

13 March 2024 ASX:LCL \chi 🛚 in

PERTH OFFICE: Level 3, 88 William Street, WA 6000

POSTAL: GPO Box 2570 Perth WA 6001
PH: + 61 (8) 9463 2463 EMAIL: info@lclresources.au lclresources.au

HIGH GRADE NICKEL SULPHIDES INTERSECTED IN VERI VERI TRENCHING

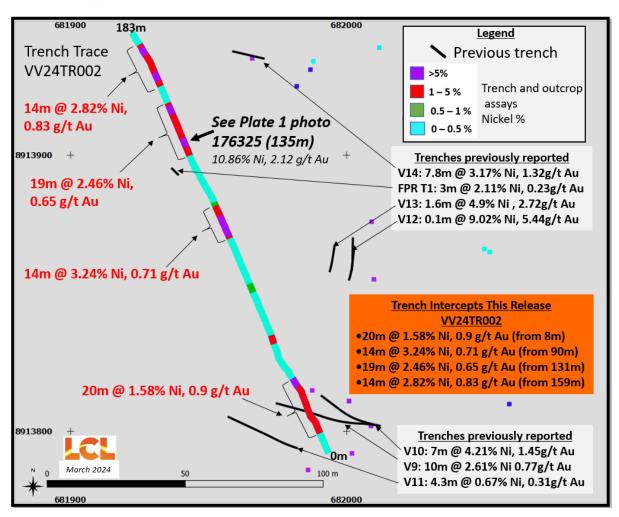
- Trenching across the Veri Veri nickel sulphide prospect has returned multiple zones of high grade nickel with associated gold, including:
 - 14m @ 3.24% Ni, 0.71 g/t Au
 - 19m @ 2.46% Ni, 0.65 g/t Au
 - 14m @ 2.82% Ni, 0.83 g/t Au
 - o 20m @ 1.58% Ni, 0.90 g/t Au
- First field program commences at Wedei to determine source of 7km x 4km nickel stream sediment anomaly

LCL Resources Ltd (ASX:LCL) (Company) is pleased to provide an update on exploration activity at the Company's 100% owned PNG Nickel Project.

High grade nickel sulphides assayed in Veri Veri trench

The Company has received assays from trenching across the Veri Veri mineralised corridor, which identified multiple zones of high grade nickel and gold, associated with ultramafic host rocks (Figure 1). The trench (VV24TR002) was designed to test bedrock geochemistry across a mineralised corridor and totalled 183m in length. The best intercepts returned (Figure 1):

- 20m @ 1.58% Ni, 0.90 g/t Au (from 8-28m)
- 14m @ 3.24% Ni, 0.71 g/t Au (from 90-104m)
- 19m @ 2.46% Ni, 0.65 g/t Au (from 131-150m)
- 14m @ 2.82% Ni, 0.83 g/t Au (from 159-173m)


The nickel mineralisation is associated with serpentinised ultramafics, which contain structural lenses (boudins) and minor veins of nickel sulphide, dominated by the high grade nickel sulphide mineral heazlewoodite. The nickel sulphide zones (reporting grades up to 10.86% Ni) have a direct geochemical correlation with gold (up to 2.19 g/t Au).

Directors caution that in tropical environments weathering frequently occurs and that nickel and gold grades reported may not accurately reflect grades from depths below the zone of weathering.

The fabric of structures within the corridor are multi-directional indicating several deformation events, with a dominant north-northeast trend.

Veri Veri is one of five areas (also Iyewe, Doriri, Olei Creek and Aniau) of nickel sulphides discovered along a 20km strike proximal to the Keveri Fault. (Figure 2).

Figure 1: Location plan of Veri Veri Trench (VV24TR002) with significant intercepts highlighted. Previously reported trenches and rock chips included¹. Location of Plate 1 high grade sample highlighted. Note also the close grouping of the two most northerly intercepts, separated by 9m of unaltered dunite, which provides a promising 42m wide target for follow-up.

