m composite samples are collected over the entire length of the drill hole. Drill holes in the collar table but not this table have "No Significant Assays".

| Hole_ID   | Depth_From | Depth_To | Width | Grade g/t Au |
|-----------|------------|----------|-------|--------------|
| KND210004 | 68.7       | 91.6     | 22.9  | 2.31         |
| including | 86.8       | 91.0     | 4.2   | 5.64         |
|           | 106        | 107      | 1     | 1.54         |
| KND210005 | 84         | 85       | 1     | 0.69         |
|           | 93.68      | 96       | 2.32  | 1.15         |
|           | 103.5      | 118.1    | 14.6  | 1.11         |
|           | 122.68     | 123.9    | 1.22  | 0.56         |
| KND210006 | 102        | 103.65   | 1.65  | 3.72         |
|           | 127.3      | 129      | 1.7   | 1.51         |



#### JORC, 2012 Edition – Tables – North Kanowna Star

#### 1.1 Section 1 Sampling techniques and data

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques                                  | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>The mineralization was primarily sampled by air core (AC) drilling on nominal 160m x 40m (N x E) grid spacing. The holes were generally drilled towards magnetic 250°, at -60° to optimally intersect postulated lithological trends and possible gold mineralisation.</li> <li>Complete details are un-available for historic drilling.</li> <li>BDC AC recovered samples were collected and passed through a cyclone before being placed on the ground in 1m intervals.</li> <li>To date BDC has not completed any duplicates to support sample representivity. However, the sampling and drilling systems when inspected were operating in the correct manner.</li> <li>All BDC AC drilling was sampled on four metre composite down hole intervals with a 1m sample at the bottom of hole. The recovered samples were oven dried, reduced by riffle splitting to 3kg as required and pulverized in a single stage process to 85% passing 75 µm. The sample is then prepared by standard fire assay techniques with a 40g charge. Approximately 200g of pulp material is returned to BDC for storage and potential assay at a later date.</li> </ul> |
| Drilling<br>techniques                                  | <ul> <li>Drill type (e.g. core, reverse circulation, open-hole<br/>hammer, rotary air blast, auger, Bangka, sonic, etc)<br/>and details (e.g. core diameter, triple or standard<br/>tube, depth of diamond tails, face-sampling bit or<br/>other type, whether core is oriented and if so, by<br/>what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>RAB drilling makes up about 50% of the historic drilling and RC the other 50%. There are several campaigns of historic drilling between 1983 and 2010. These holes are sometimes without documentation of the rig type and capability, core size, sample selection and handling.</li> <li>For BDC drilling, the AC drilling system employed the use of an air core system with a nominal 105mm hole being drilled.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Drill sample<br>recovery                                | <ul> <li>Method of recording and assessing core and chip<br/>sample recoveries and results assessed</li> <li>Measures taken to maximise sample recovery and<br/>ensure representative nature of the samples</li> <li>Whether a relationship exists between sample<br/>recovery and grade and whether sample bias may<br/>have occurred due to preferential loss/gain of<br/>fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>All BDC AC 1m samples are logged for drilling recovery by a visual estimate and this information is recorded and stored in the drilling database. All samples received by the laboratory are weighed with the data collected and stored in the database.</li> <li>BDC AC samples are visually logged for moisture content, sample recovery and contamination. This information is stored in the database. The AC drill system utilizes industry best practice and the contractor aims to maximize recovery at all times. AC holes are drilled dry whenever practicable to maximize recovery of sample.</li> <li>Study of sample recovery vs gold grade does not show any bias towards differing sample recoveries or gold grade. The drilling contractor uses standard industry drilling techniques to ensure minimal loss of any size fraction.</li> </ul>                                                                                                                                                                                                                                                                                             |
| Logging                                                 | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>All BDC AC samples are geologically logged directly into handheld Geobank devices.</li> <li>The entire lengths of BDC AC holes are logged on a 1m interval basis, i.e. 100% of the drilling is logged, and where no sample is returned due to voids (or potentially lost sample) it is logged and recorded as such. Drill core is logged over its entire length and any core loss or voids intersected are recorded.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all subsampling stages to maximise representivity of samples.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>No core samples are the subject of this announcement</li> <li>All BDC AC samples are put through a cyclone and each 1m interval is placed on the ground.</li> <li>Samples for assay are collected by scoops or spears with a representative sample selected using 4m composite samples. The bottom of hole sample is always 1m.</li> <li>The BDC AC samples are sorted, oven dried, the entire sample is pulverized in a one stage process to 85% passing 75 µm. The bulk pulverized sample is then bagged and approximately 200g extracted by spatula to a numbered paper bag that is used for the 50g fire assay charge.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



