

3 November 2021

Resource drilling delivers high-grade results from Cable and Mission Prospects

Estimation of maiden JORC 2012 Mineral Resources now underway

- High-grade assay results have been received from Resource and exploration drilling at the Cable and Mission Prospects, located 10 kilometres north of Red 5's Darlot gold mining operation. Highlights include^{1,2}:
 - o Cable:
 - 0.74m @ 164.4g/t Au from 111m (21CBDD002)
 - 2.0m @ 20.4g/t Au from 133m (21CBDD003)
 - 4.0m @ 13.4g/t Au from 111m (21CBRC0019)
 - o Mission:
 - 4.0m @ 14.7g/t Au from 53m (20MIRC0002)
 - 3.0m @ 10.5g/t Au from 167m (20MIDD003)
 - 11.0m @ 3.4g/t Au from 13m (20MIRC0018)
 - 0.35m @ 142.5g/t Au from 138m (20MIDD001)
- Reverse Circulation (RC) percussion Resource infill drill results confirm the continuity of narrow lode gold mineralisation along strike, including new high-grade zones of mineralisation, at both Cable and Mission.
- Deeper drilling at Cable has led to the discovery of a broad zone of mineralisation below the previously known mineralisation, establishing targets for future drill holes.
- Deeper diamond exploration drilling at Mission has confirmed the extension of narrow, high-grade gold mineralisation below the oxide horizon.
- Gold mineralisation at both areas remains open at depth and along strike, with further drilling planned to test strike and depth extension opportunities.
- Updated geological models and maiden JORC 2012 Mineral Resource Estimates for both the Cable and Mission Prospects are in progress.

Red 5 Managing Director, Mark Williams, said: "These are positive results that confirm the prospectivity of the Cable and Mission prospect areas. We're particularly encouraged by the delineation of a significant new zone of gold mineralisation below the known oxide zone at Cable, which presents opportunities for Resource growth. Results from this program will underpin the delivery of a maiden JORC 2012 Mineral Resource Estimate for both Cable and Mission."

¹ No top-cut applied. Refer to Appendix 1, Table 1 for drill hole summary information and reporting parameters used. Intercept lengths are reported as 'down-hole' lengths, not true widths.

² Refer to Appendix 2 for JORC 2012 Table 1.

Red 5 Limited (ASX: RED) (**Red 5** or **the Company**) is pleased to provide an update on recent Resource definition and exploration drilling at its Cable and Mission prospects, located 10 kilometres north of the Company's Darlot Gold Mine in the Eastern Goldfields region of Western Australia, which has delivered high-grade assay results and identified new zones of gold mineralisation.

The drilling program comprised a combination of RC percussion drilling to underpin an upgrade of the historical JORC 2004 Mineral Resource Estimates to JORC 2012 status, as well as exploration diamond drilling aimed at identifying new zones of mineralisation.

RC percussion drilling was undertaken at both the Cable and Mission deposits at 20 x 40 metre spacing between late 2020 and early 2021. The purpose of the drilling was to increase drill density over mineralised zones to test the continuity of gold mineralisation between sections and to improve the delineation of the ore system along strike and down dip. Resource estimation to JORC 2012 standard for both Cable and Mission is underway.

Over the same period, Red 5 also completed exploration diamond core drilling to test deeper parts of the Cable and Mission gold deposits below the oxide/transitional horizons. This drilling returned encouraging results at both prospects, with several diamond holes intersecting high-grade lode-hosted gold mineralisation, including visible gold, which extends down-dip from significant gold zones hosted in the upper weathered zone. Mineralisation remains open, and further drilling is planned to test the extent of both deposits.

At Cable, diamond exploration drilling has also identified a broad new zone of mineralisation measuring between 70 and 100 metres width, which was intersected in all diamond holes and is observable along the entire length of the known extent of gold mineralisation. This discovery presents a significant growth opportunity for Cable. Together with other targets along the 2.4 kilometre corridor that defines the western limb of the Cable-Mission Syncline, it has the potential to underpin a significant Resource.

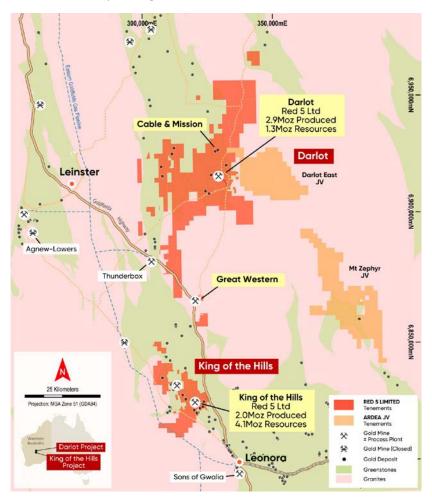
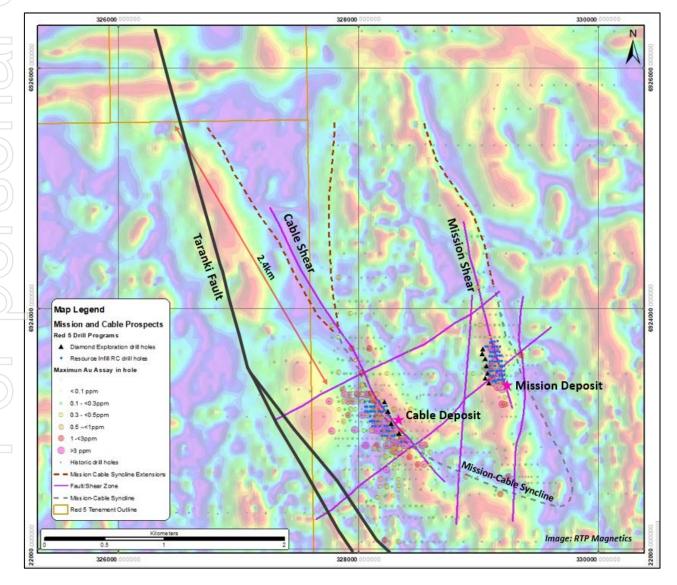


Figure 1: Location of Cable and Mission gold deposits, 10 kilometres north of the Darlot Gold Operation.



Cable & Mission Project Area

The Cable and Mission satellite deposits are located approximately 10 kilometres north of the Darlot Gold Mine within the Yandal Greenstone Belt.

The deposits are situated along the NNW trending fold limbs of the Cable-Mission Syncline, which lies adjacent to the northwest-trending Taranaki Fault Zone. Gold mineralisation at Cable and Mission is hosted by laminated veins associated with steeply dipping shears. The orebodies trend predominantly NNW and are coincident with prominent magnetic high features attributed to folded and faulted magnetic dolerite, similar to the geological setting of the Darlot gold deposit.

The Taranaki Fault Zone is a regional scale structural corridor that runs through the north-eastern part of the Darlot tenure proximal to the eastern limb of the Darlot Syncline and extending northwards where it sits adjacent to the western limb of the Cable-Mission Syncline. The fault zone is considered a key exploration target area and prospective for gold mineralisation, with the occurrence of several untested linear and folded magnetic high features which present NW and SE of the Cable and Mission prospects. These magnetic high anomalies form part of the Cable-Mission Syncline and represent good extensional opportunities along strike at both deposits and will be followed up by future exploration drilling. Proposed RC drilling along the Taranaki trend to the northwest will test Taranaki Fault and associated magnetic high targets along strike of the Cable and Mission Deposits. RC drilling to the south will test the synclinal fold hinge.

Figure 2: Plan view showing recent drilling activity at Cable and Mission Project area. Exploration drill results indicate the potential for extensions to gold mineralisation along the Mission-Cable Syncline in association with NNW trending magnetic highs.

Cable Deposit

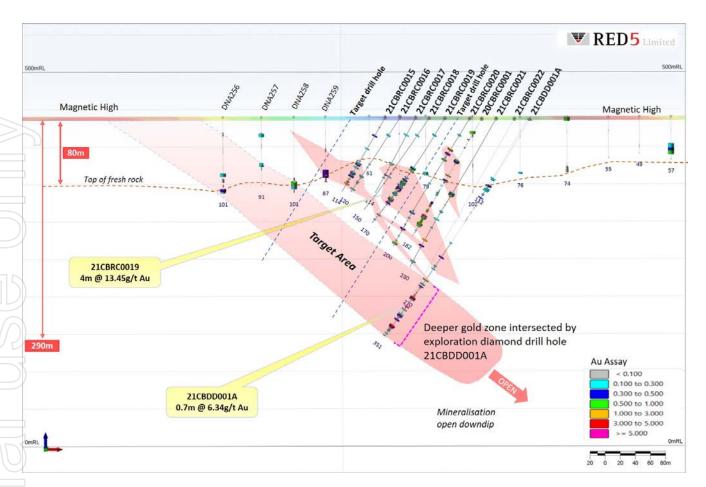
At Cable, historical drilling programs consisting mainly of aircore and RC percussion drilling designed to test for mineralisation at shallow depths in the oxide zone successfully delineated an approximately 900 metre long x 300 metre wide NNW trending gold lode system positioned along the western limb of the Mission-Cable Syncline. Primary gold mineralisation typically occurs in narrow laminated quartz veins hosted mostly in the sheared felsic to intermediate volcanics, which define the main fluid pathways formed where the volcanics juxtapose against the magnetic dolerite. Recent petrological work has also identified flow textured meta basalt as the main host rock associated with the new deeper zone of mineralisation at Cable.