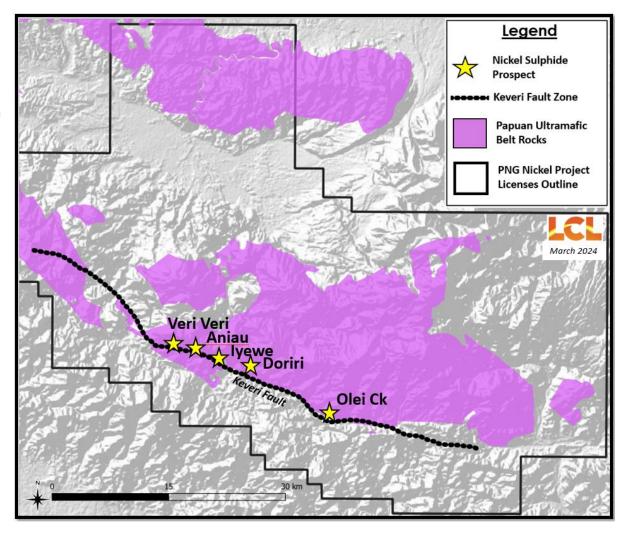
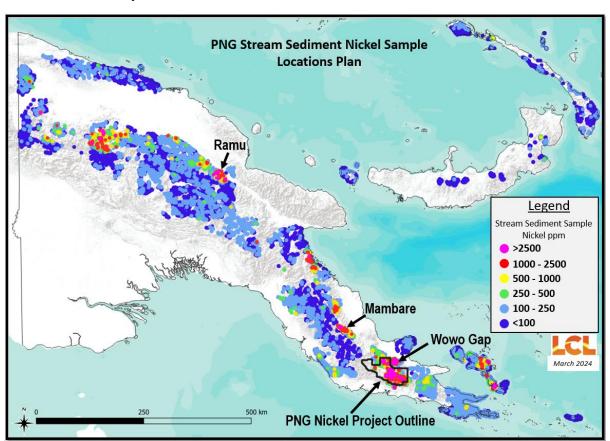

¹ See ASX announcement 20 July 2023. The Company confirms that it is not aware of new information that affects the information contained in the original announcement.

Plate 1. Representative photo of trench sample 176325 which returned 10.86% Ni, 2.12 g/t Au from 135-136m. The sample contains nickel sulphide (heazlewoodite), serpentine and garnierite.

Figure 2: Location plan of part of LCL's PNG Nickel Project, highlighting the known nickel sulphide prospects with respect to the Keveri Fault and the distribution of the prospective Papuan Ultramafic Belt rocks.

LCL Executive Chairman, Ross Ashton, commented: The intersection of high grade nickel sulphides at Veri Veri, supported by significant gold values, over a substantial portion of the 183m long trench, in particular the northern 42m of the trench which included 19m @ 2.46% Ni, 0.65g/t Au and 14m @ 2.82% Ni 0.83g/t Au, is a promising start to our detailed field follow up. Our work at Veri Veri confirms that nickel-gold mineralisation in the PNG Nickel Project, interpreted as hydrothermal in origin, is unusual if not globally distinct. We have commenced a detailed review of historical VTEM data to determine any geophysical signature from the mineralisation, that may focus location and azimuth of follow up trenching to investigate bulk mining potential of this novel mineralisation style at Veri Veri.

These studies can then be applied to the design of exploration programs to test the Aniau, lyewe, Doriri and Olei Creek targets along the Keveri Fault.'


LCL commences field investigations at Wedei

The 7km x 4km Wedei nickel stream sediment anomaly is located 20km northeast of Veri Veri (Figures 3 & 4) and is prospective for nickel laterite and nickel sulphide mineralisation. Historical exploration comprised stream sediment sampling and a very restricted reconnaissance soil sampling program. The LCL exploration team have recently mobilised

to the Wedei target to determine the source of this very large nickel stream sediment anomaly which to date remains unknown.