|                                                        | <ul> <li>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul>                                                                                                                                                                                                                                                                                                                                              | <ul> <li>BDC samples submitted to the laboratory are sorted and reconciled against the submission documents. BDC inserts blanks and standards with blanks submitted in sample number sequence at 1 in 50 and standards submitted in sample number sequence at 1 in 20. The laboratory uses their own internal standards of 2 duplicates, 2 replicates, 2 standards, and 1 blank per 50 fire assays. The laboratory also uses barren flushes on the pulveriser.</li> <li>Filed duplicates, 1 in 50 of assays above 1g/t Au, are taken after the completion of the drill program.</li> <li>The sample sizes are considered to be appropriate for the type, style, thickness and consistency of mineralization located at this project. The sample size is also appropriate for the sampling methodology employed and the gold grade ranges returned.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of<br>assay data<br>and<br>laboratory<br>tests | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</li> </ul> | <ul> <li>BDC has routinely used local Kalgoorlie Certified Laboratories for all sample preparation and analysis. The most commonly used laboratories have been Intertek ALS and Bureau Veritas Australia. No complete details of the sample preparation, analysis or security are available for either the historic RAB/AC, DD or RC drilling results in the database.</li> <li>The assay method is designed to measure total gold in the sample. The laboratory procedures are appropriate for the testing of gold at this project given its mineralization style. The technique involves using a 40g or 50g sample charge with a lead flux which is decomposed in a furnace with the prill being totally digested by 2 acids (HCl and HNO3) before measurement of the gold content by an AA machine.</li> <li>The QC procedures are industry best practice. The laboratories are accredited and use their own certified reference materials.</li> <li>BDC submits blanks at the rate of 1 in 50 samples and certified reference material standards at the rate of 1 in 20 samples in the normal run of sample submission numbers. As part of normal procedures BDC examines all standards and blanks to ensure that they are within tolerances. Additionally, sample size, grind size and field duplicates are examined to ensure no bias to gold grade exists.</li> </ul> |
| Verification<br>of sampling<br>and assaying            | <ul> <li>The verification of significant intersections by either<br/>independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry<br/>procedures, data verification, data storage<br/>(physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                              | <ul> <li>BDC's Exploration Manager and Senior Project Geologist have inspected AC chips in the field to verify the correlation of mineralized zones between assay results and lithology/alteration/mineralization.</li> <li>A number of AC holes have also been drilled that confirmed results obtained from historical drillholes. No holes have been directly twinned, there are however holes within 60m of each other.</li> <li>Primary data is sent digitally every 2-3 days from the field to BDC's Database Administrator (DBA). The DBA imports the data into the commercially available and industry accepted DataShed database software. Assay results are merged when received electronically from the laboratory. The responsible geologist reviews the data in the database to ensure that it is correct and has merged properly and that all data has been received and entered. Any variations that are required are recorded permanently in the database.</li> <li>No adjustments or calibrations were made to any assay data used in this report.</li> </ul>                                                                                                                                                                                                                                                                                                |
| Location of<br>data points                             | <ul> <li>Accuracy and quality of surveys used to locate drill<br/>holes (collar and down-hole surveys), trenches,<br/>mine workings and other locations used in Mineral<br/>Resource estimation</li> <li>Specification of the grid system used</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                                                                          | <ul> <li>All drill holes have their collar location recorded from a hand held GPS unit. Downhole surveys are not completed as they are not material to this early stage exploration drilling.</li> <li>All drill holes and resource estimation use the MGA94, Zone 51 grid system.</li> <li>The topographic data used is yet to be validated by modern surveying methods. It is adequate for the reporting of Exploration Results and subsequent Mineral Resource estimates.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Data spacing<br>and<br>distribution                    | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                                                                                                                                                                                                                                                       | <ul> <li>The nominal exploration drill spacing is 160m x 40m.</li> <li>This report is for the reporting of recent exploration drilling. The drill spacing, spatial distribution and quality of assay results is appropriate for the nature and style of mineralisation being reported.</li> <li>The majority of AC holes were sampled at 4m.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves<br/>unbiased sampling of possible structures and the<br/>extent to which this is known, considering the<br/>deposit type.</li> <li>If the relationship between the drilling orientation<br/>and the orientation of key mineralised structures is<br/>considered to have introduced a sampling bias, this<br/>should be assessed and reported if material.</li> </ul> | <ul> <li>The majority of previous drilling is to magnetic 250 degrees. The bulk of the mineralized zones are close to perpendicular to this drilling direction.</li> <li>The current drilling is oriented towards magnetic west in order to intersect the lodes in the optimal direction.</li> <li>No relationship between drilling orientation and sampling bias is recognised at this time</li> </ul> |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample<br>security                                                  | • The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>AC samples are delivered directly from the field to the Kalgoorlie<br/>laboratory by BDC personnel on a regular basis with no detours,<br/>the laboratory then checks the physically received samples<br/>against an BDC generated sample submission list and reports<br/>back any discrepancies</li> </ul>                                                                                    |
| Audits or<br>reviews                                                | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>An internal review of sampling techniques and procedures was<br/>completed in March 2018. No external or third party audits or<br/>reviews have been completed.</li> </ul>                                                                                                                                                                                                                     |