Following an assessment of the historical drill assay data and the completion of due diligence drilling by Red 5 in 2020, the Company undertook a focused drilling campaign comprising both exploration and Resource drill holes between December 2020 and March 2021.

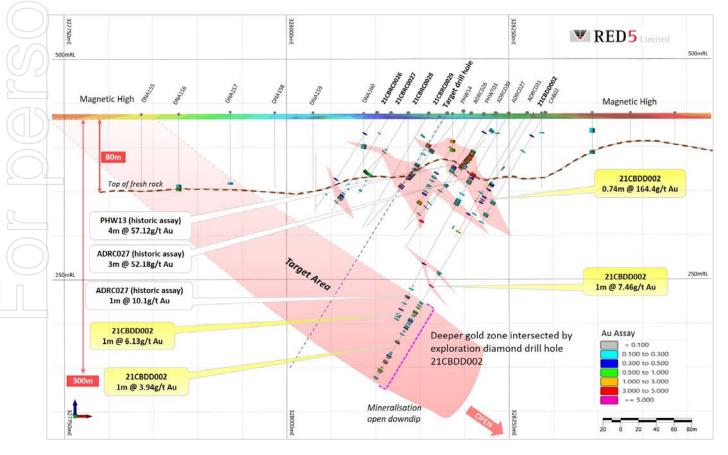
The Resource infill program comprised 26 RC holes for 4,078 metres drilled at 20 x 40 metre spacing across most of the Cable orebody. The program was designed to extend historical drill lines and also drill between existing sections to determine continuity and grade of mineralisation to update the historical JORC 2004 Resource model and improve overall confidence in the Mineral Resource Estimation and classification.

In the same work period, exploration diamond drilling comprising four holes for 1,519 metres was also completed. This program was designed to provide quality drill core data for detailed geological assessment of the Cable area and to search for gold at greater depths along strike of the orebody and predominantly below the oxide zone to determine if the mineralisation extends into fresh rock.

Results of the RC and diamond drilling at Cable have been encouraging, with the Resource-focused holes showing continuity of narrow gold mineralisation between sections, including new high-grade zones such as 0.7 metres grading 164.4g/t Au in Hole 21CBDD002 and 2 metres grading 20.4g/t Au in Hole 21CBDD003.


Results from the diamond exploration program have also been encouraging, with the discovery of a deeper broad zone of mineralisation between 70 and 100 metres wide and observable along the entire strike length of the Cable ore deposit. This is a significant new target area for follow-up drilling.

	Significant Gold Intercepts for all drilling at Cable Deposit ^{1,2}										
	Hole ID	Easting	Northing	RL	EOH	From	То	Length	Au g/t		
5	21CBDD002	328278	6923036	439.1	350.9	111.3	112.04	0.74	164.4		
	21CBDD003	328341	6922957	439.6	350.8	133	135	2	20.4		
	21CBRC0019	328138	6923140	438.8	170	111	115	4	13.35		
겓	20CBDD004	328220	6923220	440.1	354	317	319.2	2.2	4.99		
	21CBDD001A	328250	6923138	438.1	350.86	301	301.7	0.7	6.34		
	21CBDD002	328277	6922956	439.0	350.8	225	226	1	7.46		


No top-cut applied. Refer to Appendix 1, Table 1 for drill hole summary information and reporting parameters used. Intercept lengths are reported as 'down-hole' lengths, not true widths.

² Refer to Appendix 2 for JORC 2012 Table 1.

Figure 3: Cross Section 6923140N (looking north) from Cable Deposit showing mineralisation zone and new deeper gold zone intersected in fresh rock by drill hole 21CBDD001A.

Figure 4: Cross Section 6923035N (looking north) from Cable Deposit showing mineralisation zone and new deeper gold zone intersected in fresh rock by drill hole 21CBDD002.

Mission Deposit

Historical aircore and RC drilling at the Mission deposit successfully defined a significant north-to-northwest trending oxide/supergene gold anomaly, extending over approximately 700 metres length and 200 metres width on the eastern limb of the Mission-Cable Syncline.

The anomaly is associated with a series of parallel NNW shears steeply dipping to the southwest and crosscutting the Taranaki Fault Zone. These mineralised zones are generated from the re-activation of pre-existing structural weakness, which has been observed around Darlot.

Gold mineralisation at Mission is similar to that at Cable and is associated with laminated quartz veining and/or sericite-chlorite+/-carbonate-pyrite alteration hosted in dolerite with a primary lode vein intersected within magnetic dolerite on the underlying contact with interbedded sediments.

A total of 51 RC Resource infill holes at 20 x 40 metre spacing, totalling 8,113 metres, was also completed at the Mission deposit. The holes were designed to follow-up on anomalous historical aircore drill results to extend and upgrade the historical JORC 2004 Resource and confirm continuity between existing sections. Diamond core drilling was also undertaken to test for gold mineralisation in fresh rock below the oxide/ transitional horizon at Mission.

Similar to Cable, assay results from both the RC and diamond drill programs at the Mission deposit have been encouraging, confirming good continuity of gold mineralisation as well as identifying new zones of mineralisation within the historical oxide Mineral Resource.

The deeper drilling designed to test the extension of the gold lode into fresh rock was also successful, with drill intercepts returning moderate to high-grade mineralisation zones including 0.35 metres grading 142.52g/t Au in Hole 20MIDD001, 11 metres grading 3.43g/t Au in Hole 20MIRC0018, 3.01 metres grading 10.46g/t Au in Hole 20MIDD003 and 13 metres grading 2.18g/t Au in Hole 20MIRC0038.

The results of the Mission drilling provide strong justification for ongoing Resource and exploration drilling. Mineralisation remains open at depth and along strike, with future drilling planned to further test the extent of the gold deposit, including potential extension along strike associated with untested magnetic high anomalies.

The discovery of mineralisation within the fresh rock below the oxide level is an exciting development and opens significant exploration opportunities with the potential to extend and upgrade the historical JORC 2004 Resource.

	Significan	t Gold Inte	rcepts for a	all drilling o	at Mission	Deposit ^{1,2}		
Hole ID	Easting	Northing	RL	EOH	From	То	Length	Au ppm
20MIDD001	329091	6923379	437.6	308.9	137.85	138.2	0.35	142.52
20MIDD003	329061	6923581	437.7	302.7	166.56	169.57	3.01	10.46
20MIRC0002	329149	6923468	437.712	140	53	57	4	14.67
20MIRC0011	329120	6923438	437.6	252	90	95	5	4.87
20MIRC0017	329158	6923480	437.6	174	41	46	5	4.47
20MIRC0018	329176	6923479	437.7	150	13	24	11	3.43
20MIRC0023	329180	6923519	437.6	174	43	46	3	7.1
20MIRC0034	329138	6923602	437.6	180	50	54	4	3.96
20MIRC0038	329102	6923636	437.5	180	96	109	13	2.18
20MIRC0039	329120	6923637	437.4	174	70	81	11	1.83

¹ No top-cut applied. Refer to Appendix 1, Table 1 for drill hole summary information and reporting parameters used. Intercept lengths are reported as 'down-hole' lengths, not true widths.

² Refer to Appendix 2 for JORC 2012 Table 1.

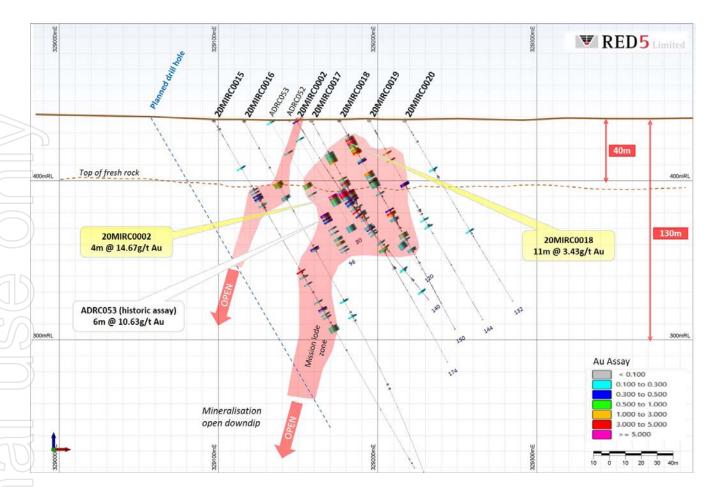


Figure 5: Cross Section 6923480N (looking north) from the central part of the Mission Deposit showing mineralisation zone.