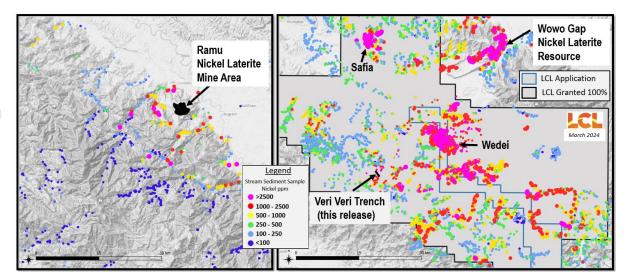

With a renewed interest in nickel laterite resources in the SW Pacific, LCL has started the process of assessing nickel laterite prospectivity of the 3,400km² project area under 100% tenure. LCL geologists believe several areas boast similar settings to other nickel laterite projects in the SW Pacific, including the Ramu Nickel mine in PNG (Figure 3). A scale comparison with Ramu and Wowo Gap Nickel Project (Figure 4), located 25km northeast of Wedei, demonstrates the relative size and strength of multiple nickel laterite targets within the PNG Nickel Project area.

Figure 3: Previously reported² regional stream sediment samples, highlighting anomalous nickel samples and locations of major nickel laterite resources in PNG.

² See ASX announcement 27 July 2023. The Company confirms that it is not aware of new information that affects the information contained in the original announcement.

Figure 4: A same scale comparison of regional stream sediment nickel assays over the Ramu Nickel mine (China Metallurgical Group Corporation) and Wowo Gap Nickel Project (Integrated Battery Metals) and the LCL Nickel Project. Note the Wedei anomaly where the LCL team is currently working. Regional nickel stream sediment data sourced from the MRA (Mineral Resources Authority) of PNG.

Next Steps

Assays from recent sampling at the Olei Creek, Iyewe and other targets adjacent to the Keveri Fault zone will be available in April 2024.

From	То	Sample_ID	Easting	Northing	Lithology	Ni	Au
m	m					%	g/t
0	2	176425	681993	8913794	Dunite	0.13	<0.005
2	4	176426	681992	8913796	Dunite	0.16	<0.005
4	6	176427	681991	8913798	Dunite	0.14	<0.005
6	8	176428	681990	8913800	Dunite	0.19	<0.005
8	9	176429	681990	8913800	Dunite	1.23	0.33
9	10	176430	681990	8913801	Dunite	0.97	0.32
10	11	176431	681989	8913802	Dunite	1.59	0.65
11	11.7	176432	681989	8913803	Dunite	1.89	0.55
11.7	12.4	176433	681989	8913804	Dunite	2.76	0.99
12.4	13	176434	681988	8913804	Dunite	1.00	0.43
13	14	176435	681988	8913805	Dunite	0.15	<0.005
14	15	176436	681987	8913806	Dunite	0.15	0.01
15	16	176437	681987	8913806	Dunite	2.02	0.98
16	17	176438	681986	8913807	Dunite	0.17	<0.005
17	18	176439	681986	8913808	Dunite	4.69	1.41
18	19	176440	681986	8913809	Dunite	0.21	<0.005
19	20	176441	681985	8913810	Dunite	1.81	0.95
20	21	176442	681985	8913811	Dunite	0.17	<0.05
21	22	176443	681985	8913812	Dunite	1.36	0.73
22	23	176445	681984	8913813	Dunite	3.32	1.51