### (Criteria listed in the preceding section also apply to this section.)

|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mineral<br>tenement and<br>land tenure<br>status<br>Exploration done | <ul> <li>Type, reference name/number, location and<br/>ownership including agreements or material<br/>issues with third parties such as joint ventures,<br/>partnerships, overriding royalties, native title<br/>interests, historical sites, wilderness or national<br/>park and environmental settings.</li> <li>The security of the tenure held at the time of<br/>reporting along with any known impediments<br/>to obtaining a licence to operate in the area.</li> <li>Acknowledgment and appraisal of exploration</li> </ul>                                                                                                                                                                                                                | <ul> <li>The results reported in this Announcement are on granted<br/>Mining tenement held by GPM Resources Pty Ltd.</li> <li>Tenement Holder Area (Ha) Expiry Date</li> <li>M27/102 GPM Resources 799.45 21/05/2031</li> <li>At this time the tenement is in good standing.</li> <li>Tenement is subject to Royalties of \$1.00 per tonne of ore mined<br/>and a \$15 per ounce for the first 50,000 ounces produced from<br/>M27/102 and M27/140.</li> <li>Exploration by other parties has been reviewed and is used as a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| by other parties                                                     | by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>guide to BDC's exploration activities. This includes work by,<br/>Aurion Gold and other exploration companies. Previous parties<br/>have completed underground mining, geophysical data<br/>collection and interpretation, soil sampling and drilling.</li> <li>This report comments only on exploration results collected by<br/>Bardoc Gold.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Geology                                                              | <ul> <li>Deposit type, geological setting and style of<br/>mineralisation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>North Kanowna Star gold mineralisation is hosted<br/>predominantly in a shallowly easterly dipping shear zone that<br/>is marked by sericitisation and albitisation with pyrite.<br/>Arsenopyrite is also present. The mineralised system cross<br/>cuts various rock types, predominantly fine grained basalts<br/>and fine to medium grained felsic volcanics.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Drill hole<br>Information                                            | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of the information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>See Table in this announcement</li> <li>No results from previous un-reported exploration are the subject of this announcement.</li> <li>Easting and Northing define the collar location in MGA94 zone 51 map projection. The map projection is a transverse Mercator projection, which conforms with the internationally accepted Universal Transverse Mercator Grid system. Collar elevations are RL's (elevation above sea level)</li> <li>Dip is the inclination of the hole from the horizontal (i.e. a vertically down drilled hole from the surface is -90°). Azimuth for current drilling is reported in magnetic degrees as the direction toward which the hole is drilled. MGA94 and magnetic degrees vary by approximately 1° in this project area</li> <li>Down hole length of the hole is the distance from the surface to the end of the hole, as measured along the drill trace. Intercept depth is the distance down the hole as measured along the drill trace.</li> <li>Hole length is the distance from the surface to the end of the hole, as measured along the drill trace.</li> </ul> |
| Data aggregation<br>methods                                          | <ul> <li>In reporting Exploration Results, weighting<br/>averaging techniques, maximum and/or<br/>minimum grade truncations (e.g. cutting of<br/>high grades) and cut-off grades are usually<br/>Material and should be stated.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>No high grade cuts have been applied to assay results. AC assay results are distance weighted using their applicable down hole width for each assay.</li> <li>Intersections are reported if the interval is at least 1m wide at 0.1g/t Au grade. Intersections greater than 1m in downhole</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| ·                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              | <ul> <li>Where aggregate intercepts incorporate short<br/>lengths of high grade results and longer lengths<br/>of low grade results, the procedure used for<br/>such aggregation should be stated and some<br/>typical examples of such aggregations should<br/>be shown in detail.