ENDS

Authorised for release by the Board.

For more information:

Investors/Shareholders:

Patrick Duffy, Chief Corporate Development Officer Mark Williams, Managing Director Red 5 Limited

Telephone: +61 8 9322 4455

Media:

Nicholas Read / Kate Bell Read Corporate

Telephone: +61 8 9388 1474

Exploration Results

Mr Byron Dumpleton confirms that he is the Competent Person for the Exploration Results summarised in this report and Mr Dumpleton has read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition). Mr Dumpleton is a Competent Person as defined by the JORC Code, 2012 Edition, having five years' experience that is relevant to the style of mineralisation and type of deposit described in this report and to the activity for which he is accepting responsibility. Mr Dumpleton is a Member of the Australian Institute of Geoscientists, No. 1598. Mr Dumpleton is a full-time employee of Red 5. Mr Dumpleton has reviewed this report and consents to the inclusion of the matters based on his supporting information in the form and context in which it appears.

Mr Dumpleton verifies that the Exploration Results reported is based on and fairly and accurately reflects in the form and context in which it appears the information in his supporting documentation relating to Open Pit and Underground Mineral Resource estimates.

Forward-Looking Statements

Certain statements made during or in connection with this statement contain or comprise certain forward-looking statements regarding Red 5's Mineral Resources and Reserves, exploration operations, project development operations, production rates, life of mine, projected cash flow, capital expenditure, operating costs and other economic performance and financial condition as well as general market outlook. Although Red 5 believes that the expectations reflected in such forward-looking statements are reasonable, such expectations are only predictions and are subject to inherent risks and uncertainties which could cause actual values, results, performance or achievements to differ materially from those expressed, implied or projected in any forward-looking statements and no assurance can be given that such expectations will prove to have been correct. Accordingly, results could differ materially from those set out in the forward-looking statements as a result of, among other factors, changes in economic and market conditions, delays or changes in project development, success of business and operating initiatives, changes in the regulatory environment and other government actions, fluctuations in metals prices and exchange rates and business and operational risk management. Except for statutory liability, which cannot be excluded, each of Red 5, its officers, employees and advisors expressly disclaim any responsibility for the accuracy or completeness of the material contained in this statement and excludes all liability whatsoever (including in negligence) for any loss or damage which may be suffered by any person as a consequence of any information in this statement or any error or omission. Red 5 undertakes no obligation to update publicly or release any revisions to these forward-looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events other than required by the Corporations Act and ASX Listing Rules. Accordingly, you should not place undue reliance on any forward-looking statement.

APPENDIX 1

SIGNIFICANT ASSAYS FOR CABLE DEPOSIT

	Significant Gold Intercepts for Cable deposit for Au above 0.3 g/t									
	Hole ID	Easting	Northing	RL	ЕОН	From	То	Length	Au g/t	Gram per metre
	20CBDD004	328220.45	6923220	440.13	354	198.5	201	2.5	0.33g/t	0.83
	20CBDD004	328220.45	6923220	440.13	354	299	308.45	9.45	0.34g/t	3.21
	20CBDD004	328220.45	6923220	440.13	354	317	319.2	2.2	4.99g/t	10.98
	20CBDD004	328220.45	6923220	440.13	354	322	323	1	0.30g/t	0.3
	20CBDD004	328220.45	6923220	440.13	354	330.7	331.07	0.37	1.74g/t	0.64
	20CBDD004	328220.45	6923220	440.13	354	334	335	1	0.34g/t	0.34
	20CBDD004	328220.45	6923220	440.13	354	339	342	3	0.32g/t	0.96
75	20CBDD004	328220.45	6923220	440.13	354	347	348	1	0.55g/t	0.55
	20CBRC0001	328186.85	6923138.3	438.081	182	65	68	3	0.51g/t	1.53
	20CBRC0001	328186.85	6923138.3	438.081	182	88	89	1	0.59g/t	0.59
	20CBRC0001	328186.85	6923138.3	438.081	182	95	96	1	0.32g/t	0.32
	20CBRC0001	328186.85	6923138.3	438.081	182	150	154	4	1.79g/t	7.16
	20CBRC0001	328186.85	6923138.3	438.081	182	162	165	3	0.73g/t	2.19
	20CBRC0002	328282.32	6923010.5	439.52	140	67	68	1	0.60g/t	0.6
	20CBRC0002	328282.32	6923010.5	439.52	140	73	74	1	0.55g/t	0.55
	20CBRC0002	328282.32	6923010.5	439.52	140	92	93	1	1.36g/t	1.36
	20CBRC0002	328282.32	6923010.5	439.52	140	105	106	1	0.90g/t	0.9
	20CBRC0003	328359.33	6922888	439.472	140	64	69	5	3.66g/t	18.3
	20CBRC0003	328359.33	6922888	439.472	140	77	78	1	0.41g/t	0.41
	20CBRC0003	328359.33	6922888	439.472	140	85	86	1	0.52g/t	0.52
	20CBRC0003	328359.33	6922888	439.472	140	103	104	1	0.30g/t	0.3
	20CBRC0003	328359.33	6922888	439.472	140	106	107	1	0.34g/t	0.34
	21CBDD001	328247.95	6923138.8	438.032	112.4	104	105	1	0.38g/t	0.38
	21CBDD001A	328250.84	6923138.8	438.195	350.86	220	221	1	0.32g/t	0.32
20	21CBDD001A	328250.84	6923138.8	438.195	350.86	256	257	1	2.75g/t	2.75
	21CBDD001A	328250.84	6923138.8	438.195	350.86	268	268.39	0.39	0.47g/t	0.18
	21CBDD001A	328250.84	6923138.8	438.195	350.86	286	288	2	1.86g/t	3.72
	21CBDD001A	328250.84	6923138.8	438.195	350.86	301	301.7	0.7	6.34g/t	4.44
95	21CBDD001A	328250.84	6923138.8	438.195	350.86	316	317	1	0.36g/t	0.36
	21CBDD001A	328250.84	6923138.8	438.195	350.86	323	324	1	0.31g/t	0.31
	21CBDD001A	328250.84	6923138.8	438.195	350.86	333	336	3	1.50g/t	4.5
	21CBDD002	328277.55	6923036.5	439.099	350.9	91	94	3	0.45g/t	1.35
	21CBDD002	328277.55	6923036.5	439.099	350.9	98	99	1	0.43g/t	0.43
	21CBDD002	328277.55	6923036.5	439.099	350.9	108	109	1	0.34g/t	0.34
	21CBDD002	328277.55	6923036.5	439.099	350.9	111.3	112.04	0.74	164.43g/t	121.68
	21CBDD002	328277.55	6923036.5	439.099	350.9	115	116	1	0.46g/t	0.46
	21CBDD002	328277.55	6923036.5	439.099	350.9	225	226	1	7.46g/t	7.46
	21CBDD002	328277.55	6923036.5	439.099	350.9	254	255	1	0.85g/t	0.85
	21CBDD002	328277.55	6923036.5	439.099	350.9	260	264	4	1.94g/t	7.76
	21CBDD002	328277.55	6923036.5	439.099	350.9	271	272	1	0.39g/t	0.39
	21CBDD002	328277.55	6923036.5	439.099	350.9	281	282	1	0.30g/t	0.3
	21CBDD002	328277.55	6923036.5	439.099	350.9	300	301	1	3.94g/t	3.94
	21CBDD002	328277.55	6923036.5	439.099	350.9	318	319	1	0.41g/t	0.41
	21CBDD002	328277.55	6923036.5	439.099	350.9	325	327.52	2.52	0.76g/t	1.92
	21CBDD002	328277.55	6923036.5	439.099	350.9	336	338	2	0.63g/t	1.26
	21CBDD003	328341.42	6922956.7	439.627	350.8	105	107	2	0.82g/t	1.64
	21CBDD003	328341.42	6922956.7	439.627	350.8	133	135	2	20.43g/t	40.86
	21CBDD003	328341.42	6922956.7	439.627	350.8	245	246	1	1.98g/t	1.98
	21CBDD003	328341.42	6922956.7	439.627	350.8	283	284	1	0.35g/t	0.35
	21CBDD003	328341.42	6922956.7	439.627	350.8	313	316	3	0.37g/t	1.11
	21CBDD003	328341.42	6922956.7	439.627	350.8	320	323	3	0.58g/t	1.74