From	То	Sample_ID	Easting	Northing	Lithology	Ni	Au
m 23	m	176446	681984	8913814	Dunite	% 0.15	g/t <0.005
	24						
24	25	176447	681984	8913814	Serpentinite	3.52	5.98
25	26	176448	681983	8913815	Serpentinite	0.19	0.01
26	27	176449	681983	8913816	Serpentinite	0.28	0.03
27	28	176450	681982	8913817	Serpentinite	5.73	3.10
28	29	176451	681981	8913818	Serpentinite	0.16	<0.005
29	31	176452	681980	8913819	Dunite	0.16	<0.005
31	33	176453	681979	8913821	Dunite	0.15	<0.005
33	35	176454	681978	8913823	Dunite	0.16	0.01
35	37	176455	681977	8913824	Dunite	0.16	<0.005
37	39	176456	681976	8913826	Dunite	0.21	<0.005
39	41	176457	681975	8913828	Dunite	0.18	<0.005
41	43	176458	681975	8913830	Dunite	0.16	<0.005
43	45	176459	681974	8913831	Dunite	0.14	<0.005
45	46	176460	681974	8913832	Dunite	1.20	0.36
46	47	176461	681973	8913833	Dunite	0.19	<0.005
47	48	176462	681973	8913834	Dunite	0.19	<0.005
48	49	176463	681973	8913835	Dunite	0.17	<0.005
49	51	176465	681972	8913837	Dunite	0.21	<0.005
51	53	176466	681971	8913838	Dunite	0.21	<0.005
53	55	176467	681971	8913840	Dunite	0.20	<0.005
55	57	176468	681970	8913841	Dunite	0.21	<0.005
57	59	176469	681969	8913843	Dunite	0.18	<0.005
59	61	176470	681969	8913844	Dunite	0.16	<0.005
61	63	176471	681968	8913845	Dunite	0.18	<0.005
63	65	176472	681968	8913847	Dunite	0.18	<0.005
65	66	176473	681967	8913848	Dunite	0.19	<0.005
66	67	176474	681967	8913848	Dunite	0.84	0.10
67	68	176475	681967	8913849	Dunite	0.26	0.03
68	70	176476	681966	8913850	Dunite	0.19	<0.005
70	72	176477	681966	8913852	Dunite	0.24	<0.005
72	74	176478	681965	8913853	Dunite	0.18	<0.005
74	76	176479	681964	8913855	Dunite	0.17	<0.005
76	78	176480	681964	8913856	Dunite	0.18	<0.005
78	80	176481	681963	8913857	Dunite	0.16	<0.005
80	82	176482	681963	8913859	Dunite	0.18	<0.005
82	83	176483	681962	8913860	Dunite	0.21	<0.005
83	84	176485	681962	8913860	Dunite	0.48	0.08
84	86	176486	681961	8913862	Dunite	0.18	<0.005
86	88	176487	681961	8913863	Dunite	0.16	<0.005
88	90	176488	681960	8913865	Dunite	0.15	<0.005
90	91	176489	681960	8913865	Dunite	0.17	<0.005
91	92	176490	681960	8913866	Serpentinite	4.55	1.25
	, ,	1.01,0	551,00	0.10000	Jo. pontinite		0