</li> <li>The assumptions used for any reporting of<br/>metal equivalent values should be clearly<br/>stated.</li> </ul>                                 | <ul> <li>distance can contain up to 8m (i.e. 2 x 4m samples)of low grade<br/>or barren material.</li> <li>No metal equivalent reporting is used or applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | <ul> <li>These relationships are particularly important<br/>in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with<br/>respect to the drill hole angle is known, its<br/>nature should be reported.</li> <li>If it is not known and only the down hole<br/>lengths are reported, there should be a clear<br/>statement to this effect (e.g. 'down hole length,<br/>true width not known').</li> </ul> | <ul> <li>The intersection width is measured down the hole trace, it is not usually the true width. Cross sections in this announcement allows the relationship between true and down hole width to be viewed.</li> <li>Data collected from historical workings within the area show the primary ore zones to be sub-vertical (east dipping) in nature with a general northerly strike.</li> <li>All drill results within this announcement are downhole intervals only and true widths are not reported. True widths are approximately 70% of the reported drill intercept widths.</li> </ul> |
| Diagrams                                                                     | <ul> <li>Appropriate maps and sections (with scales)<br/>and tabulations of intercepts should be<br/>included for any significant discovery being<br/>reported These should include, but not be<br/>limited to a plan view of drill hole collar<br/>locations and appropriate sectional views.</li> </ul>                                                                                                                                   | <ul> <li>Plan and cross sectional views are contained within this announcement.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Balanced<br>reporting                                                        | <ul> <li>Where comprehensive reporting of all<br/>Exploration Results is not practicable,<br/>representative reporting of both low and high<br/>grades and/or widths should be practiced to<br/>avoid misleading reporting of Exploration<br/>Results.</li> </ul>                                                                                                                                                                           | <ul> <li>All results &gt;= 0.1g/t Au are reported. The results are length<br/>weighted composites based on the Au grade and down hole<br/>length, a maximum of 8m of internal dilution is included.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                |
| Other substantive<br>exploration data                                        | <ul> <li>Other exploration data, if meaningful and<br/>material, should be reported including (but not<br/>limited to): geological observations;<br/>geophysical survey results; geochemical survey<br/>results; bulk samples – size and method of<br/>treatment; metallurgical test results; bulk<br/>density, groundwater, geotechnical and rock<br/>characteristics; potential deleterious or<br/>contaminating substances.</li> </ul>   | <ul> <li>No other exploration data is considered meaningful and<br/>material to this announcement.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Further work                                                                 | <ul> <li>The nature and scale of planned further work<br/>(e.g. tests for lateral extensions or depth<br/>extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of<br/>possible extensions, including the main<br/>geological interpretations and future drilling<br/>areas, provided this information is not<br/>commercially sensitive.</li> </ul>                                               | <ul> <li>Exploration work is ongoing at this time and may involve the<br/>drilling of more drill holes, possibly AC, DC and RC, to further<br/>extend the mineralised zones and to collect additional detailed<br/>data on known and as yet unidentified mineralized zones.</li> </ul>                                                                                                                                                                                                                                                                                                        |