	Significant Gold Intercepts for Cable deposit for Au above 0.3 g/t									
	Hole ID	Easting	Northing	RL	ЕОН	From	То	Length	Au g/t	Gram per metre
	21CBDD003	328341.42	6922956.7	439.627	350.8	328.82	329.15	0.33	0.44g/t	0.15
	21CBDD003	328341.42	6922956.7	439.627	350.8	331	332	1	0.33g/t	0.33
	21CBDD003	328341.42	6922956.7	439.627	350.8	336	337	1	0.38g/t	0.38
	21CBDD003	328341.42	6922956.7	439.627	350.8	340	342	2	0.68g/t	1.36
	21CBDD003	328341.42	6922956.7	439.627	350.8	349	350.8	1.8	0.85g/t	1.53
	21CBRC0004	328055.34	6923222.2	439.146	162	30	31	1	0.70g/t	0.7
	21CBRC0005	328094.19	6923222.4	439.491	162	30	32	2	0.71g/t	1.42
	21CBRC0005	328094.19	6923222.4	439.491	162	97	99	2	0.57g/t	1.14
	21CBRC0005	328094.19	6923222.4	439.491	162	109	110	1	1.34g/t	1.34
	21CBRC0006	328174.3	6923225.3	439.065	180	27	29	2	0.63g/t	1.26
	21CBRC0006	328174.3	6923225.3	439.065	180	140	141	1	3.31g/t	3.31
G15	21CBRC0006	328174.3	6923225.3	439.065	180	160	161	1	0.47g/t	0.47
	21CBRC0007	328059.01	6923179.4	439.257	120	25	26	1	0.31g/t	0.31
	21CBRC0007	328059.01	6923179.4	439.257	120	63	64	1	2.43g/t	2.43
	21CBRC0008	328074.95	6923179.3	439.515	120	28	31	3	0.38g/t	1.14
	21CBRC0008	328074.95	6923179.3	439.515	120	64	66	2	1.94g/t	3.88
4	21CBRC0011	328137.95	6923180.4	438.973	180	97	98	1	0.53g/t	0.53
	21CBRC0011	328137.95	6923180.4	438.973	180	102	105	3	0.52g/t	1.56
	21CBRC0012	328198.2	6923182.7	438.376	210	24	27	3	0.43g/t	1.29
	21CBRC0013	328218.8	6923182.4	438.275	240	168	169	1	0.95g/t	0.95
	21CBRC0013	328218.8	6923182.4	438.275	240	195	196	1	1.61g/t	1.61
	21CBRC0013	328218.8	6923182.4	438.275	240	202	203	1	0.41g/t	0.41
	21CBRC0014	328237.5	6923183	437.61	270	100	102	2	0.52g/t	1.04
7	21CBRC0014	328237.5	6923183	437.61	270	202	203	1	9.38g/t	9.38
	21CBRC0015	328058.77	6923140.2	439.627	114	28	29	1	0.45g/t	0.45
	21CBRC0015	328058.77	6923140.2	439.627	114	73	74	1	0.31g/t	0.31
	21CBRC0015	328058.77	6923140.2	439.627	114	86	87	1	0.35g/t	0.35
	21CBRC0015	328058.77	6923140.2	439.627	114	90	92	2	0.67g/t	1.34
16	21CBRC0015	328058.77	6923140.2	439.627	114	102	103	1	2.13g/t	2.13
((//))	21CBRC0019	328137.95	6923139.6	438.811	170	79	84	5	0.34g/t	1.7
7	21CBRC0019	328137.95	6923139.6	438.811	170	98	99	1	0.36g/t	0.36
	21CBRC0019	328137.95	6923139.6	438.811	170	102	104	2	0.57g/t	1.14
90	21CBRC0019	328137.95	6923139.6	438.811	170	111	115	4	13.35g/t	53.4
	21CBRC0019	328137.95	6923139.6	438.811	170	129	132	3	0.96g/t	2.88
	21CBRC0019	328137.95	6923139.6	438.811	170	136	137	1	0.34g/t	0.34
	21CBRC0020	328170.83	6923138.8	438.389	200	48	50	2	0.67g/t	1.34
	21CBRC0020	328170.83	6923138.8	438.389	200	55	56	1	0.47g/t	0.47
	21CBRC0020	328170.83	6923138.8	438.389	200	65	66	1	0.57g/t	0.57
7	21CBRC0020	328170.83	6923138.8	438.389	200	148	149	1	0.30g/t	0.3
	21CBRC0020	328170.83	6923138.8	438.389	200	173	174	1	0.36g/t	0.36
	21CBRC0020	328170.83	6923138.8	438.389	200	195	196	1	0.65g/t	0.65
	21CBRC0021	328205.96	6923138.8	438.283	230	116	119	3	0.59g/t	1.77
	21CBRC0021	328205.96	6923138.8	438.283	230	188	189	1	1.35g/t	1.35
	21CBRC0021	328205.96	6923138.8	438.283	230	197	198	1	0.30g/t	0.3
	21CBRC0024	328137.07	6923098.7	438.281	150	77	83	6	0.42g/t	2.52
	21CBRC0026	328101.93	6923060.2	438.816	126	27	28	1	0.44g/t	0.44
	21CBRC0026	328101.93	6923060.2	438.816	126	88	89	1	0.48g/t	0.48
_	21CBRC0027	328117.62	6923060.3	438.425	130	98	99	1	0.30g/t	0.3
	21CBRC0027	328117.62	6923060.3	438.425	130	108	109	1	0.30g/t	0.3
	21CBRC0028	328137.04	6923060.5	438.321	108	81	82	1	0.84g/t	0.84
_	21CBRC0030	328120.83	6923020.1	438.852	120	87	88	1	0.64g/t	0.64
	21CBRC0030	328120.83	6923020.1	438.852	120	105	108	3	0.32g/t	0.96

- 1. Lengths quoted are down hole, not true widths.
- 2. Minimum grade of 0.3 g/t Au.
- 3. Maximum internal waste of 2m.