From	То	Sample_ID	Easting	Northing	Lithology	Ni	Au
m 92	m 93	176491	681959	8913867	Serpentinite	% 5.39	g/t 1.75
93	94	176492	681959	8913867	Serpentinite	3.22	0.61
94	95	176492			•	2.48	0.81
			681959	8913868	Serpentinite		
95	96	176494	681958	8913869	Serpentinite	0.12	<0.005
96	97	176495	681958	8913870	Serpentinite	7.43	1.98
97	98	176496	681958	8913870	Serpentinite	3.08	0.46
98	99	176497	681957	8913871	Serpentinite	6.06	1.02
99	100	176498	681957	8913872	Serpentinite	2.04	0.30
100	101	176499	681957	8913873	Serpentinite	2.63	0.45
101	102	176500	681956	8913873	Serpentinite	3.33	0.92
102	103	176301	681956	8913874	Serpentinite	0.19	<0.005
103	104	176302	681956	8913875	Serpentinite	1.63	0.20
104	105	176303	681955	8913876	Serpentinite	0.24	0.01
105	106	176305	681955	8913876	Serpentinite	0.81	0.09
106	107	176306	681955	8913877	Serpentinite	0.26	0.05
107	108	176307	681954	8913878	Dunite	0.19	<0.005
108	109	176308	681954	8913879	Dunite	0.19	<0.005
109	111	176309	681953	8913880	Dunite	0.18	<0.005
111	113	176310	681953	8913882	Dunite	0.16	<0.005
113	115	176311	681952	8913883	Dunite	0.19	<0.005
115	117	176312	681951	8913885	Dunite	0.19	<0.005
117	119	176313	681950	8913886	Dunite	0.23	<0.005
119	121	176314	681950	8913888	Dunite	0.22	<0.005
121	123	176315	681949	8913889	Dunite	0.16	<0.005
123	125	176316	681948	8913891	Dunite	0.19	0.01
125	127	176317	681947	8913892	Dunite	0.25	0.01
127	129	176318	681946	8913894	Dunite	0.21	0.01
129	131	176319	681945	8913896	Serpentinite	0.21	<0.005
131	132	176320	681945	8913896	Serpentinite	1.30	0.10
132	133	176321	681944	8913897	Serpentinite	0.40	<0.005
133	134	176322	681944	8913898	Serpentinite	1.14	0.11
134	135	176323	681944	8913899	Serpentinite	0.28	<0.005
135	136	176325	681943	8913900	Serpentinite	10.86	2.12
136	137	176326	681943	8913901	Serpentinite	3.28	0.50
137	138	176327	681942	8913902	Serpentinite	0.27	0.02
138	139	176328	681942	8913903	Serpentinite	1.80	0.31
139	140	176329	681942	8913904	Serpentinite	0.33	0.03
140	141	176330	681941	8913905	Serpentinite	2.45	0.41
141	142	176331	681941	8913906	Serpentinite	2.76	1.37
142	143	176332	681940	8913906	Serpentinite	4.72	2.34
143	144	176333	681940	8913907	Serpentinite	1.06	0.20
144	145	176334	681940	8913908	Serpentinite	1.87	0.22
145	146	176335	681939	8913909	Serpentinite	2.28	0.40

From	To m	Sample_ID	Easting	Northing	Lithology	Ni %	Au g/t
146	147	176336	681939	8913910	Serpentinite	0.78	0.04
147	148	176337	681939	8913911	Serpentinite	1.35	0.02
148	149	176338	681938	8913912	Serpentinite	5.51	2.88
149	150	176339	681938	8913913	Serpentinite	4.39	1.34
150	152	176340	681937	8913915	Serpentinite	0.32	<0.005
152	154	176341	681936	8913917	Serpentinite	0.27	<0.005
154	156	176342	681935	8913918	Serpentinite	0.25	<0.005
156	159	176343	681934	8913921	Serpentinite	0.29	0.06
159	160	176345	681934	8913922	Serpentinite	2.98	0.99
160	161	176346	681933	8913923	Serpentinite	1.16	0.27
161	162	176347	681933	8913924	Serpentinite	5.73	0.99
162	163	176348	681933	8913925	Serpentinite	3.73	1.59
163	164	176349	681932	8913926	Serpentinite	2.09	0.43
164	165	176350	681932	8913927	Serpentinite	3.22	1.47
165	166	176351	681931	8913928	Serpentinite	1.69	0.27
166	167	176352	681931	8913929	Serpentinite	1.97	0.61
167	168	176353	681931	8913929	Serpentinite	0.84	0.11
168	169	176354	681930	8913930	Serpentinite	1.40	0.28
169	170	176355	681930	8913931	Serpentinite	3.31	1.39
170	171	176356	681930	8913932	Serpentinite	0.68	0.10
171	172	176357	681929	8913933	Serpentinite	7.52	2.19
172	173	176358	681929	8913934	Serpentinite	3.12	0.96
173	174	176359	681928	8913935	Dunite	0.19	0.03
174	176	176360	681927	8913937	Dunite	0.12	0.01
176	178	176361	681926	8913938	Dunite	0.11	0.01
178	180	176362	681925	8913940	Dunite	0.07	0.01
180	182	176363	681924	8913942	Dunite	0.07	0.01
182	183	176365	681923	8913943	Dunite	0.09	<0.005

Table 1: Assays results for trench W24TR002. Coloured cells are of note.