### JORC, 2012 Edition – Tables – Bulletin South

### 1.3 Section 1 Sampling techniques and data

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> </ul> | <ul> <li>The mineralization was primarily sampled by Reverse Circulation (RC) drilling on nominal 40m x 20m grid spacing. The holes were generally drilled towards magnetic 240 degrees at varying angles to optimally intersect the mineralized zones.</li> <li>Complete details are un-available for historic drilling. At Bulletin South Pit there is close spaced RC grade control drilling on a 3m &gt; 5m spacing. For both Lady Kelly and Zoroastrian South historic drilling is both RAB and RC drilling with some diamond core at Bulletin South.</li> <li>BDC drilled RC holes recovered 100% of the sample chips and they were passed through a cone splitter.</li> <li>Limited numbers of field duplicates and screen fire assays have been undertaken to support sample representivity.</li> </ul> |



|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Obla Elimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | Aspects of the determination of<br>mineralisation that are Material to the<br>Public Report. In cases where 'industry<br>standard' work has been done this would be<br>relatively simple (e.g. 'reverse circulation<br>drilling was used to obtain 1 m samples from<br>which 3 kg was pulverised to produce a 30 g<br>charge for fire assay'). In other cases more<br>explanation may be required, such as where<br>there is coarse gold that has inherent<br>sampling problems. Unusual commodities<br>or mineralisation types (e.g. submarine<br>nodules) may warrant disclosure of detailed<br>information.                                                                                                   | <ul> <li>All BDC RC drilling was sampled on one metre down hole intervals.<br/>The recovered samples were passed through a cone splitter and a<br/>nominal 2.5kg – 3.5kg sample was taken to a Kalgoorlie contract<br/>laboratory. Samples were oven dried, reduced by riffle splitting to<br/>3kg as required and pulverized in a single stage process to 85%<br/>passing 75 µm. The sample is then prepared by standard fire assay<br/>techniques with a 40g charge. Approximately 200g of pulp material<br/>is returned to BDC for storage and potential assay at a later date.<br/>The BDC DC samples are collected at nominated intervals by BDC<br/>staff from core that has been cut in half. Samples were oven dried,<br/>crushed to a nominal 10mm by a jaw crusher, reduced by riffle<br/>splitting to 3kg as required and pulverized in a single stage process<br/>to 85% passing 75 µm. The sample is then prepared by standard<br/>fire assay techniques with a 40g charge. Approximately 200g of<br/>pulp material is returned to BDC for storage and potential assay at<br/>a later date.</li> </ul>                                                                                                                                                                       |
| Drilling techniques                                     | <ul> <li>Drill type (e.g. core, reverse circulation,<br/>open-hole hammer, rotary air blast, auger,<br/>Bangka, sonic, etc) and details (e.g. core<br/>diameter, triple or standard tube, depth of<br/>diamond tails, face-sampling bit or other<br/>type, whether core is oriented and if so, by<br/>what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>a later date.</li> <li>RAB drilling makes up about 50% of the historic drilling and RC the other 50%. There are several campaigns of historic drilling between 1984 and 2011. These holes are sometimes without documentation of the rig type and capability, core size, sample selection and handling.</li> <li>For BDC drilling, the RC drilling system employed the use of a face sampling hammer and a nominal 146mm diameter drill bit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Drill sample<br>recovery                                | <ul> <li>Method of recording and assessing core and<br/>chip sample recoveries and results assessed</li> <li>Measures taken to maximise sample<br/>recovery and ensure representative nature<br/>of the samples</li> <li>Whether a relationship exists between<br/>sample recovery and grade and whether<br/>sample bias may have occurred due to<br/>preferential loss/gain of fine/coarse<br/>material.</li> </ul>                                                                                                                                                                                                                                                                                             | <ul> <li>All BDC RC 1m samples are logged for drilling recovery by a visual estimate and this information is recorded and stored in the drilling database. At least every 10<sup>th</sup> metre is collected in a plastic bag and these are weighed when they are utilized for the collection of field duplicate samples. All samples received by the laboratory are weighed with the data collected and stored in the database.</li> <li>BDC RC samples are visually logged for moisture content, sample recovery and contamination. This is information is stored in the database. The RC drill system utilizes a face sampling hammer which is industry best practice and the contractor aims to maximize recovery at all times. RC holes are drilled dry whenever practicable to maximize recovery of sample.</li> <li>Study of sample recovery vs gold grade does not show any bias towards differing sample recoveries or gold grade. The drilling contractor uses standard industry drilling techniques to ensure minimal loss of any size fraction.</li> </ul>                                                                                                                                                                                                                    |
| Logging                                                 | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                             | <ul> <li>All BDC RC samples are geologically logged. Estimates are made for the amount of sulphide and other minerals observed as well as shearing and foliation and its relative strength and how weathered (oxidised) the rock is.</li> <li>The entire lengths of BDC RC holes are logged on a 1m interval basis, i.e. 100% of the drilling is logged, and where no sample is returned due to voids (or potentially lost sample) it is logged and recorded as such</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sub-sampling<br>techniques and<br>sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>All BDC RC samples are put through a cone splitter and the sample is collected in a unique pre-numbered calico sample bag. The moisture content of each sample is recorded in the database.</li> <li>The BDC RC samples are sorted, oven dried, the entire sample is pulverized in a one stage process to 85% passing 75 µm. The bulk pulverized sample is then bagged and approximately 200g extracted by spatula to a numbered paper bag that is used for the 50g fire assay charge.</li> <li>BDC RC samples submitted to the laboratory are sorted and reconciled against the submission documents. BDC inserts blanks and standards with blanks submitted in sample number sequence at 1 in 50 and standards submitted in sample number sequence at 1 in 20. The laboratory uses their own internal standards of 2 duplicates, 2 replicates, 2 standards, and 1 blank per 50 fire assays. The laboratory also uses barren flushes on the pulveriser.</li> <li>RC field duplicate samples are collected after results are received from the original assay result is equal to or greater than 0.1g/t Au. The field duplicates are submitted to the laboratory is blind to the original sample assay process. The laboratory is blind to the original sample number</li> </ul> |

sample number.