SIGNIFICANT ASSAYS FOR MISSION DEPOSIT

		Si	gnificant Gold In	tercepts for N	lission depo	osit for Au a	bove 0.3 g/	t		
_	Hole ID	Easting	Northing	RL	ЕОН	From	То	Length	Au g/t	Gram per metre
	20MIDD001	329090.63	6923379.2	437.639	308.9	50	51	1	3.96g/t	3.96
	20MIDD001	329090.63	6923379.2	437.639	308.9	137.85	138.2	0.35	142.52g/t	49.88
	20MIDD001	329090.63	6923379.2	437.639	308.9	194	194.3	0.3	4.99g/t	1.5
	20MIDD002	329078.84	6923459.5	437.657	314.9	53	54	1	0.62g/t	0.62
	20MIDD002	329078.84	6923459.5	437.657	314.9	77.3	78	0.7	0.96g/t	0.67
	20MIDD003	329060.65	6923581.3	437.696	302.67	47	48	1	0.35g/t	0.35
	20MIDD003	329060.65	6923581.3	437.696	302.67	52	54	2	0.40g/t	0.8
	20MIDD003	329060.65	6923581.3	437.696	302.67	120.52	121	0.48	0.49g/t	0.24
615	20MIDD003	329060.65	6923581.3	437.696	302.67	159.5	161	1.5	1.54g/t	2.31
	20MIDD003	329060.65	6923581.3	437.696	302.67	166.56	169.57	3.01	10.46g/t	31.48
	20MIDD004	329042.37	6923660	437.287	300	59	60	1	0.90g/t	0.9
an	20MIDD004	329042.37	6923660	437.287	300	67	68	1	0.64g/t	0.64
	20MIDD004	329042.37	6923660	437.287	300	70	71	1	0.33g/t	0.33
	20MIDD004	329042.37	6923660	437.287	300	186	186.3	0.3	2.74g/t	0.82
	20MIDD004	329042.37	6923660	437.287	300	237	241	4	1.71g/t	6.84
	20MIRC0001	329147.92	6923385.2	437.707	134	37	38	1	4.13g/t	4.13
	20MIRC0001	329147.92	6923385.2	437.707	134	44	45	1	1.00g/t	1
	20MIRC0001	329147.92	6923385.2	437.707	134	48	49	1	1.12g/t	1.12
OD	20MIRC0001	329147.92	6923385.2	437.707	134	68	75	7	5.37g/t	37.59
	20MIRC0001	329147.92	6923385.2	437.707	134	104	107	3	1.32g/t	3.96
	20MIRC0002	329149.04	6923468.7	437.712	140	0	1	1	0.35g/t	0.35
	20MIRC0002	329149.04	6923468.7	437.712	140	53	57	4	14.67g/t	58.68
	20MIRC0002	329149.04	6923468.7	437.712	140	60	63	3	0.31g/t	0.93
	20MIRC0002	329149.04	6923468.7	437.712	140	68	72	4	0.90g/t	3.6
	20MIRC0002	329149.04	6923468.7	437.712	140	97	98	1	0.64g/t	0.64
16	20MIRC0003	329117.23	6923676.4	437.304	122	43	44	1	0.51g/t	0.51
	20MIRC0003	329117.23	6923676.4	437.304	122	78	79	1	0.55g/t	0.55
	20MIRC0003	329117.23	6923676.4	437.304	122	88	95	7	0.50g/t	3.5
	20MIRC0004	329119.83	6923394.5	437.656	270	37	39	2	0.66g/t	1.32
615	20MIRC0004	329119.83	6923394.5	437.656	270	48	50	2	0.63g/t	1.26
	20MIRC0004	329119.83	6923394.5	437.656	270	79	84	5	0.85g/t	4.25
	20MIRC0004	329119.83	6923394.5	437.656	270	101	102	1	0.71g/t	0.71
	20MIRC0004	329119.83	6923394.5	437.656	270	123	124	1	0.78g/t	0.78
	20MIRC0004	329119.83	6923394.5	437.656	270	155	156	1	0.57g/t	0.57
	20MIRC0005	329135.76	6923399.8	437.87	228	44	48	4	0.30g/t	1.2
(7	20MIRC0005	329135.76	6923399.8	437.87	228	80	82	2	3.71g/t	7.42
	20MIRC0005	329135.76	6923399.8	437.87	228	128	129	1	0.46g/t	0.46
	20MIRC0006	329160.29	6923401.1	437.837	204	55	60	5	0.31g/t	1.55
	20MIRC0006	329160.29	6923401.1	437.837	204	62	63	1	0.30g/t	0.3
п	20MIRC0006	329160.29	6923401.1	437.837	204	88	89	1	4.01g/t	4.01
_	20MIRC0006	329160.29	6923401.1	437.837	204	101	102	1	0.84g/t	0.84
	20MIRC0008	329196.91	6923402.1	437.708	120	8	9	1	1.10g/t	1.1
	20MIRC0008	329196.91	6923402.1	437.708	120	13	15	2	1.02g/t	2.04
	20MIRC0008	329196.91	6923402.1	437.708	120	68	69	1	0.68g/t	0.68
	20MIRC0009	329216.7	6923402.1	437.757	96	41	42	1	0.34g/t	0.34
	20MIRC0010	329096.67	6923437.2	437.796	240	147	148	1	0.80g/t	0.8
	20MIRC0010	329096.67	6923437.2	437.796	240	157	158	1	11.00g/t	11
	20MIRC0011	329119.75	6923437.6	437.605	252	41	42	1	0.73g/t	0.73
_	20MIRC0011	329119.75	6923437.6	437.605	252	90	95	5	4.87g/t	24.35
	20MIRC0011	329119.75	6923437.6	437.605	252	139	140	1	2.36g/t	2.36
	20MIRC0012	329174.47	6923442.9	437.762	168	32	33	1	0.81g/t	0.81
	20MIRC0012	329174.47	6923442.9	437.762	168	49	51	2	2.58g/t	5.16
	20MIRC0012	329174.47	6923442.9	437.762	168	57	58	1	0.57g/t	0.57

		Si	gnificant Gold In	tercepts for N	lission depo	osit for Au a	bove 0.3 g/	t		
	usts in	Francisco	No. of Co.	81	5011	F	<u>-</u> .	t a conth	A / .	Gram
	Hole ID	Easting	Northing	RL	ЕОН	From	То	Length	Au g/t	per metre
	20MIRC0012	329174.47	6923442.9	437.762	168	63	67	4	1.08g/t	4.32
	20MIRC0012	329174.47	6923442.9	437.762	168	72	73	1	0.57g/t	0.57
	20MIRC0012	329174.47	6923442.9	437.762	168	161	162	1	0.31g/t	0.31
	20MIRC0013	329198.31	6923443.3	437.712	156	38	43	5	0.77g/t	3.85
	20MIRC0015	329097.08	6923479	437.713	252	54	57	3	0.36g/t	1.08
	20MIRC0015	329097.08	6923479	437.713	252	109	110	1	4.51g/t	4.51
	20MIRC0015	329097.08	6923479	437.713	252	136	137	1	0.48g/t	0.48
	20MIRC0015	329097.08	6923479	437.713	252	151	152	1	0.68g/t	0.68
	20MIRC0016	329116.16	6923478.3	437.513	248	44	47	3	1.08g/t	3.24
	20MIRC0016	329116.16	6923478.3	437.513	248	91	92	1	0.43g/t	0.43
	20MIRC0017	329158.38	6923480.1	437.568	174	25	30	5	0.87g/t	4.35
an	20MIRC0017	329158.38	6923480.1	437.568	174	41	46	5	4.47g/t	22.35
	20MIRC0017	329158.38	6923480.1	437.568	174	50	57	7	1.08g/t	7.56
	20MIRC0017	329158.38	6923480.1	437.568	174	67	68	1	1.60g/t	1.6
20	20MIRC0017	329158.38	6923480.1	437.568	174	77	78	1	0.33g/t	0.33
\mathbb{Q}_{2}	20MIRC0017	329158.38	6923480.1	437.568	174	92	93	1	0.51g/t	0.51
	20MIRC0018	329175.96	6923479.4	437.684	150	13	24	11	3.43g/t	37.73
	20MIRC0018	329175.96	6923479.4	437.684	150	29	30	1	0.33g/t	0.33
	20MIRC0018	329175.96	6923479.4	437.684	150	37	39	2	1.04g/t	2.08
	20MIRC0018	329175.96	6923479.4	437.684	150	42	45	3	0.64g/t	1.92
	20MIRC0018	329175.96	6923479.4	437.684	150	64	68	4	1.75g/t	7
	20MIRC0018	329175.96	6923479.4	437.684	150	82	83	1	1.16g/t	1.16
	20MIRC0019	329194.63	6923480.6	437.856	144	23	24	1	2.60g/t	2.6
	20MIRC0019	329194.63	6923480.6	437.856	144	28	29	1	1.44g/t	1.44
	20MIRC0019	329194.63	6923480.6	437.856	144	45	47	2	0.34g/t	0.68
	20MIRC0021	329095.94	6923516.6	437.698	252	80	81	1	0.40g/t	0.4
	20MIRC0021	329095.94	6923516.6	437.698	252	148	149	1	0.54g/t	0.54
	20MIRC0021	329095.94	6923516.6	437.698	252	156	157	1	0.50g/t	0.5
	20MIRC0022	329139.08	6923518.1	437.473	198	36	38	2	1.29g/t	2.58
	20MIRC0022	329139.08	6923518.1	437.473	198	58	63	5	1.05g/t	5.25
	20MIRC0022	329139.08	6923518.1	437.473	198	93	94	1	0.61g/t	0.61
	20MIRC0023	329180.01	6923519.2	437.639	174	14	15	1	0.60g/t	0.6
	20MIRC0023	329180.01	6923519.2	437.639	174	43	46	3	7.10g/t	21.3
	20MIRC0023	329180.01	6923519.2	437.639	174	84	85	1	0.35g/t	0.35
	20MIRC0023	329180.01	6923519.2	437.639	174	92	94	2	0.53g/t	1.06
	20MIRC0024	329197.47	6923519.2	437.511	132	66	67	1	0.37g/t	0.37
	20MIRC0024	329197.47	6923519.2	437.511	132	72	73	1	0.37g/t	0.37
	20MIRC0026	329097.06	6923554.2	437.55	258	55	56	1	0.30g/t	0.3
	20MIRC0026	329097.06	6923554.2	437.55	258	117	118	1	0.38g/t	0.38
	20MIRC0026	329097.06	6923554.2	437.55	258	122	125	3	0.61g/t	1.83
	20MIRC0026	329097.06	6923554.2	437.55	258	129	132	3	0.68g/t	2.04
	20MIRC0026	329097.06	6923554.2	437.55	258	140	142	2	0.34g/t	0.68
	20MIRC0026	329097.06	6923554.2	437.55	258	173	174	1	0.31g/t	0.31
ПП	20MIRC0026	329097.06	6923554.2	437.55	258	175	176	1	0.45g/t	0.45
	20MIRC0027	329115.74	6923560.7	437.427	150	34	35	1	0.31g/t	0.31
	20MIRC0027	329115.74	6923560.7	437.427	150	46	47	1	0.35g/t	0.35
	20MIRC0027	329115.74	6923560.7	437.427	150	51	52	1	0.30g/t	0.3
	20MIRC0027	329115.74	6923560.7	437.427	150	79	80	1	0.61g/t	0.61
ŀ	20MIRC0027	329115.74	6923560.7	437.427	150	84	85	1	0.36g/t	0.36
ŀ	20MIRC0027	329115.74	6923560.7	437.427	150	94	96	2	1.94g/t	3.88
ŀ	20MIRC0027	329115.74	6923560.7	437.427	150	99	104	5	0.48g/t	2.4
ŀ	20MIRC0028	329136.79	6923553.6	437.302	150	62	70	8	0.72g/t	5.76
ŀ	20MIRC0028	329136.79	6923553.6	437.302	150	74	75	1	1.09g/t	1.09
ŀ	20MIRC0028	329136.79	6923553.6	437.302	150	91	95	4	0.41g/t	1.64
ŀ	20MIRC0029	329156.31	6923559.7	437.418	150	13	14	1	1.97g/t	1.97
	ZOWIINCOUZS	J231JU.31	0,23,33.7	737.410	100	13	14		1.978/L	1.57