For the purpose of ASX Listing Rule 15.5, the Board has authorised the release of this announcement.

For further enquiries contact:

Ross Ashton

Executive Chairman LCL Resources Ltd 3/88 William Street PERTH WA 6000

FORWARD LOOKING STATEMENTS This document contains forward looking statements concerning LCL Resources. Forwardlooking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on LCL's beliefs, opinions and estimates of LCL as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate. Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of gold, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents. Readers should not place undue reliance on forward-looking information. The Company does not undertake to update any forward-looking information, except in accordance with applicable securities laws. No representation, warranty or undertaking, express or implied, is given or made by the Company that the occurrence of the events expressed or implied in any forward-looking statements in this presentation will actually occur.

JORC STATEMENTS - COMPETENT PERSONS STATEMENTS

The technical information related to LCL's assets contained in this report that relates to Exploration Results is based on information compiled by Mr John Dobe, who is a Member of the Australasian Institute of Mining and Metallurgy and who is a Geologist employed by LCL on a full-time basis. Mr Dobe has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Dobe consents to the inclusion in the release of the matters based on the information he has compiled in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1- Awala EL2706.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Rock chip/trench samples are bagged in numbered calico sacks with a sample tag. Groups of 5 samples are bagged in a heavy-duty plastic bag, labelled, weighed and sealed, for transport. Transport is via helicopter to the township of Upalima, where the samples are couriered with a commercial transport group to the Intertek (ITS) Laboratory in Lae, PNG. No field non-assay analysis instruments were used in the analyses reported. All rock chip samples are approximately 2kg in weight.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	• NA
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	• NA
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Rock chips are logged geologically by the project geologist to accepted industry standards capturing lithology, mineralogy and structural measurements.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	
	 The total length and percentage of the relevant intersections logged. 	
Sub- sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	Certified reference material (OREAS) was used for trench QAQC control. Internal laboratory QAQC about a reported by the laboratory and are
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 Internal laboratory QAQC checks are also reported by the laboratory and a reviewed as part of the Company's QAQC analysis.
, .,,	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	preparation and Au assay. Pulps are sent to ITS' laboratory in Townsville, Australia for multi-element assays. Gold assays were obtained using a lead
laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading	 collection fire assay technique (FA50/AAS) and analyses for an additional 48 elements obtained via Four Acid ICP-OES & MS package 4A/OM10. Fire assay for gold is considered a "total" assay technique.

Criteria	JC	ORC Code explanation	С	ommentary
	•	times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards,	•	An acid (4 acid) digest is considered a total digestion technique. However, for some resistant minerals, not considered of economic value at this time, the digestion may be partial e.g. Zr, Ti etc.
	blanks, duplicates, external laboratory c	acceptable levels of accuracy (ie lack of bias) and precision	•	No field non-assay analysis instruments were used in the analyses reported.
		have been established.	•	Geochemistry results are reviewed by the Company for indications of any significant analytical bias or preparation errors in the reported analyses.
			•	Certified reference material (OREAS) was used for QAQC control. Internal laboratory QAQC checks are also reported by the laboratory and are reviewed as part of the Company's QAQC analysis.
Verification of sampling	•	The verification of significant intersections by either independent or alternative company personnel.	•	Reported results are compiled by the Company's geologists and verified by th Company's database administrator and exploration manager.
and assaying	•	The use of twinned holes.	•	No adjustments to surface assay data were made.
, ,	•	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	•	Data is stored digitally in a database which has restricted access to LCL database personnel.
	•	Discuss any adjustment to assay data.	•	Pulps from the ITS laboratory are returned to LCL after 3 months. LCL then store the samples in a secure lock storage container in Lae, PNG.
Location of data points	•	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	•	The grid system is WGS84 UTM zones Z55S.
	•	Specification of the grid system used.		
	•	Quality and adequacy of topographic control.		
Data spacing	•	Data spacing for reporting of Exploration Results.	•	Trenching was undertaken on a nominal 1 or 2m interval, but may change
and distribution	•	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.		depending on the geologist's discretion.
	•	Whether sample compositing has been applied.		
Orientation of data in	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this	•	Based on the LCL geologists field measurements of structural orientations,