| -        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB ONIV | Quality of assay<br>data and<br>laboratory tests | <ul> <li>The nature, quality and appropriation the assaying and laboratory prused and whether the techniconsidered partial or total.</li> <li>For geophysical tools, spectric handheld XRF instruments, exparameters used in determining the including instrument make and reading times, calibrations factors and their derivation, etc.</li> <li>Nature of quality control pradopted (e.g. standards, blanks, duexternal laboratory checks) and acceptable levels of accuracy (i.e. bias) and precision have been estable</li> </ul> |
| 30D21    | Verification of<br>sampling and<br>assaying      | <ul> <li>The verification of significant inteley either independent or all company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, du procedures, data verification, data (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data</li> </ul>                                                                                                                                                                                                                          |
|          | Location of data<br>points                       | <ul> <li>Accuracy and quality of surveys<br/>locate drill holes (collar and do<br/>surveys), trenches, mine workings a<br/>locations used in Mineral<br/>estimation</li> <li>Specification of the grid system use</li> <li>Quality and adequacy of top<br/>control.</li> </ul>                                                                                                                                                                                                                                                         |
|          | Data spacing and<br>distribution                 | <ul> <li>Data spacing for reporting of Ex<br/>Results.</li> <li>Whether the data spacing and distra<br/>sufficient to establish the de</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      |

| rality of assay<br>ta and<br>boratory tests<br>rification of<br>mpling and<br>saying | <ul> <li>The nature, quality and appropriateness of<br/>the assaying and laboratory procedures<br/>used and whether the technique is<br/>considered partial or total.</li> <li>For geophysical tools, spectrometers,<br/>handheld XRF instruments, etc, the<br/>parameters used in determining the analysis<br/>including instrument make and model,<br/>reading times, calibrations factors applied<br/>and their derivation, etc.</li> <li>Nature of quality control procedures<br/>adopted (e.g. standards, blanks, duplicates,<br/>external laboratory checks) and whether<br/>acceptable levels of accuracy (i.e. lack of<br/>bias) and precision have been established.</li> <li>The verification of significant intersections<br/>by either independent or alternative<br/>company personnel.</li> <li>The use of twinned holes.</li> </ul> | <ul> <li>For DC, historically no core duplicates (i.e. half core) have been collected or submitted.</li> <li>The sample sizes are considered to be appropriate for the type, style, thickness and consistency of mineralization located at this project. The sample size is also appropriate for the sampling methodology employed and the gold grade ranges returned.</li> <li>BDC has routinely used local Kalgoorlie Certified Laboratories for all sample preparation and analysis. The most commonly used laboratories have been Intertek Genalysis and Bureau Veritas Australia. No complete details of the sample preparation, analysis or security are available for either the historic AC, DD or RC drilling results in the database.</li> <li>The assay method is designed to measure total gold in the sample. The laboratory procedures are appropriate for the testing of gold at this project given its mineralization style. The technique involves using a 40g or 50g sample charge with a lead flux which is decomposed in a furnace with the prill being totally digested by 2 acids (HCl and HNO3) before measurement of the gold content by an AA machine.</li> <li>The QC procedures are industry best practice. The laboratories are accredited and use their own certified reference materials.</li> <li>BDC submits blanks at the rate of 1 in 20 samples in the normal run of sample submission numbers. As part of normal procedures BDC examines all standards and blanks to ensure that they are within tolerances. Additionally, sample size, grind size and field duplicates are examined to ensure no bias to gold grade exists.</li> <li>BDC's Exploration Manager and site geologist have inspected RC chips in the field to verify the correlation of mineralized zones between assay results and lithology/alteration/mineralization.</li> <li>A number of RC holes have also been drilled that confirmed results</li> </ul> |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      | <ul> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>A number of RC holes have also been drilled that confirmed results obtained from historical drillholes. No holes have been directly twinned, there are however holes within 12m of each other.</li> <li>Primary data is sent digitally every 2-3 days from the field to BDC's Database Administrator (DBA). The DBA imports the data into the commercially available and industry accepted DataShed database software. Assay results are merged when received electronically from the laboratory. The responsible geologist reviews the data in the database to ensure that it is correct and has merged properly and that all data has been received and entered. Any variations that are required are recorded permanently in the database.</li> <li>No adjustments or calibrations were made to any assay data used in this report.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| cation of data<br>ints                                                               | <ul> <li>Accuracy and quality of surveys used to<br/>locate drill holes (collar and down-hole<br/>surveys), trenches, mine workings and other<br/>locations used in Mineral Resource<br/>estimation</li> <li>Specification of the grid system used</li> <li>Quality and adequacy of topographic<br/>control.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>All drill holes have their collar location recorded by a contract surveyor using RTK GPS. Downhole surveys are completed every 30m downhole. Incomplete down hole surveying information is available for the historic RC or DD drilling.</li> <li>BDC routinely contracted down hole surveys during the programmes of exploration drilling for each drill hole completed using either digital electronic multi-shot tool or north seeking gyro, both of which are maintained by Contractors to manufacturer specifications. The current drill program was downhole surveyed by the drill contractor using north seeking gyro.</li> <li>All drill holes and resource estimation use the MGA94, Zone 51 grid system.</li> <li>The topographic data used was obtained from a LIDAR survey flown in 2012 and it is adequate for the reporting of Exploration Results and subsequent Mineral Resource estimates.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ita spacing and<br>tribution                                                         | <ul> <li>Data spacing for reporting of Exploration<br/>Results.</li> <li>Whether the data spacing and distribution is<br/>sufficient to establish the degree of<br/>geological and grade continuity appropriate<br/>for the Mineral Resource and Ore Reserve<br/>estimation procedure(s) and classifications<br/>applied.</li> <li>Whether sample compositing has been<br/>applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>The nominal exploration drill spacing is 40m x 20m with many E-W cross-sections in-filled to 15m across strike.</li> <li>This report is for the reporting of recent exploration drilling. The drill spacing, spatial distribution and quality of assay results is appropriate for the nature and style of mineralisation being reported.</li> <li>The majority of RC holes were sampled at 1m, but when this isn't the case, sample compositing to 4m has been applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