		Si	gnificant Gold In	tercepts for N	lission depo	osit for Au a	bove 0.3 g/	t		
	Hole ID	Easting	Northing	RL	ЕОН	From	То	Length	Au g/t	Gram per metre
	20MIRC0029	329156.31	6923559.7	437.418	150	24	25	1	2.16g/t	2.16
	20MIRC0030	329177.7	6923559.9	437.504	120	10	11	1	0.70g/t	0.7
	20MIRC0030	329177.7	6923559.9	437.504	120	17	18	1	0.61g/t	0.61
	20MIRC0030	329177.7	6923559.9	437.504	120	32	33	1	0.44g/t	0.44
	20MIRC0030	329177.7	6923559.9	437.504	120	40	41	1	0.69g/t	0.69
	20MIRC0030	329177.7	6923559.9	437.504	120	80	81	1	0.45g/t	0.45
	20MIRC0031	329195.11	6923559.6	437.611	114	62	63	1	0.50g/t	0.5
	20MIRC0032	329097.02	6923597.9	437.336	168	56	57	1	0.38g/t	0.38
	20MIRC0032	329097.02	6923597.9	437.336	168	108	125	17	0.98g/t	16.66
	20MIRC0033	329116.55	6923600.3	437.458	207	48	49	1	0.87g/t	0.87
	20MIRC0033	329116.55	6923600.3	437.458	207	59	60	1	0.47g/t	0.47
	20MIRC0033	329116.55	6923600.3	437.458	207	82	86	4	0.88g/t	3.52
	20MIRC0033	329116.55	6923600.3	437.458	207	95	96	1	4.21g/t	4.21
	20MIRC0034	329137.52	6923601.8	437.587	180	50	54	4	3.96g/t	15.84
200	20MIRC0034	329137.52	6923601.8	437.587	180	57	58	1	3.02g/t	3.02
	20MIRC0034	329137.52	6923601.8	437.587	180	66	68	2	0.60g/t	1.2
	20MIRC0035	329157.53	6923604.3	437.232	144	23	24	1	3.36g/t	3.36
	20MIRC0035	329157.53	6923604.3	437.232	144	29	30	1	4.03g/t	4.03
-	20MIRC0035	329157.53	6923604.3	437.232	144	45	46	1	0.39g/t	0.39
F	20MIRC0035	329157.53	6923604.3	437.232	144	96	97	1	0.45g/t	0.45
	20MIRC0035	329157.53	6923604.3	437.232	144	120	121	1	0.43g/t	0.31
	20MIRC0037	329194.01	6923606.1	437.432	84	63	69	6	1.20g/t	7.2
	20MIRC0038	329102.04	6923636.5	437.493	180	85	86	1	0.42g/t	0.42
70	20MIRC0038	329102.04	6923636.5	437.493	180	96	109	13	2.18g/t	28.34
	20MIRC0038	329102.04	6923636.5	437.493	180	145	146	1	0.33g/t	0.33
	20MIRC0039	329102.04	6923636.8	437.44	174	65	66	1	0.58g/t	0.58
	20MIRC0039			437.44	174	70	81			20.13
		329119.85	6923636.8					11	1.83g/t	
	20MIRC0040	329135.22	6923635.5 6923635.5	437.403	150	32	33	1	0.36g/t	0.36
100	20MIRC0040	329135.22		437.403	150	58	65	7	1.25g/t	8.75
IJ.IJ	20MIRC0040	329135.22	6923635.5	437.403	150	68	73	5	0.71g/t	3.55
_	20MIRC0041	329156.85	6923638.2	437.378	138	45	47	2	2.40g/t	4.8
	20MIRC0042	329175.04	6923637.6	437.23	84	19	20	1	0.32g/t	0.32
75	20MIRC0042	329175.04	6923637.6	437.23	84	37	39	2	0.42g/t	0.84
	20MIRC0043	329058.91	6923679.5	437.005	198	9	10	1	0.45g/t	0.45
	20MIRC0043	329058.91	6923679.5	437.005	198	50	53	3	1.01g/t	3.03
	20MIRC0043	329058.91	6923679.5	437.005	198	56	57	1	0.42g/t	0.42
	20MIRC0043	329058.91	6923679.5	437.005	198	60	63	3	0.38g/t	1.14
_	20MIRC0043	329058.91	6923679.5	437.005	198	151	154	3	0.73g/t	2.19
_	20MIRC0044	329077.4	6923679	436.795	164	157	160	3	0.62g/t	1.86
	20MIRC0045	329136.95	6923679.9	437.342	132	47	48	1	0.39g/t	0.39
	20MIRC0045	329136.95	6923679.9	437.342	132	55	58	3	1.53g/t	4.59
	20MIRC0045	329136.95	6923679.9	437.342	132	62	63	1	1.26g/t	1.26
	20MIRC0046	329156.59	6923680.2	437.298	120	19	20	1	0.99g/t	0.99
	20MIRC0046	329156.59	6923680.2	437.298	120	44	53	9	0.93g/t	8.37
	20MIRC0046	329156.59	6923680.2	437.298	120	58	59	1	0.56g/t	0.56
	20MIRC0046	329156.59	6923680.2	437.298	120	73	74	1	1.50g/t	1.5
	20MIRC0047	329179.71	6923680.8	437.395	102	16	18	2	1.36g/t	2.72
F	20MIRC0048	329100.12	6923716.9	437.344	150	70	71	1	0.38g/t	0.38
L	20MIRC0048	329100.12	6923716.9	437.344	150	88	89	1	0.34g/t	0.34
	20MIRC0049	329117.06	6923719.3	437.524	120	49	50	1	0.52g/t	0.52
L	20MIRC0049	329117.06	6923719.3	437.524	120	61	63	2	0.68g/t	1.36
	20MIRC0049	329117.06	6923719.3	437.524	120	77	78	1	0.38g/t	0.38
	20MIRC0050	329138.53	6923721.9	438.085	102	55	56	1	0.90g/t	0.9
	20MIRC0051	329159.49	6923724.9	438.402	108	18	19	1	1.38g/t	1.38
	20MIRC0051	329159.49	6923724.9	438.402	108	61	62	1	0.31g/t	0.31

Significant Gold Intercepts for Mission deposit for Au above 0.3 g/t									
Hole ID Easting Northing RL EOH From To Length Au g/t									Gram per metre
20MIRC0051	329159.49	6923724.9	438.402	108	65	66	1	0.35g/t	0.35
21MIDD0005	329062.77	6923419.4	437.747	273.07	58	60	2	0.32g/t	0.64
21MIDD0005	329062.77	6923419.4	437.747	273.07	162	162.35	0.35	3.16g/t	1.11

- 1. Lengths quoted are down hole, not true widths.
 - 2. Minimum grade of 0.3 g/t Au.
 - 3. Maximum internal waste of 2m.