Criteria	JORC Code explanation	Commentary
relation to	is known, considering the deposit type.	there is no bias to the orientation of sampling.
geological structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	
Sample security	The measures taken to ensure sample security.	 Surface sample dispatches are secured and labelled on site. Groups of 5 samples are bagged in a heavy duty plastic bag, labelled, weighed and sealed, for transport.
		 Transport is via helicopter to a commercial airport, where the samples are couriered with a commercial transport group to the ITS laboratory in Lae, PNG.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	At this stage no audits have been undertaken.

Section 2 Reporting of Exploration Results - Awala EL2706, Abau EL2566.

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	Type, reference name/number, location and ownership including agreements or material issues with third parties	 The Exploration Titles were validly issued as Exploration Licences pursuant to the 1992 Mining Act.
land tenure status	such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	• The Exploration Licence grants its holders the exclusive right to carrying out exploration for minerals on that land. There are no outstanding encumbrances or charges registered against the Exploration Title at the National Registry.
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration Licence Applications (ELA) remain subject to granting by PNG authorities.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Veri Veri Projects: Goldminex (ASX: GMX) 2006-2013. Drilling, stream sampling, soils, rock chips, trenching, aeromagnetics, VTEM. GMX sampling of rocks and trenches within this report was undertaken prior to 2009.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 The discussed nickel projects are hydrothermal shear hosted nickel-sulphide targets.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	• NA
	 easting and northing of the drill hole collar 	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	 dip and azimuth of the hole 	
	 down hole length and interception depth 	
	o hole length.	
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	 Weighted averages have been used to calculate significant intersections. For gold results lower than laboratory detection limits (e.g. Au <0.005), then half of the detection limit was used when calculating weighted averages. No more than 2m of internal dilution at >1% Ni was used for the significant intersection
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	calculations.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between	 These relationships are particularly important in the reporting of Exploration Results. 	• NA
mineralisation widths and	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	
		15

Criteria	JORC Code explanation	(Commentary
intercept lengths	 If it is not known and only the down there should be a clear statement to length, true width not known'). 		
Diagrams	 Appropriate maps and sections (winder of intercepts should be included for being reported These should included plan view of drill hole collar location sectional views. 	any significant discovery le, but not be limited to a	Maps showing the location of trench and rock photos are contained within this report.
Balanced reporting	Where comprehensive reporting of not practicable, representative repor- grades and/or widths should be pra- reporting of Exploration Results.	orting of both low and high	Reporting is considered balanced.
Other substantive exploration data	Other exploration data, if meaningforeported including (but not limited to observations; geophysical survey results; bulk samples – size metallurgical test results; bulk dens geotechnical and rock characteristic contaminating substances.	o): geological esults; geochemical and method of treatment; sity, groundwater,	
Further work	 The nature and scale of planned ful lateral extensions or depth extension drilling). 		Further surface work is being planned at the Veri Veri prospect. Rock chip data is still pending from other target areas on EL2706.
	 Diagrams clearly highlighting the an extensions, including the main geof future drilling areas, provided this in commercially sensitive. 	logical interpretations and	