| Orientation of<br>data in relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>The majority of previous drilling is to magnetic 240 degrees. The bulk of the mineralized zones are close to perpendicular to this drilling direction.</li> <li>The current drilling is oriented towards magnetic 240 and 225 degrees) in order to intersect the lodes in the optimal direction.</li> <li>There is not thought to be any sampling bias from the intersection angle of the drilling and the lode orientation</li> </ul> |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample security                                                  | <ul> <li>The measures taken to ensure sample security.</li> </ul>                                                                                                                                                                                                                                                                                                                                  | <ul> <li>RC samples are delivered directly from the field to the Kalgoorlie<br/>laboratory by BDC personnel on a daily basis with no detours, the<br/>laboratory then checks the physically received samples against an<br/>BDC generated sample submission list and reports back any<br/>discrepancies.</li> </ul>                                                                                                                             |
| Audits or reviews                                                | • The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                            | <ul> <li>An internal review of sampling techniques and procedures was<br/>completed in March 2018. No external or third party audits or<br/>reviews have been completed.</li> </ul>                                                                                                                                                                                                                                                             |

### 1.4 Section 2 Reporting of Exploration Results – Bulletin South

(Criteria listed in the preceding section also apply to this section.)

| 1 | Criteria                                                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ) | Mineral<br>tenement and<br>land tenure<br>status<br>Exploration done | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> <li>Acknowledgment and appraisal of exploration</li> </ul>                                                                                                                                                                                         | <ul> <li>The results reported in this Announcement are on granted Mining tenements held by GPM Resources Pty Ltd.         <ul> <li>Tenement Holder Area (Ha) Expiry Date</li> <li>M24/395 GPM Resources 90.38 19/10/2024</li> <li>M24/146 GPM Resources 132.75 21/04/2030</li> </ul> </li> <li>At this time the tenements are in good standing.         <ul> <li>Exploration by other parties has been reviewed and is</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | by other parties                                                     | by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>used as a guide to BDC's exploration activities. This includes work by Goldfields and other exploration companies. Previous parties have completed both open pit and underground mining, geophysical data collection and interpretation, soil sampling and drilling.</li> <li>This report comments only on exploration results collected by Bardoc Gold.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Geology                                                              | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>The primary gold mineralisation at Bulletin South is predominantly associated with a quartz rich dolerite unit with a strongly porphyritic texture and associated second order structures. The gold mineralisation is associated with quartz, carbonate, sulphide alteration.</li> <li>Whilst structure and primary gold mineralisation can be traced to the surface, depletion has occurred in the top 10-20m</li> <li>Historical working and shafts exist within the area, detailed mapping and sampling of these workings and structural measurements from orientated diamond core drilling assists with the geological interpretation.</li> <li>At Lady Kelly the primary gold mineralisation at Lady Kelly is predominately associated with 2-10m shear zones containing variable amounts of quartz veins.</li> </ul>                                                                                          |