APPENDIX 2

JORC CODE, 2012 EDITION – TABLE 1 REPORT: DARLOT GOLD MINE – RC AND DIAMOND CORE ASSAY RESULTS FROM RECENT SURFACE DRILLING FROM CABLE AND MISSION DEPOSITS

	Techniques and Data	Commence
Criteria	JORC Code Explanation	Commentary
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole	For the 21CBRC and 20MIRC hole series sampling of the reverse circulation chips was carried out by taking 1m split off of a cone splitter attached to a Schramm T685 RC rig and submitting the split sample for analysis. A field duplicate was taken via the secondary chute of the splitter into a sequential numbered sample bag for the metre of drilling. This results in two 1m split samples for that 1m interval.
	gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	For the 20CBDD, 21CBDD, 20MIDD & 21MIDD hole series of diamond drill core (DD) from recent drilling by Red5 was carried out by halving the HQ drill core lengthwise, using a powered diamond saw, and submitting predetermined lengths of half core for analysis.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	Red 5 inserted certified blank material into the sampling sequence immediately after samples that had been identified as potentially containing coarse gold in diamond samples and as well as at pre-determined intervals of 1:50 in the reverse circulation sampling sequence. Barren flushes were also carried out during the sample preparation process, immediately after preparation of the suspected coarse gold bearing samples. The barren flush is also analysed for gold to identify and quantify any gold smearing in the sample preparation process.
		Certified Reference Material was regularly inserted into the sampling sequence after every 20 samples to monitor QAQC of the analytical process.
		Drill core and RC samples are dried, crushed and pulverised to a nominal 2mm size and then split to produce a 500g sub-sample for analysis by Photon Assay determination technique (PAAUO2).
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was	Reverse circulation drilling was used to obtain 1m samples from which 2-3kg which is dried, crushed and split to produce a 500g sub-sample for Photon Assay analysis. The remaining crushed reverse circulation coarse reject sample is then stored by the laboratory for 3 months. The 500g sub-sample is returned to site and is stored for reference.
	used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent	For all diamond drill hole series drill core sampling has been half cut and sampled downhole to a minimum of 0.2m and a maximum of 1.2m to provide a sample size between 0.3-6 kg, which is dried, crushed to a nominal 2mm size and split to produce a 500g sub-sample for Photon Assay analysis. The remaining half of the core is stored in the core farm onsite for reference.
	sampling problems.	Coarse gold is only occasionally observed in drill core, if identified screen fire assay is done.
	Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	

Criteria	JORC Code Explanation	Commentary
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard	Surface reverse circulation drilling is carried out by a drilling contractor using an 8x8 truck mounted Schramm T685 drill rig with additional air from an auxiliary compressor and booster. All drill holes were drilled using a 5.75 inch sized hammer bit.
	tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Surface diamond core drilling is carried out by drilling contractors, using standard wireline techniques. Triple tube barrel is used through the weathering profile until competent fresh rock is reached as to preserve primary rock characteristics as well as maximise recovery through this area. Standard double tube is used from fresh rock until end of hole since the core is sufficiently competent to not require the use of triple tube. Diamond drill core diameter is HQ3 (Ø 63.5mm).
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed	Reverse circulation drilling was undertaken using a best practice approach to achieve maximum sample recover and quality through all rock types. Wet samples are logged using a field notebook and recorded to the database by Red 5 field staff.
		Drill core sample recovery is calculated for each core run, by measuring and recording length of core retrieved divided by measured length of the core run drilled. Sample recoveries are calculated and recorded in the database.
		Drill core recovery factors for core drilling are generally very high typically in excess of 95% recovery.
	Measures taken to maximise sample recovery and ensure representative nature of the samples	Reverse circulation sampling procedure included usage of dust suppression, suitable shroud, lifting off bottom at end of each metre, regular cleaning of sampling equipment, ensuring a dry samples is produced and suitable supervision by the supervising geologist to ensure good sample quality.
		Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against depth given on the core blocks.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource	100% of reverse circulation chips and drill core is logged geologically to a level of detail enough to support appropriate Mineral Resource estimation, mining studies and metallurgical studies by a qualified geologist with experience in this deposit type.
	estimation, mining studies and metallurgical studies.	Logging of diamond drill core and reverse circulation chips has recorded lithology, mineralogy, texture, mineralisation, weathering, alteration and veining.
$(\psi \bigcirc)$	Whether logging is qualitative or quantitative in nature.	Logging is qualitative and/or quantitative where appropriate.
		Before sampling the core is photographed and filed on the site server.
	Core (or costean, channel, etc) photography.	Reverse circulation chips were washed for each metre and a representation of every metre is stored in chip trays, brought back to site, photographed and stored onsite for further reference.

Section	1:	Sampling	Techniques	and Data
---------	----	----------	------------	----------

Criteria	JORC Code Explanation	Commentary
	The total length and percentage of the relevant intersections logged	All reverse circulation and diamond drill holes are logged in their entirety at completion.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	All diamond drill core samples were obtained by cutting the core in half, along the entire length of each sampling interval. Half core samples are collected over predetermined sampling intervals, from the same side, and submitted for analysis.
		Drill core sample lengths can be variable in a mineralised zone, though usually no larger than 1.2 meters. Minimum sampling width is 0.2 metres. This enables the capture of assay data for narrow structures and localised grade variations.
		Drill core samples are taken according to a cut sheet compiled by the Geologist. Core samples are bagged in pre-numbered calico bags and submitted with a sample submission form.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Every metre drilled a 2-3kg sample split was sub-samples into pre-numbered calico bag via a passive cone splitter on the drill rig.
115)		Majority of reverse circulation samples were sampled dry with a minor proportion samples damp or wet.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation of diamond drill core and reverse circulation chips adheres to industry standard practice. It is conducted by a commercial certified laboratory and involves oven drying at 105°C, jaw crushing all samples down to 2mm and split the sample down to 500g sub-sample. This procedure is industry standard and considered appropriate for the analysis of gold for Archaean lode gold systems.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Red 5 RC sampling QAQC procedure involves the use of certified reference standards (CRM's) at 1:50, duplicates at 1:50 and blanks at 1:50 for all exploration programs. High, medium and low grade standards are used depending on location to mineralisation and matched to weathering profile in hole. Company blank material used is a coarsely crushed barren basalt.
		Red 5 Diamond sampling QAQC procedure involves the use of certified reference standards (CRM's) at 1:50, duplicates at 1:50 and blanks at 1:50 for all exploration programs. High, medium and low grade standards are used depending on location to mineralisation and matched to weathering profile in hole. The insertion of CRM's into the sampling sequence maybe increased at the discretion of a Red 5 geologist if significant mineralisation is intercepted or to insert a CRM within the mineralised lode system. Company coarse blank material used is a coarse crushed basalt and is inserted after visible gold is identified in the core to test for smearing of grade after the visible gold.
	Measures taken to ensure that the sampling is	Sampling is carried out using standard Red 5 protocols and QAQC procedures as per industry practice.
	representative of the in situ material collected, including for instance results for field duplicate/second half sampling.	Duplicate samples 1:50 in RC and diamond drill holes and more frequently at the discretion of the geologist when in mineralised gold veins, and routinely checked against originals. Diamond duplicate sample is quarter core of the cut half core with remaining half core is retained in core trays for future reference.
16		There is sufficient drilling data and sampling data to satisfy Red 5 that the sampling is representative of the in-situ material collected.

Section	1:	Sampling	Techniques	and Data
---------	----	----------	------------	----------

Criteria	JORC Code Explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate for the grain size of sample material to give an accurate indication of gold mineralisation. Samples are collected from full width of sample interval to ensure it is representative of sample complete interval.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Primary assaying for both RC 1m and diamond samples is by a 500g linear split take for Photon Assay (method PAAU02).
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis include instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools have been utilised to determine assay results at Cables and Mission projects.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy	QC samples were routinely inserted into the sampling sequence and also submitted around expected zones of mineralisation. Standard procedures are to examine any erroneous QC results and validate if required, establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process.
	(i.e. lack of bias) and precision have been established.	Certified Reference Material (standards and blanks) with a wide range of values are inserted into all batches of diamond drill hole submissions, at a rate of 1 in 20 samples, to assess laboratory accuracy and precision and possible contamination. The CRM values are not identifiable to the laboratory.
		Certified blank material is inserted under the control of the geologist and are inserted at a minimum of one per batch. Barren quartz flushes are inserted between expected mineralised sample interval(s) when pulverising.
		QAQC data returned are checked against pass/fail limits with the SQL database and are passed or failed on import. A report is generated and reviewed by the geologist as necessary upon failure to determine further action.
		QAQC data validation is routinely completed and demonstrates sufficient levels of accuracy and precision.
		Sample preparation checks for fineness are carried out to ensure a grind size of 90% passing 75 microns.
		The laboratory performs several internal processes including standards, blanks, repeats and checks.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	RC and Core samples with significant intersections are typically reviewed by Senior Geological personnel to confirm the results.
/ ()	The use of twinned holes.	No specific twinned holes were drilled
15	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	The SQL server database is configured for optimal validation through constraints, library tables and triggers. Data that fails these rules on import is rejected and not ranked as a priority to be used for exports or any data applications.

Criteria	JORC Code Explanation	Commentary
		All RC and diamond drill data control is managed centrally, from drill hole planning to final assay, survey and geological capture. The majority of logging data (lithology, alteration and structural characteristics of core) is captured directly by customised digital logging tools with stringent validation and data entry constraints. The geologists import the data from the logging computer to the database where ranking of the data occurs based on multiple QAQC and validation rules.
	Discuss any adjustment to assay data.	The database is secure, and password protected by the Database Administrator to prevent accidental or malicious adjustments to data.
		No adjustments have been made to assay data. First gold assay is utilised for grade review. Re-assays carried out due to failed QAQC will replace original results, though both are stored in the database.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral	RC and Diamond drill hole collars are marked out pre-drilling using a handheld GPS with an accuracy of >±3m and picked up by company or contractor surveyors using a total station at the completion of drilling, with an expected accuracy of +/-2mm.
	Resource estimation.	Downhole surveys are carried out at regular intervals, using an electronic downhole survey tool. Older surveys typically used a single shot camera, with more recent surveys using continuously recording tools/gyroscope (e.g. Reflex EZ_SHOTTM, AXIS Champ Gyro TM) which are not affected by magnetics.
	Specification of the grid system used.	Drill hole site co-ordinates are in UTM grid (GDA94 zone 51) and historical drill holes are converted from historic grids.
	Quality and adequacy of topographic control.	Aerial Flyover survey has been used to establish a topographic surface combined with DGPS data from pick-ups from hole collar pick-ups.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill hole spacing is on a nominal 20m x 40m spaced grid to infill between historic drilling which has been undertaken in the area.
	Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The Competent Person considers the data reported to be sufficient to establish the degree of geological and grade continuity appropriate for future JORC 2012 Mineral Resource classification categories adopted for Cable and Missions.
Orientation of data in relation to geological structure	Whether sample compositing has been applied.	No composite samples been applied.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drill holes were not necessarily oriented in an optimum direction, resulting in some potential for negative and/or positive sampling bias, particularly in the zones of vein stock-works. Drilling from underground development to intersect target zones inhibits the ability to optimise sampling orientations. This has been recognised by previous owners as well as Red5 and accounted for in Mineral Resource estimation by segregation of the high grade veins.

Section 1: Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling is designed to intersect ore structures as close to orthogonal as practicable.
Sample security	The measures taken to ensure sample security.	All samples are prepared on site under supervision of Red 5 geological staff. Samples are selected, bagged into numbered calico bags then grouped into larger secured bags, stored onsite and delivered to the laboratory either in Canning Vale or Kalgoorlie using a licenced transport company. All samples are receipted at the laboratory and stored in a locked yard before being processed and tracked through preparation and analysis.
		Darlot Mine Site is a remote site, and the number of external visitors is minimal. The deposit is known to contain visible gold, and while this renders the core susceptible to theft, the risk of sample tampering is considered very low due to the policing by Company personnel at all stages from drilling through to storage at the core yard, sampling and delivery to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A series of written standard procedures exists for sampling and core cutting at Darlot Mine Site which has been adhered to while handling the samples from Cables and Mission Deposits. Periodic routine visits to drill rigs and the core farm are carried out by project geologists and Senior Geologists / Superintendents to review core logging and sampling practices. There were no adverse findings, and any minor deficiencies were noted, and staff notified, with remedial training if required.
		No external audits or reviews have been conducted for the purposes of this report.

Section 2: Reporting of Exploration Results	Section	2: Reporting of E	Exploration Results
---	---------	-------------------	----------------------------

	Criteria	JORC Code Explanation	Commentary
	Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues	The Cables and Mission projects are located on E37/1220 which expires in 2024. All exploration leases have a 5 year life and are renewable for a further 5 years if certain conditions are met.
			The exploration lease is currently held by Mr Andrew Paterson and managed by Darlot Mining Company Proprietary Limited (DMC), a wholly owned subsidiary of Red 5 Limited.
		interests, historical sites, wilderness or national park and environmental settings.	The lease is currently being operated under a sub-lease agreement over 13 graticular blocks below latitude -27°45' south (see Red 5 announcement 2 December 2019).
			The agreement allows DMC the exclusive rights to explore
2			The Exploration Leases are all currently subject to the conditions imposed by the MRF.
			This release only relates to drilling activities at Cables and Mission projects within E37/1220.
1			The tenements are subject to standard Native Title heritage agreements with further surveys as required.
	15		No significant Native Title heritage sites have been identified within the DMC operated portion of E37/1220.
((The security of the tenure held at the time of	The tenement is in good standing and the licence to operate already exists. There are no known
		reporting along with any known impediments to obtaining a licence to operate in the area.	impediments to obtaining additional licences to operate in the area.
(((/)	obtaining a licerice to operate in the area.	
	Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No known historical mining activities has occurred at the Cables and Mission project. Modern exploration in the Darlot area was triggered by the discovery of the Darlot Gold Mine in the 1980's followed by Centenary Deposit in the 1990's. Regional geophysics indicate that the Cables and Mission prospect was worthy of further investigation as it contained strong magnetic units of similar strength to what is seen around Darlot Mine site.
			Multiple third parties over the last 30 years have carried out sampling, mapping and drilling activities delineating gold mineralisation on the tenement.
			At Cables and Mission projects, various companies have completed exploration work over the projects including drilling, close spaced geophysics and soil sampling programs. The tenement has passed from Newcrest, Barrick Gold of Australia, Navarre minerals, Aragon Resources, Interglobal investments and onto Leopard Minerals.
			Andrew Paterson then applied for the tenement in 2015 and was then granted in 2019 for a period of 5 years.
			In December 2019 Red 5 Limited entered a sub-lease agreement with Andrew Paterson over the tenement graticular blocks containing the Cables and Mission projects.
	Geology	Deposit type, geological setting and style of mineralisation.	The Cables and Mission mineralisation is considered to be part of an Archean Orogenic gold deposit with many similar characteristics to other gold deposits within the Eastern Goldfields of the Yilgarn Craton.
			Gold mineralisation is associated with laminated quartz vein sets within a hosting magnetic dolerite unit and/or on a contact with a sedimentary unit and silica ± sericite ± potassic ± albite ± haematite

Section :	2:	Reporting (of Ex	ploration	Results
-----------	----	-------------	-------	-----------	---------

Criteria	JORC Code Explanation	Commentary
		alteration. Mineralisation is thought to have occurred within a brittle/ductile shear zone being the primary conduit for the mineralising fluids.
		Gold appears as free particles or associated with traces of base metals sulphides (galena, chalcopyrite, pyrite) intergrown within quartz along late stage fractures.
Drillhole information	A summary of all information material to the understanding of the exploration results, including a tabulation of the following information for all Material drill holes:	Drillhole collar locations, azimuth and drill hole dip and significant assays are reported in Appendix 1 attached to the ASX announcement for which this Table 1 Report accompanies. The holes reported are in GDA MGA94 Zone 51 grid.
	- easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
75	- dip and azimuth of the hole	
	- down hole length and interception depth	
(())	- hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Reporting of intercepts are based on weighted average gold grades, using a low cut-off grade of 0.3g/t Au. No cutting of high grades has been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation	Compositing of intercepts is constrained by including consecutive down-hole lengths of maximum 4 metres at grades <0.3g/t Au with significant assays reported above 0.5 g/t Au.
N N	should be stated and some typical examples of such aggregations should be shown in detail.	The minimum sample length is 0.2m up to a maximum length of 1.2m.
	The assumptions used for any reporting of metal	No metal equivalents are used.
715)	equivalent values should be clearly stated.	

Section	2: R	eporting	of Ex	ploration	Results
		- F		p.o. a o	

Criteria	JORC Code Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	No true thickness calculations have been made. All reported down hole intersections are documented as down hole width only. True width not known. The Cables and Mission mineralisation envelope is intersected approximately orthogonal to the orientation of the mineralised zone at time of drilling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	A scaled plan projection, longitudinal projection are included within the main body of the ASX release for which this Table 1 Report accompanies.
Balanced Reporting	Where comprehensive reporting of all Exploration Results are not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting of all Assay Results is not practicable, due to the amount of data. Cables and Mission projects significant assays are reported according to predetermined intersection-reporting criteria, which includes low and high grades. Weighted average composited intervals have been tabulated and included within the main body of the ASX release for which this Table 1 Report accompanies. No grade cuts have been applied. Only significant assays equal to and above 0.3 g/t Au have been reported for Table 2 & 3 in Appendix 1 for the Cables and Mission project series holes and includes up to 2m of internal dilution (i.e. grades < 0.3 g/t)
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data that may have been collected is considered material to this announcement.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Red 5 Limited is continually reviewing drilling data and geology interpretations to identify potential targets, with drilling to further progress the exploration potential of the project areas. Refer to figures in body of this announcement.

Criteria	JORC Code Explanation	Commentary
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	