| 1 | Drill hole<br>Information                                            | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent</li> </ul> | <ul> <li>See Table in this announcement</li> <li>No results from previous un-reported exploration are the subject of this announcement.</li> <li>Easting and Northing define the collar location in MGA94 zone 51 map projection. The map projection is a transverse Mercator projection, which conforms with the internationally accepted Universal Transverse Mercator Grid system. Collar elevations are RL's (elevation above sea level)</li> <li>Dip is the inclination of the hole from the horizontal (i.e. a vertically down drilled hole from the surface is -90°). Azimuth for current drilling is reported in magnetic degrees as the direction toward which the hole is drilled. MGA94 and magnetic degrees vary by approximately 1° in this project area</li> <li>Down hole length of the hole is the distance from the surface to the end of the hole, as measured along the drill trace. Intercept</li> </ul> |



|                                                                              | <ul> <li>Person should clearly explain why this is the case.</li> <li>depth is the distance down the hole as measured along the trace. Intersection width is the downhole distance of intersection as measured along the drill trace.</li> <li>Hole length is the distance from the surface to the end of hole, as measured along the drill trace.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data aggregation<br>methods                                                  | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be stated and some typical examptions used for any reporting of metal equivalent values should be clearly stated.</li> <li>No high grade cuts have been applied to assay results. RC as results are distance weighted using 1m for each assay.</li> <li>Intersections are reported if the interval is at least 1m wid 0.5g/t Au grade. Intersections greater than 1m in downl distance can contain up to 2m of low grade or barren materi</li> <li>No metal equivalent reporting is used or applied.</li> </ul>                                    |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</li> <li>The intersection width is measured down the hole trace, it is usually the true width. Cross sections in this announcern allows the relationship between true and down hole width to viewed.</li> <li>Data collected from historical workings and shafts within area and from structural measurements from orientadiamond core drilling show the primary ore zones to be svertical (east dipping) in nature with a general northwest (magnetic) strike.</li> <li>All drill results within this announcement are downhole inter only and true widths are not reported. True widths.</li> </ul> |
| Diagrams                                                                     | <ul> <li>Appropriate maps and sections (with scales)<br/>and tabulations of intercepts should be<br/>included for any significant discovery being<br/>reported These should include, but not be<br/>limited to a plan view of drill hole collar<br/>locations and appropriate sectional views.</li> <li>Plan and cross sectional views are contained within<br/>announcement.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Balanced<br>reporting                                                        | <ul> <li>Where comprehensive reporting of all<br/>Exploration Results is not practicable,<br/>representative reporting of both low and high<br/>grades and/or widths should be practiced to<br/>avoid misleading reporting of Exploration<br/>Results.</li> <li>All results &gt;= 0.5g/t Au are reported. The results are ler<br/>weighted composites based on the Au grade and down l<br/>length, a maximum of 2m of internal dilution is included.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Other substantive<br>exploration data                                        | <ul> <li>Other exploration data, if meaningful and<br/>material, should be reported including (but not<br/>limited to): geological observations;<br/>geophysical survey results; geochemical survey<br/>results; bulk samples – size and method of<br/>treatment; metallurgical test results; bulk<br/>density, groundwater, geotechnical and rock<br/>characteristics; potential deleterious or<br/>contaminating substances.</li> <li>No other exploration data is considered meaningful and<br/>material to this announcement.</li> <li>No other exploration data is considered meaningful and<br/>material to this announcement.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                |
| Further work                                                                 | <ul> <li>The nature and scale of planned further work<br/>(e.g. tests for lateral extensions or depth<br/>extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of<br/>possible extensions, including the main<br/>geological interpretations and future drilling<br/>areas, provided this information is not<br/>commercially sensitive.</li> <li>Exploration work is ongoing at this time and may involve<br/>drilling of more drill holes, both DC and RC, to further extend<br/>mineralised zones and to collect additional detailed data<br/>known and as yet unidentified mineralized zones.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |